	Document No. 50
REPORT BY A SPEOLAI, BOARD OF FNGINEERS ON SURVEY OF MISSISSIPPI RIVER FROM S'I. LOULS, MO., 'TO I'IS MOU'TH WITH A VIEW TO OBTAINING A CHANNELI 14 FBET DEEP AND OF SUITABLE WIDTH INCLUDING A CONSIDERATION OF THE SURVEY OF A PROPOSED WATERWAY. FROM CHICAGO, ILL., TO STI LOUIS, MO. HERETOFORE REPORTED UPON SUBMITTED BY THE CHIEF OF ENGINELRS TO THE SHCBETARY OF WAR	

MISBISSIPPI RIVER FROM ST. IOUIS TO ITS MOUTHE, AND WA'TERWAY FROM CHICAGO TO S'I. LOUIS.

LETTER
 FROM
 THE SECRETARY OF WAR,

TRANBMITTINO,

War Department, Washington, June 9, 1909.
Sir: I have the honor to transmit herewith a letter from the Chief of Engineers, U. S. Army, dated June 7th instant, submitting a report of the board of engincers constituted under authority of an item in section 1 of the river and harbor act approved March 2, 1907, of a survey of the Mississippi River from St. Louis, Mo., to its mouth, with a view to obtaining a channel 14 feet deep and of suitable width, including a consideration of the survey of a proposed waterway from Chicago, Ill., to St. Louis, Mo., heretofore reported upon.
In view of the widesproad interest in this proposed work, and the value and importance of the data furnished, it is recommended that these reports, with accompanying maps and other appendixes, be ordered printed in their entirety.

Very respectfully,

> J. M. Diokinson, Secretary of War.

The Speaker of the House of Representatives.

War Department, Office of the Chief of Enginemers, Washington, June 7, 1909.

Sir: I have the honor to submit herewith, for transmission to Congress, a report dated March 20, 1909, by a board of five members constituted under authority of an item in section 1 of the river and harbor act approved March 2, 1907, making provision for examination of the Mississippi River from St. Louis to the mouth, as follows:
The Secretary of War may appoint a board of five members, to be composed of three members of the Mississippi River Commission, one of whom shall be the presi-. dent of such commisslon, and two engineer officers of the United States Army, to examine the Mississippi River below Saint Louis and report to Congress, at the carliest date by which a thorough oxamination can be made, upon the practicability and desirability of constructing and maintaining a navigable channel lourteen feet deep and of suitable width from Saint Louis to the mouth of the river, either by the improve. ment of said river or by a canal or canals for part of said route. In its report the board shall cover the probable cost of such improvement the probable cost of maintenance, and the present and prospective commerce of said waterway, both local and general, upstream as well as downstream, and the said board may consider in connection with the oxamination herein provided for, the survey of a proposed waterway from Ohicago to Saint Louis, heretofore reported; it shall also report whether other plans of improvement can be devised by which the probable demands of traffic, present and prospective, can be adequ..tely met, and the sum of one hundred and ninety thousand dollars, or so much thereof as may be necessary, is hereby appropriated for the making of such survey, of which amount only one hundred thousand dollars shall be available, unless in presenting a plan for such watorway it shall be necessary, in the judgment of said board, to make a survey for a lateral canal or canals; and the force, plant, and records of the Mississippi River Commission shall be available for the use of said board in making said examination; and said board shall also at the earliest date practicable report upon the following:

First. What depth of channel is it practicable to produce between Saint Louis and Cairo at low wator by means of regulation works.
Second. What depth will obtain in such regulated channel at the average stage of water for the year.
Third. For what average number of days annually will fourteen feet of water obtain in such regulated channel.
Fourth. What increase of depth will be obtained over the natural flow of water in such regulated channel by an added volume of ten thousand cubic feet per second; aleo fourteen thousand cubic feet per second.
Fifth. And the board shall consider further the practicability of producing at all seasons of the year a depth of fourteen feet in such regulated channel by the aid of locks and dams similar to those projected and in use on the Ohio River improvement.

Sixth. And the said Board shall also report upon any water power which may be created in the portion herein directed to be surveyed, as well as in the proposed waterway from Saint Louis to Chicago heretofore surveyed, 'and the value thereof, and what means should be taken in order that the Government of the United States may conserve the same or receive adequate compensation therefor, and upon any lands which may be drained by the construction of either of said proposed waterways, and shall also report what steps, if any, shall be taken to cause the cost of the improvement to be defrayed, in whole or part, by means of such water power or lande.

The membership of this Board at the date of its report was as follows: Col. W. H. Bixby, Corps of Engineers, president of the Mississippi River Commission; Lieut. Col. C. McD. Townsend, Corps of Engineers; Lieut. Col. J. G. Warren, Corps of Engineers; Mr. Henry B. Richardson, member of the Mississippi River Commission, and Mr. Homer P. Ritter, assistant, United States Coast and Geodetic Survey, and member of the Mississippi River Commission.

This report has been referred, as required by law, for consideration and recommendation by the Board of Engineers for Rivers and Marbors, organized in pursuance of the provisions of section 3 of the river and harbor act approved June 13, 1902, and attention is respect-
fully invited to the report ${ }^{a}$ by this permanent Board dated June 3, 1909, which is also herewith.

These are reports upon a proposed channel to lead from the Great Lakes near Chicago by way of the valleys of the Des Plaines and Illinois rivers, and the Mississippi River, to the Gulf of Mexico. The portion of this route from Lake Michigan to the Mississippi River at St. Louis was reported upon in 1905 by a special board convened pursuant to section 1 of the river and harbor act of June 13, 1902. The greater part of the work performed by the special Board whose report is now submitted has had to do with that portion of the route between St. Louis and the Gulf of Mexico. In order therefore that the project may be understood in its entirety, it is necessary to consider in connection with the reports transmitted herewith the report of the special Board submitted in 1905, and printed in House Document No. 263, Fifty-ninth Congress, first session.

In the present reports consideration is given to various methods of securing a 14 -foot channel to the mouth of the Mississippi River, all the methods proposed for securing this result being considered by both boards as practicable from an engineering standpoint, except the method of improvement by means of storage reservoirs.

The Chief of Engineers approves the opinions expressed with respect to the methods of improvement considered, with the exception that a long study of the conditions existing on the sediment-bearing Mississippi River leads him to boliove that it will not be practicable to obtain a minimum depth of 14 feet of water between St. Louis and Cairo by means of locks and movable dams. The structures might be built, but their efficiency is problematical, and, in the opinion of the Chief of Engineers, the chances of favorable operation are very remote. Nor is the Chief of Engineers prepared to recommend that it is practicable from an engincering standpoint to secure and maintain a 14foot depth at low water in the section from St. Louis to the mouth of the Ohio River by any method of open-river improvement.

The special board concludes that the most practiciable means of obtaining and maintaining a navigable channel of 14 feet depth from St. Louis to the mouth of the Mississippi River is by the combined method of dredging and regularization works in the open river. The estimated cost of this plan of improvement is $\$ 128,600,000$, with $\$ 6,500,000$ annually for maintenance after completion of the work. In order to arrive at a correct understanding as to the estimated cost of securing a 14 -foot channel from the Great Lakes to the Gulf of Mexico by the route under consideration it is necessary to add to the figures just given those contnined in the report submitted in 1905 for that portion of the route from Chicago to St. Louis, namely, $\$ 30,097$,462 for first cost and $\$ 310,000$ for annual maintenance, giving a total estimated cost of a 14 -foot waterway from Lake Michigan to the Gulf of Mexico of $\$ 158,697,462$, with an estimated annual cost of $\$ 6,810,000$ for maintenance.

The Chief of Engineers is in accord with the views expressed by the Board of Engineers for Rivers and Harbors as follows:

It is not desirable to construct a navigable channel 14 feet in depth from St. Louis to the mouth of the Mississippi River, or from Chicago to the mouth of the Mississippi River.

The present demands of commerce between St. Louis and the mouth of the Mississippi River are adequately met by the existing projects, having for their object to obtain and
maintain an 8-foot channel from St. Louis to the mouth of the Ohio and a channel of not less than 9 feet in depth below the mouth of the Ohio.

The Board believes that an 8 -foot channel from Ohicago to St. Louis, corresponding to the present 8 -foot project from St. Iouis to Cairo, is the least that would adequately meet the demands of commerce, and believes such a waterway would be desirable, provided its cost is reasonable.

Present and prospective demands of commerce between Ohicago and the Gulf will be adequately served by a through channel 9 feet in depth, which may be obtained without violent changes of existing methods of improvement.

It should be stated that the report of the special board is regarded us incomplete to the extent that it contains no estimate for channels of 8 feet depth and 9 feet depth from Lake Michigan to the mouth of the Ohio River, and no such estimate is included in the report submitted in 1905, hereinbefore referred to. However, on account of the urgent general demand for such information as is available on the subject the reports are forwarded at this time in their present form. An estimate will be promptly made, however, of the cost of a 9 -foot channel from Lake Michigan to the mouth of the Ohio River, which in connection with the present project depth of 9 feet below the mouth of the Ohio River will provide a depth of 9 feet from Chicago to the Gulf of Mexico; an estimate will also be made of the cost of an 8 -foot channel from Lake Michigan to the Mississippi River at St. Louis, which latter, in connection with the present 8 -foot project for that portion of the Mississippi River between St. Louis and Cairo, will provide for a least depth of 8 feet from Lake Michigan to the mouth of the Ohio River. It is expected that these additional estimates will be ready for submission to Congress before its next session. The Chief of Engineers is not prepared to state definitely for consideration by Congress that the construction of either of these channels is desirable until after accurate estimates are made.

In view of the widespread interest in this proposed work and the value and importance of the data furnished, it is recommended that these reports and the accompanying maps and other appendixes be printed in their entiroty.

> Very respectfully,

The Seoretary of War.
REPORT BY A SPECIAL BOARD OF ENGINEERS ON SURVEY OF MISSISSIPPI RIVER FROM ST. LOUIS, MO. TO ITS MOUTH, WITH A VIEW TO OBTAINING A NAVIGABLE CHANNEL 14 FEET DEEP AND OF SUITABLE WIDTH, INOLUDING A CONSIDERATION OF THE SURVEY OF A PROPOSED WATERWAY FROM CHLCAGO, ILL. TO ST LOUIS, MO., HERETOFORE REPORTED UPON, AND A REPORT WITH REFERENCE TO WATER POWER AND TO LAND DRAINAGE ALONG THE ROUTES herein mentioned.

St. Louis, Mo., March 20, 1909.
Sir: The Board created by act of Congress approved March 2, 1907, tc arake an examination of the Mississippi River from St. Louis, Mo., to its mouth, having completed the investigations and studies assigned to it, has the honor to submit the following report.

The constitution and duties of the Board are set forth in the portions of the act of Congress referred to, reading:

[^0]priated, to be paid out of any money in the Treasury not otherwise appropriated, to be immediately available, and to be expended under the direction of the Secretary of War and the supervision of the Chief of Engineers, for the construction, completion, repair, and preservation of the public works hereinafter named:

The Secretary of War may appoint a board of five members, to be composed of three members of the Mississippl River Commission, one of whom shall be the president of such commisaion, and two engineer officers of the United States Army, to examine the Mississippi River below Saint Louls and report to Congress, at the earliest date by which a thorough examination can be made, upon the practicability and desirability of constructing and maintaining a navigable channel fourteen feet deep and of suitable width from Saint Louis to the mouth of the river, either by the improvement of eaid river or by a canal or canals for part of said route. In its report the board/shall cover the probable cost of such improvement the probable cost of maintenance, and the present and prospective commerce of said waterway, both local and general, upstream as well as downstream, and the said board may consider in connection with the examination herein provided for, the survey of a proposed waterway from Chicago to Saint Louis, heretofore reported; it shall also report whether other plans of improvement can be devised by which the probable demands of traftc, present and prospective, can be adequately met, and the sum of one hundred and ninety thousand dollars, or so much thereof as may be necessary, is hereby appropriated for the making of such survey, of which amount only one hundred thousand dollare shall be available, unless in presenting a plan for such waterway it shall be necessary, in the judgment of said board, to make a survey for a lateral canal or canals; and the force, plant, and records of the Mississippi River Commission shall be available for the use of said board in making said examination; and said board shall also at the earliest date practicable report upon the following:

First. What depth of channel is it practicable to produce between Saint Louis and Cairo at low water by means of regulation works.

Second. What depth will obtain in such regulated channel at the averuge stage of water for the year.
Third. For what average number of days annually will fourtcen feet of water obtain in such regulated channel.
Fourth. What increase of depth will be obtained over the natural flow of water in such regulated channel by an added volume of ten thousand cubic feet per second; also fourteen thousand cubic feet per second.

Fifth. And the board shall consider further the practicability of producing at all seasons of the year a depth of fourteen feet in such regulated channel by the aid of locks and dams similar to those projected and in use on the Ohio River improvement.

Sixth. And the said board shall also report upon any water power which may be created in the portion herein directed to be surveyed, as well as in the proposed waterway from Saint Louis to Chicago heretofore surveyed, and the value thereof, and what means should be taken in order that the Government of the United States may conserve the same or receive adequate compensation therefor, and upon any lands which may be drained by the construction of either of said proposed waterways, and shall also report what steps, if any, shall be taken to cause the cost of the-improvement to be defrayed, in whole or part, by means of such water power or lands.

Approved, March 2, 1907.
To comply with this law, the following order was published by the Chief of Engineers, U. S. Army:
\(\left.\begin{array}{c}Special Orders,

No. 10.\end{array}\right\} \quad\)| War Department, |
| :---: |
| Office of the Chief of Engineers, |
| Washington, March $16,1907$. |

By authority of the Secretary of War, and in accordance with the provisions of the river and harbor act of March 2, 1907, a Board to consist of the following-named officers of the Corps of Engineers: Col. Clinton B. Sears, president, Mississippi River Commission, Lieut. Col. William H. Bixby, Lieut. Col. Curtis McD. Townsend, and the following members of the Mississippi River Commission: Mr. Henry B. Richardson, and Mr. Homer P. Ritter, Assistant, U. S. Coast and Geodetic Survey, is hereby appointed to examine the Mississippi River and report as prescribed in the said act.

The Board will assemble at St. Louis, Mo., upon the call of the senior member, and is authorized to visit such other points as it deems necessary for the proper performance of its duties.

Upon the completion of the duty assigned them, the members of the Board will return to their proper stations.
The travel directed is necessary in the military service.
By command of Brig. Gen. Mackenzie:

Frederic V. Abbot, Lieut. Col., Corps of Engineers.

By Special Orders, No. 13, of the same series, dated March 28, 1907 Capt. G. R. Lukesh, Corps of Engineers, U. S." Army, secretary and disbursing officer of the Mississippi River Commission, was detailed as recorder and disbursing officer of the Board.

Subsequently, by authority of the Secretary of War, the following changes occurred in the personnel of the Board:

Col. Wm. H. Bixby, Corps of Engineers, U. S. Army, president, Mississippi River Commission, became, on April 25, 1908, senior member of the Board, vice Col. Clinton B. Sears, Corps of Engineers, U. S. Army, president, Mississippi River Commission, on account of absence on leave of the latter because of illness, and in anticipation of his retirement from active service on June 2, 1908. To fill the vacancy on the Board thus caused, Lieut. Col. James G. Warren, Corps of Engineers, U. S. Army, was appointed.

On November 30, 1908, Capt. G. R. Lukesh, Corps of Engineers, U. S. Army, was relieved by First Lieut. C. H. Knight, Corps of Engineers, U. S. Army, as disbursing officer of the Board. Captain Lukesh continued as recorder of the Board.

Having been unable to make the necessary investigations and studies in time to complete its report by the first Monday in November, 1908, the Board so reported to the Chief of Engineers, with reasons, on October 16, 1908, to comply with the paragraph of the act referred to, reading:

All surveys and examinations provided for by this act, and the reports thereon, shall either be completed on or before the first Monday in November, nineteen hundred and eight, or else a proliminary report be made in which the reasons for delay shall be stated: Pronided, That all reports of proliminary examinations and surveys which may be prepared during the recess of Congress, and be ready for printing, shall, in the discretion of the Secretary of War, be printed by the Public Printer as documents of the following session of Congress.

On November 25, 1908, the Board submitted a progress report of its operations to that date.

While the Board has been aware of the importance of submitting its conclusions at as early a date as practicable it has considered the problems assigned to it of such vast importance to the country and so difficult of solution as to warrant most careful consideration in preparing a report. A report of field and office operations under the Board is given in Appendix No. 21. To comply with the Board's interpretation of the law, required surveys and investigations that necessarily involved a greater time than was at its disposal prior to the first Monday in November, 1908. These surveys were completed in January, 1909, and the Board has submitted its report as soon as it was practicable to analyze the data before it and formulate its conclusions.

The data of the Mississippi River Commission, placed at the Board's disposal by law, give much valuable information in regard to the physical characteristics of the entire stretch of river under consideration, and the records of the United States Engineer Office at St. Louis
added much for the portion from St. Louis to Cairo. The Board, however, found it necessary to augment such information by a comprehensive survey of the river between St. Louis and Cairo, including topography, hydrography, and an investigation of the depth of bed rock and character of overlying strata; to extend this survey over the entire breadth of the alluvial valley from St. Louis to Cairo; to make a survey of caving banks between Cairo, Ill., and the mouth of the Red River, and also to determine tho number of bars below Cairo having less than 14 feet channel depth.

The survey above Cairo was begun with all available plant and field work covering some 200 miles of river and 600 square miles of valley with 136 borings, part in the river and part on land, was finished August 10, 1908. Below (airo the work could not be completed until the end of the dredging season, in January, 1009.

DESCIRIP'IION OF THE MISSISSIPPI RIVER.

The physical characteristics of the Mississippi River are described in Appendix No. 1 of this report. Most of the matters bear directly on the subject of the Board's investigations, and a few of the more important points follow, but attention is invited to the entire statement as worthy of notice in connection with this report. This statement covers the following features: Drainage area of the river, its extent, precipitation, soil, etc.; influence of ice on navigation and works of inprovement; thickness of alluvium; extent of the alluvial valley; lengths and direction of different stretches of the river; widths and variation in widths of the river; slope of surface at high and low water; depths and changes in depths; floods; volumes of discharge at various points along the river and on the tributaries; sediment in suspension, and character of bed and banks of the river with special attention to caving and erosion, their causes, rates, and effects on the regimen of the river and channel depths.

Attention is especially invited to the following points of this statement:

As to climate; the table of precipitation at selected stations in the drainage basin, compiled by the Weather Bureau from records of sixteen to sixty-two years, shows that the seasonal and geographical variation in the rafe of precipitation in the different secondary basins is very great; for example, in the Missouri Basin for a period of twenty-seven years the January and February precipitations averaged but 0.7 inch each, while for June they averaged 5.3 inches. The minimum mean monthly rate in that basin, 0.7 inch in January and 0.7 inch in February, corresponds to a minimum of 2.6 inches in the Ohio Valley at Cairo, Ill., in September and the same in October at Chattanooga, on the Tennessee River. The minimum mean monthly rate shown occurred in the Missouri Basin as mentioned above, and the maximum occurred in the Central Basin at Helena in April, 6.7 inches, as well as at New Orleans in June. The minimum mean annual rate is given at 19.8 inches at Dodge City, Karis., in the Arkansas Basin, and the maximum at 60.3 inches at New Orleans. In the winter months the precipitation at the northern sources of supply is very light and at the southern it is yery heavy.

The records of the United States Weather Bureau of rainfall at the various stations in the Mississippi Valley are quite complete for
recent years, but however complete they may be they oan afford only a partial index of the amount of water delivered into the streams; permandility of soil, temperature of the air, and many other conditions affecting percolation and evaporation, being factors in determining the ratio of precipitation to river discharge. "Thus the Ohio Valley is very different in this respect from the Mlissouri, where owing to the highly absorptive sandy soil and drying winds, a much smallor percentage of the rainfall finds its way to the main river.

The Missouri, notwithstanding the immense nrea of its basin, is less important than the upper Mississippi and the Ohio rivers, as concerns the volume of flow throughout the yoar, but its flood volume is laros; and it contributes more sediment than any othor tributary.

Ice influences extend as far south as Memphis and at creat intervals oven funther, interrupting navigation at Si. Loulis about one month a year, but they decrenso as more southern latitudes are renchod, until below Cairo interruptions oceur in but occasional years, and for but it few weeks.

As to soil and foundations; it appears that the average depth of bed rock below low water is between 50 and 100 feet between St. Louis and Cairo and much greater below Cairo. The margin for securing a 14 -foot waterway by deepening its channel is thus ample without recourse to rock excavation. Only at one place, between Thebes, Ill., and Commerce, Mo., was bod rock disclosed within 20 feet of the low water surface, and even there it appears that there is a margin of at least 17 feet bolow low water over a width of at least 500 feet. On the other hand, the overlying strata were found to be unsuitable as foundation for such heavy structures as fixed dams; and only in the strotch between Thebes and Commerce where this bed rock existed near low water, could suitable foundation be found at a practicable depth.

As to the hydraulics of the river; the variation in the low and high water widths along the course of the river is axtrenie. Above the mouth of the Ohio River low-water widths havo been found ranging from 650 feet to 4,000 feet, and bankfull widths from 1,550 feet to 6,800 feet. Below Cairo low-water widths range from about 1,000 feet to about 6,000 feet, and bank-full widths from less than 2,000 feet to over 10,000 feet.

The area subject to overflow has been much decreased of late years, especially below Cairo, by the construction of levees. It was formerly about 5 miles in width between St. Louis, Mo., and Grays Point, Mo., where the bluffs on either side come close to the river banks and continue so as far as Commerco; below Commerce the area subject to overflow averaged some 40 miles in width, büt through the restriction of floods by levees the area above Red River is now but 5 to 10 miles wide, except at the mouths of the larger tributaries where the levee system is incomplete.

The average slope of stretches of the river at high and low stages is given in Appendix No. 1 in tabular form. Reference to the table shows the maximum slope to occur between St. Louis and Cairo, about 0.6 of a foot per mile, gradually decreasing to a high-water slope of about 0.2 foot and low-water slope of about 0.025 foot between Red River and Carrollton, La. Below the latter point the low-water slope is eclipsed by tidal oscillations and the high-water slope is about 0.1 foot per mile.

The average depths along the thalweg of the stream are at low water about as follows:

	Feet.
St. Louis to Cairo.	18
Cairo to Memphis.	31
Momphis to Vicksburg	37
Vicksburg to Red River.	48
Red River to New Orleans.	84

A natural 14 -foot channel obtains between St. Louis and Cairo for an average period of about one and one-half months, during the months of April to July. Below Cairo the period is much greater, lasting from about January to July, sometimes beginning in December and sometimes lasting into August.

Descriptions of the various classes of caving banks found along the Mississippi River are also given and the general subject of formation of river bars, rise and fall of river bed during changes of water stafe, and erosion of banks is treated at considerable length, on account of the importance of this subject in relation to the improvement of the river. It is an important fact that a rise in stage does not produce a corresponding increase in channel depth, for example, a 22 -foot stage of water at St. Louis does not produce more than 14 feet ayailable depth between St. Louis and Cairo.

The maximum and minimum observed discharges of the Mississippi at Grafton, St. Louis, Columbus, Helena, Arkunsas City, Vicksburg, Red River Landing, and Carrollton, also of the following tributaries, Missouri, Ohio, St. Francis, White, Arkansas, Ya\%oo, Red, Ouachita, and of the Atchafalaya will be found tabulated in Appendix No. 1. All available discharge data for the Mississippi River between Grafton and Red River will be found tabulated in Appendix No. 18.

PRESENT PROJEOTS. FOR IMPIROVEMENT.

Projects now in force, and those in force in past years for the improvement of the river below St. Louis and the amounts heretofore expended in connection therewith are given in Appendix No. 2. From it the following extracts are taken:

Between St. Louis and Cairo.-The present project is that adopted in 1881 approved by letter of the Chief of Engincers dated March 31, 1881; with some later modifications relative to temporary expedients.

This project contemplated the confinement of the flow of the river to a single channel having an approximate width of 2,500 feet at bankfull stage, this result to be sought by closing sloughs and secondary channels and by building out new banks where the natural width is excessive, using for this purpose permeable dikes or hurdles of piling to collect and hold the solid mattor that is held in suspension or rolled on the bottom of the river; the banks both new and old to be revetted or otherwise protected where necessary to secure permanency. The object of the improvement was to obtain ultimately a minimum dopth, at standard low water, of 8 feet from St. Louis to Cairo.

Modifications of the project in the river and harbor acts of 1896 and 1902 provided that, pending the completion of the permanent improvement, the low-water channel would be improved by the use of
dredges and other temporary expedients, but the river and harbor act of March 3, 1905, made a radical departure from the project above outlined, practically confining the work of improvement to dredging.

By joint resolution of Congress approved June 29, 1906, the Secretary of War was authorized to expend available balances for the repair or completion of improvements underway, or for the construction of other works in accordance with general plans already made or approved.

The river and harbor act of March 2, 1907, reaffirmed dependence upon dredging as the principal means of improvement; although, as subsidiary thereto, it provided also for the maintenance and repair of existing / works of permanent improvement, and finally for the construction of similar works with any portion of the appropriation not necessary for the accomplishment of the improvement by dredging. But as the annual appropriation was reduced to about 40 per cent of that theretofore made, the expenditure in any one year being limited to about $\$ 250,000$, the only work in present progress is that of dredging.

Between the Ohio River and the Head of Passes.-The improvement of the Mississippi River below Cairo has been in charge of the Mississippi River Commission since 1879. The original project submitted by the commission provided for the narrowing of the low water channel way to an approximately uniform width of 3,000 feet by means of dikes and the revetment of caving banks; these works to be supplemented by levees to confine the flood discharge of the river approximately to its river bed.

The work of improving Plum Point and Lake Providence reaches was undertaken, and the highly beneficial results obtained in improving channel depths in those reaches confirmed the soundness of the theory upon which the work was based, but also demonstrated that the permanent improvement of the channel by contraction and revetment works would necessarily consume a long period of time.

The act of Congress approved June 3, 1896, authorized the use of hydraulic dredges for obtaining and maintaining a channel in the Mississippi River below Cairo with a width of 250 feet and a depth of 9 feet throughout the year, except when the river is closed by ice; and since their construction 10 hydraulic dredges have succeeded in maintaining the project depth and width except for short periods in 1903,1904 , and 1908.

PRACTICABILITY OF CONBTRUCTING AND MAINTAINING A NAVIGABLE CHANNEL 14 FEET DEEP.

The survey for a 14 -foot waterway from Chicago to St. Louis, which the Board is to consider in connection with its report, provides for a channel in the Illinois River with a bottom width of 200 feet and in the canal section a width of 160 feet. For the gentle slopes that will exist in the Illinois River and in the canal the Board is of the opinion that these widths will afford a channel that it is practicable to navigate, but that to provide as effective navigation in the swift currents of the Mississippi will require channel widths not less than 500 feet.

House Doc. No. 50 ; 61st Cong., Ist Sess.

To obtain and maintain the 14 -foot channel on which the Board has to submit its report, the following methods have been suggested and considered:

> First. Dredging.
> Second. Regularization.
> Third. Canalization with movable dams.
> Fourth. Canalization with fixed dams.
> Fifth. Lateral canals.
> Sixth. Reservoirs.
> Seventh. Combination of methods.

Dredging.-The surveys of the Board show that between St. Louis and Cairo there existed in 1908 as many as 68 localities that would require dredging to obtain a 14 -foot channel and that to dredge a channel 500 feet wide and 14 feet deep at low water would necessitate the removal of $35,000,000$ cubic yards of material. Channels thus formed would have a tendency to refill not only on every rise of the river, but on any change in the regimen such as would be produced by an ice gorge, so that extensive dredging operations would be required not only on a falling river, but every spring on the opening of navigation.

To cover such dredging a project has been prepared which shows that to insure the maintenance of such channels, so that navigation will not be obstructed, would require a plant capable of removing about $17,500,000$ cubic yards per month. This would necessitate the acquiring of 20 dredges of the type at present used on this stretch of river, with its accompanying plant, at an estimated cost of $\$ 6,000,000$. The cost of operating and maintaining such a plant is estimated at $\$ 2,000,000$ per year. The estimates are based upon ten years' practical experience with the St. Louis engineer district dredging plants in this part of the river. Details of this project will be found in Appendix No. 4.

From Cairo to the mouth of Red River, below which an ample depth of channel exists, the surveys made by the Board showed 42 localities in 1907 at which dredging would have been required to obtain a 14 -foot channel, and 88 localities during the season of 1908. The period during which dredging operations are required to maintain channels is, however, much shorter in the lower river than above Cairo.

To cover such dredging a project has been prepared which shows that a 14 -foot waterway can be maintained between Cairo and Red River by 28 dredges, with their accompanying plant, at an estimated first cost of $\$ 9,000,000$ and an annual expenditure of $\$ 2,100,000$ for operation and maintenance. These estimates are based upon many years' experience of the Mississippi River Commission in this part of the river. Details of this project will be found in Appendix No. 9.
Regularization.-Both the project of 1881 for improving the river from St. Louis to Cairo and that of the Mississippi River Commission from Cairo to the Gulf originally provided for its improvement by partial regularization. The river was to be confined to a single channel, caving banks revetted, and the width of channel contracted in wide reaches. By these means the motion of bars downstream was to be prevented and the river currents given such directions as to maintain the proposed depth over the bars, which for the portion of
the river between Cairo and St. Louis was to be 8 feet and below Cairo 10 fect. These projects contemplate no violent change in the regimen of the river, which is allowed to follow the sinuous course to which it naturally tends, with deep pools in the bends, and on the crossings bars which rise and fall with variations in gage height.

There is an ample water supply for a channel 14 feet deep and 500 feet wide from St. Louis to the Gulf at the lowest stages of the river and on existing slopes, but great care will have to b^{n} exercised in making so great a contraction as would be necessary to confine the river to a 14 -foot channel. As a river is reduced in width and increased in depth a much smaller proportion of the discharge comes in contact with the river bed, and the velocity of the river currents rapidly increases. A condition soon obtains where instead of the bar being alternately scoured out and filled up as the river discharge decreases and increases, there is a constant scour. The dam which nature has placed between the pools is then destroyed. The material which formed this dam is washed into the lower pool, tending to raise it, while the upper pool tends to fall to the same level. If those dams between pools were destroyed for long distances, as between St. Louis and Cairo, a very serious change in the regimen of the river would result. Its slope would be diminished, immense quantities of material would be washed down into the lower river, adding enormously to its bars, filling up its pools, raising its flood levels, and making necessary expensive additions to its levee system; and falls or rapids might be created at the Chain of Rocks above St. Louis, which would be destructive to the navigation of this portion of the river.

A comparison of discharge measurements taken at St. Louis in 1880 and 1881 with those taken in recent years, 1900 to 1904, which are shown graphically in Appendix No. 17, indicates a tendency toward the lowering of the river bed at St. Louis under the existing project, and if the river is further contracted so as to obtain and maintain a depth of 14 feet without dredging, it will be necessary in some manner to limit the process of bar deepening described above.

For this purpose a project has been prepared which proposes to remove local irregularities in the regimen of the river from St. Louis to Cairo. Above Commerce the river is to be given a uniform minimum width of 500 feet at a depth of 14 feet below a zero stage, a width of 1,700 feet at the zero stage, and 3,000 feet at the bank-full stage for most of its length. The bars are to be scoured or dredged to the required depth and the pools are to be filled or allowed to fill so as to produce as nearly as practicable a uniform slope of 0.55 of a foot to the mile, which is the present average slope from. St. Louis to Commerce. Below Commerce the bottom width is to be 500 feet, the width at a zero stage 1,500 feet, and at a bank-full stage 2,750 feet, with a uniform slope of 0.76 of a foot to the mile, which is the present average low-water slope between Commerce and Cairo.

To prevent a further deepening of the river, it is proposed to construct submerged dams of brush and rock, whose crests will conform to the section it is desired to give the river below the zero stage, these dams to be spaced at distances varying from three-fourths to 5 miles. The river is to be contracted above low water by permeable and solid wing dams as in the existing project and caving banks are to be revetted; but more care is to be exercised in producing uniform slopes in the river bed for the purpose of directing in the proposed
channel at all stages, the portion of the river current having the maximum velocity.

By this method of improvement considerable dredging will be necessary during the first few years of work; but the amount of dredging will rapidly diminish as the improvement nears completion. The estimated cost of the work is $\$ 53,216,480$ including maintenance during construction. After completion the annual cost of maintenance is estimated at $\$ 500,000$. These estimates are based upon over twenty-five years' practical experience with partial regulation in the St. Louis engineer district. Details of this project will be found in Appendix No. 5.

Canalization with movable dams.-In further compliance with the resolution of Congress the Board has considered a plan for obtaining at all seasons of the year 14 feet in the river between St. Louis and Cairo by means of locks and dams similar to those projected and in use on the Ohio River. This project provides for the construction of locks and dams at localities shown on the maps of the Board's survey. The locks have interior dimensions of 600 by 80 feet, conforming to the dimensions of the locks on the 14 -foot waterway proposed from Chicago to St. Louis. The movable dams have navigable passes closed by Chanoine wickets having a length of 19.5 feet. These wickets are 1 foot 8 inches longer than those used on the Ohio River; which provide for only a 9 -loot navigable channel, and are therefore larger than any that have heretofore been built for river canalization. The regulating weirs constituting the remainder of the dam will also be closed by Chanoine wickets of varying lengths.

The estimated first cost of this project is about $\$ 25,000,000$, and of its maintenance about $\$ 400,000$ per year. These estimates are based upon many years' practical experience with similar dams on the Ohio River. Details of this project will be found in Appendix No. 6.

Canalization with fixed dams.-The Board has had an extensive system of borings made throughout the valley from St. Louis to Cairo, and has found but one locality where satisfactory foundations for masonry dams exist except at depths so great as to preclude economic construction. Between Thebes and Commerce a limestone foundation underlies the river within reasonable depth, and a high masonry dam could be constructed that would materially reduce the slopes that exist in the river above as far as St. Louis.

When first constructed such a dam would give the desired 14-foot waterway, but as the reduction in slopes and increase in area of cross section of the river would necessarily diminish the velocity of discharge, there would be a deposit of sediment which would rapidly fill the reservoir thus created. The existing slopes have resulted from natural laws which would remain in operation after the dam was constructed, and the ultimate effect of building a solid masonry dam at this locality would be to raise the entire bed of the river above. Such a dam would moreover largely increase the height of floods, and the cost of the land it would be necessary to condemn would add enormously to the cost of the work.

But if instead of a solid masonry dam which allowed water to flow only over its crest, there were constructed a dam with large openings through it, controlled by suitable valves, through which the entire river discharge could pass even at extreme floods, a large amount of
the sediment instead of being deposited above the dam would flow through it. There would, however, still be a tendency for the river bed above to rise, but at a greatly reduced rate.

The amount of dredging that would be required to maintain a 14 foot waterway under this project would be no greater than with the system of movable dams above described, and this project would possess the great advantage that it would develop water power which could be utilized for industrial purposes.

The Board has investigated in a general way the possibilities of such a project. It has ascertained that such a dam would cause to be flooded 30 towns and villages in the Mississippi Valley, over 240,000 acres of farming land, and over 220 miles of railroad. It is believed that the mere cost of this property would exceed the total cost of the system of movable dams described above. Therefore no project nor estimates for such a dam have been submitted.

Lateral canals.-The Board has also had estimates prepared for the construction of a lateral canal on the Illinois side of the river, from the terminus of the proposed Alton-St. Louis canal to Cairo. The canal is planned to have a bottom width of 160 feet and slopes of one vertical to two horizontal. The locks are to be constructed of concrete and to have clear interior dimensions of 80 by 600 feet. For a single continuous canal the first cost of the work is estimated at about $\$ 102,000,000$, and the annual cost of maintenance at about $\$ 600,000$. A large item in the cost of such continuous canal consists of the land damages and cost of bridges in the vicinity of East St. Louis, and the cost of the very heavy excavation on the Illinois side through bluffs above and below Chester and also through the gorge of the river between Thebes and Commerce, and the cost of an aqueduct bridge across the Kaskaskia River. By crossing the river to avoid the heavy excavation near Chester and the aqueduct over the Kaskaskia and placing a short section of the canal on the Missouri side of the river, the first cost of the above canal project can be reduced to about $\$ 76,600,000$. These two projects have not been worked out in detail because the costs were considered excessive.

By using a portion of river near East St. Louis, another portion opposite the Kaskaskia and Chester, and a third from near Cape Girardeau to Commerce, the cost can be much further reduced. Careful estimates of cost have been made for such a combined canal and river route with three canal sections connected with three river sections. in pools held up by dams, the canals being located entirely on the Illinois side of the river.

According to this latter project there are 18.1 miles open river from the Eads Bridge to the Meramec River, thence a canal 39.8 miles in length to the Kaskaskia River, thence open-river navigation for 16.1 miles to the foot of Crains Island, thence a canal 45.2 miles to head ot Devils Island, thence 18.9 miles of open-river navigation to Commerce, thence 15.5 miles of canal to Pond Lily Crossing, and thence by river to mouth of Ohio River 7.7 miles, the river navigation to be secured by three movable dams. The location of the works is shown on the maps accompanying this report. The estimated first cost is about $\$ 36,000,000$, and the annual cost of maintenance about $\$ 450,000$. The estimates conform to the same general conditions as to construction and prices as were adopted for the similar proposed canal from

Alton, Ill., to St. Louis, reported upon in 1905. Details of these projects will be found in Appendix No. 7.

Reservoirs.- The theory of the method of improvement of a river by reservoirs is that the flood waters can be impounded in large guantities at the headwaters of the streams in such way as to reduce flood heights in the lower reaches of the same streams; and that these waters, stored until the low-water season, can then be so discharged as to raise the low-water surface of the river and increase the navigable depths. This method of improvement was introduced many years ago on the upper Mississippi River above St. Paul, and five reservoirs have been built with an area of 480 square miles, and a storage capacity of over $93,000,000,000$ cubic feet. More reservoirs and more storage capacity were at first recommended, but so far Congress has not considered favorably the extension of the system. This system of artificial reservoirs is one of the largest in the world so far constructed for regulating river discharge for navigation purposes, and yet the increase in height thereby obtained at St. Paul during the low-water period, about ninety days, averages only 14 inches, the results so far noted ranging from 40 inches maximum increase in height in 1900 to 5 inches minimum increase in 1903. The river at St. Paul has a low-water width of only 400 feet and an average low-water discharge during the season of navigation of but 2,500 cubic feet per second. The effect of the reservoir system diminishes as the river becomes wider, and finally disappears at the head of Lake Pepin, 51 miles below St. Paul.

In order to obtain the effects above named as reported at St. Paul, it has been found necessary to commence the discharge of water from the reservoirs considerably in advance of the low-water stage at St . Paul, owing to the length of time that is necessary for the water to traverse the intervening river. After the discharge has been commenced at Lake Winnibigoshish, its effect is not specially felt at Lake Pokegama, the distributing reservoir, 63 miles farther downstream, until after an interval of twenty-one days at low water, nor at St.-Paul, 351 miles below Lake Pokegama, until after a further interyal of ten days. In order to use this reservoir system for the benefit of the improvement of the river below St. Louis, it would be necessary to commence the discharge at the reservoirs at least two months before it was needed at St. Louis, and a still greater interval would be necessary for the benefit of improvement of the river below Cairo. Experience does not justify such long forecasts, and the service of the reservoirs would necessarily have to be based on general annual averages, an unreliable and unsatisfactory basis. There have been occasions in the past when unexpected floods in the summer time would have been aggravated by any large additions from upper reservoirs. In order that reservoirs may give reliable service, they should be so located as to diminish time of water flow to a minimum. In the case under consideration this would necessitate the location of the resertoirs in the lower valleys of the tributaries, where the land is of great value, and such location would add enormously to the cost of the reservoir system, even if it were practicable.

While this method of improvement has been successful on the upper Mississippi near St. Paul to the limited extent above described, a further extension of its application to a river of the dimensions of

[^1]the Mississippi below St. Louis is attended with serious difficulties and must necessarily give results much less beneficial.

Theoretically a water supply is available above St. Louis sufficient to increase largely the low-water discharge of the Mississippi River at and below St. Louis. Special investigations recently made as to the maximum possibilities of the Mississippi River reservoir systems above the mouth of the Missouri River, with special view to water power development by private parties, gave results shown in Appendix No. 8. It there appears that the maximum reservoir facilities of the river, including 10,000 cubic feet per second that may come through the Chicago Sanitary Canal and Illinois River, as recommended by the International Waterways Commission, amount to about 69,500 cubic feet per second for ninety days, equal to about $540,000,000,000$ cubic feet total storage.

Moreover, a dam could be constructed across the mouth of the Illinois River, with a height of only 27 feet above low water, to produce a reservoir over 227 miles in length in a valley in which over 400,000 acres have been subject to overflow in the past during extreme floods.

Investigations by the Corps of Engineers have shown that such reservoir systems in the Allegheny River Basin would cost about $\$ 415$ per million cubic feet total storage, in the Monongahela River Basin about \$416, and in the Kanawha River Basin about \$370. While the reservoirs at the headwaters of the Mississippi River have been constructed at low cost, the location of reservoirs at such points as would promise any reliable supply of water to the lower river would have to be under conditions as to cost similar to those just named.

In the Upper Mississippi River near St. Paul, where the river banks and bed are of comparatively solid material, an increase of 14 inches, or even 40 inches, in gauge heights, does not produce sufficient current to cause serious motion in the gravel bars which there largely form the bed of the river, so that the increase in depth produced near St. Paul is a direct function of the river discharge; but in the Mississippi River below St. Louis any increase of discharge accelerates the currents and sets in motion the light sands which constitute its bed, to the injury of the channel, as verified by a careful examination of a great number of reliable soundings made in the Mississippi River below St. Louis. The results of these examinations, as shown by diagram accompanying the report on physical characteristics of the river (Appendix No. 1), indicate bétween St. Louis and Cairo a rise of the river bed on the controlling bars equal to about one-half the rise of water stage until at least 14 feet depths are reached, which corresponds to a 22 -foot stage on the St. Louis gauge. Such rise of the river bed indicates that the maximum of 540 billion cubic feet total storage which might be obtained by reservoirs in the Mississippi River Basin from the Illinois River upward could not maintain throughout the year more than 8 feet available depth betweon St. Louis and Cairo, the increased discharge from the reservoirs tending to create a wider channel rather than a deeper one, and being useful, therefore, only as an auxiliary to other methods of improvement. Tohold the water stage at St. Louis at 22 feet, the stage corresponding to a controlling depth of 14 feet between St. Jouis and Cairo, would require over 5,000 billion cubic feet annual storage, or about ten times what has yet been found possible.

Combination of methods.-The Board has considered the securing and maintaining of a channel of 14 feet depth between St. Louis and Cairo by completing the project of 1881 for 8 feet depth and then securing the additional 6 feet depth by dredging instead of by further contraction. The estimated cost of completing the project is $\$ 21,000,000$ (see Λ ppendix No. 3) and the cost of dredging plant for obtaining the additional 6 feet is estimated by the Board at $\$ 3,600,000$, and the cost of maintaining the improved channel at $\$ 1,500,000$ per year.

Considering the stretch of the river below Cairo, a project has been prepared to secure permanence of bank lines and channels during progress of the dredging previously estimated, by which such dredging will be reduced. This work has been estimated to cost $\$ 95,000,000$, with an annual maintenance charge of 5 per cent of the amount expended (see Appendix No. 9). The estimate for dredging is $\$ 9,000,000$ for plant and $\$ 2,100,000$ annually for operation. These estimates are based upon many years' experience of the Mississippi River Commission in this part of the river; but the maintenance of the bank protection so far done has included that of much experimental work which has necessarily required excessive repair, and it is believed by the Board that in the comprehensive plan proposed the maintenance charge should be largely reduced; moreover, the cost of dredging will materially diminish as the bank protection progresses, and the total annual cost of maintenance should not exceed $\$ 5,000,000$ when the bank protection is complete.

Discussion and conclusions.-The estimates of cost accompanying the several projects considered by the Board have been prepared with great care and based upon the best data available. In works of such magnitude of this nature, however, it is not possible to make estimates which can be fairly considered as more than approximations of the most general character.

As already stated, the Mississippi River has in the regular boat channel at low water an average depth through pools and across bars of about 18 feet from St. Louis to Cairo, thence 31 feet to Memphis, thence 37 feet to Vicksburg, thence 48 feet to Red River Landing, and over 80 feet below Red River Landing. But the depths which control navigation are the depths over the worst bars; and if all improvements should be stopped so as to allow the river to revert to a natural condition, such controlling depths would be at low water about 4.5 feet in the reach from St. Louis to Cairo, and about 6.5 feet in the reach from Cairo to Red River.

The quickest and most economical method of deepening any bar is by dredging, until the amount of excavation secomes excessive. The four dredges now in service between St. Louis and Cairo have for many years, through the entire season of navigation, except occasionally for a few days; successfully maintained a good channel of at least 8 -feet depth throughout the entire rench. The nine dredges in service below Cairo have for many years maintained a good channel of at least 9 -feet depth under similar conditions. The Board considers that these controlling depths can, with reasonable certainty, be increased up to 12 and possibly 14 feet at the lowest stages of water throughout the reach above Cairo and to 14 feet below Cairo, in the manner described under the head of dredging. But any improve-
ment obtained by dredging alone must be recognized as temporary in its results.

In order to secure permanence of channel in open-river navigation it must be protected by works of regularization, after which the annual dredging may be reduced in amount and restricted mainly to emergencies. The existing project of 1881, from St. Louis to Cairo, is one of river regularization, well adapted to this part of the river. The Board considers that this 1881 project, if completed as originally proposed, should permanently increase the controlling depth at low water to 8 feet, and that a further increase to 14 feet can be secured by dredging. But if permanent depths greater than 8 feet at low water are to be obtained the bed of the river, as well as its banks, must be protected.

The Board considers that the method of improving the open river below St. Louis by regularization is feasible, in harmony with all past successful river improvement in the United States and Europe, can be applied first to the worst sections of the river, and will give the best permanent results to navigation attainable in the river.

The Board does not recommend slack-wate: navigation obtained by the use of dams, either fixed or movable, for the river below St. Louis.

The Board is of the opinion that 14 feet depth can be obtained with certainty by a lateral canal; but a continuous canal from St. Louis to Cairo is conisidered altqgether too expensive, a river crossing would be of doubtful permanence, and the project making partial use of the river is considered open to the objections applying to improvement by dams; the same objections apply more forcibly to a canal below Cairo.
The Board considers the method of improvement by reservoirs, for reasons stated under that heading, to be at the present time impracticable. There is no case on record known to the Board where such method adopted solely or even principally for purposes of navigation has given results commensurate with the expenditure:

As stated later, in the discussion of the desirability of a 14 -foot waterway, the Board is of the opinion that the proposed waterway is adapted to neither lake nor ocean vessels, and that if constructed would be followed by an immediate demand for a channel of greater depth. In case it should become necessary to obtain increased depth, canals, dams, and complete regularization works would have to be modified under great difficulties and at great cost. Canal locks would have to be rebuilt and canal trunks deepened and partially relocated. Movable dam wickets, already larger than any yet built, would become more difficult of manipulation and their operation perhaps impracticable, and the substructure would have to be rebuilt. Cross sills of complete regularization work would have to be taken out and rebuilt at lower levels in the channel way or extensively raised outside the channel way. In each case the difficulty and cost of securing the increased depth would of course, be much greater than if the extra depth were obtained at the time of first construction. The method of improvement by partial regularization, combined with dredging, will be the method least seriously affected by future changes in depth, breadth, and location of the navigable channel.

After considering the advantages and defects of all the methods of improvement proposed, the Board concludes that the most prac-
ticable method of obtaining and maintaining a navigable channel of 14 feet depth from St. Louis to Cairo is by the completion of the project of 1881 for partial regularization in such way as to secure a permanent controlling depth of 8 feet, and then to rely upon dredging for securing and maintaining any further increase of depth; the side contraction works to be so located as to be in harmony with further works of improvement by complete regularization, if in future such works be found necessary and advisable.

The Board rejects, as opposed to all reason, all propositions requiring the abandonment of the already good open-tiver navigation or the substitution of a lateral canal for any part of the river below Cairo. The surveys of the Board and Mississippi River Commission indicate that nearly $1,000,000,000$ cubic yards of material annually fall into the river from caving banks, an amount greatly in excess of the sediment brought into the river by all its tributaries. While but a comparatively small percentage of this material is deposited on the bars, the prevention of such an enormous mass of silt from entering the river must eventually reduce the amount of dredging required. No permanence of channel depth or of location of channels, levees, wharves, landing places, or other terminal facilities can be expected until after the banks have been effectively protected. Dredging and bank protection, with the addition at certain localities of contraction works, as an auxiliary, will achieve these results which can not be obtained by dredging alone, and is therefore, in the opinion of the Board, the most practicable method of improvement.

The estimated cost of this work above Cairo is $\$ 24,600,000$, and $\$ 1,500,000$ per annum for maintenance; and below Cairo $\$ 104,-$ 000,000 , and not exceeding $\$ 5,000,000$ per annum for maintenance.

PRESENT AND PROSPECTIVE COMMERCE.

The Mississippi River Commission collects and reports annually the commerce of the river below St. Louis. The Bureau of Statistics of the Department of Commerce and Labor makes similar reports of the entire river and tributaries. These reports are consilered by the Board the most reliable ones obtainable; and extracts from these are given in Appendix No. 20. During the calendar year 1908 an actual shipment of about $1,300,000$ tons of coal came out of the Ohio River, of which about 180,000 tons went up the Mississippi to St. Louis. Outside of the Ohio River coal, the average movement of water freight during the year at, all points on the river between St. Louis and New Orleans.was about 400,000 tons downstream and 300,000 tons upstream. This commerce of the river has been rapidly diminishing in recent years. The total river tonnage of St. Louis was, in 1886 $1,332,885$ tons; in $1896,1,244,175$ tons; in $1906,416,855$ tons; and in 1908, 365,920 tons, of which not over 49,530 tons was with towns on the Mississippi below Cairo. The entire commerce of the Mississippi River system, including all tributaries except the Ohio, was reported in 1889 as $12,492,535$ tons; while in 1906 it was only $4,304,288$ tons; showing a loss of two-thirds. The 1908 river commerce of the system, so far as reported, shows a slight decrease as compared with that of 1906, except as to a few of the minor tributaries.

Although, as explained in Appendix No. 20, the Board has sought to obtain from the commercial organizations along the route from Chicago
to New Orleans, information as to the prospective commerce which requires a 14 -foot navigation, it has received very little definite information in that direction. No actual large future development of commerce is yet in sight. The demand for increased depth appears to be more conjectural than real, and to be based mainly upon the idea that a deep-water channel will of itself cause developinent of commerce, and that the Federal Government should consequently provide depth considerably in excess of what is actually needed, on the ground that business follows facilities, and that the rivers end harbors doing the largest business and doing it most efficiently are those that have kept their facilities ahead of actual requirements.

The Chicago public (see 1909 reports of the Chicago Harbor Commission) claims that Chicago is destined to become one of the greatest commercial and industrial centers of the United States, and that with its free access to the Great Lakes, and a deep waterway to the Gulf, it will be able to send to South America and to the Pacific Ocean, via the Panama Canal, large quantities of manufactured articles (especially those of iron and steel) from factories to be established at the south end of Lake Michigan. They claim also that the existence of a 14 -foot depth outlet from the Great Lakes to the ocean through Canada demands a similar outlet through the United States, and that this should be by way of the Mississippi Valley; and further, that the opening of a 14 -fool route, even to empty boats, would allow a trinsfer of lake boats, now.idle through the winter, to southern waters, and so cheapen and develop commerce between Gulf ports.

The Upper Mississippi public claims that a deep waterway from the mouth of the Illinois River to the Gulf will encourage the shipment down the Mississippi River of ores and flour from Minnesota and Iowa, and coal from Illinois, along with miscellaneous manufactured goods. The Missouri River Valley public, together with the people of the States of the Great Plains, claim that a deep waterway below St. Louis will, after the Missouri River has been further improved, facilitate the shipment of farm products, oil, and minerals, from the Western States to the Gulf.

Indiana has coal which it hopes to deliver to a southern market.
The people of the States bordering on the lower Mississippi appear to claim that a deep waterway will facilitate the present shipments of coal, steel, and manufactured products from the Ohio River down the Mississippi, and will also encourage an upstream navigation, at least as far as St. Louis, of ore and other minerals from Alabama and the neighboring States, as well as cotton, tobacco, sugar, agricultural implements, fertilizers, and forcign imports; some parties assuming that cotton will be sent for manufacture to northern mills, rather than to mills to be established later in the South; also that the Mississippi River Valley (including the Ohio and Missouri), rich in natural resources, still sparsely settled, arid but little developed compared with Atlantic States, is susceptible of rapid and great further development with influx of population and money.

The St. Louis Lakes-to-the-Gulf Deep Waterway Association and the St. Louis Merchants Exchange (see letters in Appendix No. 20) claim that a large amount of the commerce now carried by rail parallel to the Lakes-to-the-Gulf route would be transferred to a deepened river, and that this transfer would leave the railroads free to take up an equal quantity of freight which they are now unable to handle
because of restricted transportation facilities; and also that a deeper waterway between St. Louis and Cairo would bring more coking coal from the Ohio to St. Louis.

The prospect of an early completion of the Panama Canal also appears to be a prominent argument for deeper draft, the idea being generally that this canal will put the Mississippi Valley, in such easy connection with South America and the Pacific as to cause a great development of export trade, a large part of which Chicago and St. Louis hope and expect to control.

DESIRABILITY OF A 14-FOOT WATERWAX.

If a 14 -foot waterway from Chicago to the Gulf would enable vessels of the Great Lakes to carry freight to cities and towns of the Mississ:ppi Valley and the Gulf of Mexico, and enable ocean commerce to be carried up the river without breaking bulk at New Orleans, both general and local commerce would be greatly benefited.

The Board on the survey of a 14 -foot waterway from Lockport to St. Louis invited attention to the fact that two-thirds of the tonnage of vessels entering the Chicago River were of so great a draft that they would be unable to utilize a 14 -foot waterway if constructed.

- This Board has further investigated this subject.

During the season of 1907 of a freight tonnage of $58,217,214$ tons which passed through the canals at the Sault Ste. Marie, only 800,000 tons were in vessels of a registered draft of 14 feet or less, $10,400,000$ tons were in vessels of a registered draft of from 14 to 19 feet, and $47,000,000$ tons in vessels of 19 feet registered draft or over, of which $33,000,000$ tons were carried in vessels capable of being loaded to depths exceeding 21 feet. The navigation through the locks at Sault. Ste. Marie was congested, and as many vessels as possible were locked through the Weitzel lock, which is capable of handling vessels not exceeding 15 feet in draft; 27 per cent in number of the vessels passed through this lock having a gross tonnage of 13 per cent, but carrying only 3 per cent of the total freight ($1,772,701$ tons). Most of this tonnage was of vessels without cargoes.

When the Illinois legislature in 1889 advocated a. 14 -foot waterway from Chicago to the Gulf, Canada could reach the upper lakes by the Welland Canal, 14 feet deep, and the navigation of the Great Lakes was generally in vessels which might possibly utilize such a channel, but the rapid increase in depths of the harbors and channels of the Great Lakes has radically changed conditions. Since 1902, bulk freighters have been launched at the various shipyards of the Great Lakes, having an aggregate tonnage of over $1,500,000$ tons, and capable of carrying in a season on the Great Lakes over $30,000,000$ tons of freight. On a 14 -foot waterway these vessels could barely carry the necessary fuel supply required for a trip of about 1,600 miles from Chicago to the Gulf.

At the present time the value to commerce of a 13 -foot harbor on the Great Lake is entirely incommensurate with the cost of maintenance. To be accesaible to even the smaller available vessels, a harbor should have a depth of at least 16 feet.a

During the past twenty years the channels to harbors along the Atlantic and Gulf coasts haye been excavated to even greater depths than those of the Great Lakes, and but a comparatively small por-

[^2]tion of the ocean-borne commerce of the United States could utilize a 14 -font waterway. Nor are ocenn and lake vessels as economic a means of transporting products on rivers and canals as barge tows. Due to the necessity of building the ocean vessel of sufficient strength to resist violent storms her cost in the United States is about $\$ 71$ for each ton of freight carried. On the Great Lakes vessels are exposed to storms of less violence, and the cost is about $\$ 41.50$ per ton of freight carried. A Mississippi River steamboat and ten barges capable of transporting 10,000 tons of freight on an $8 \frac{1}{2}$-foot draft can be built for about $\$ 12$ per ton of freight carried.

A modern lake freighter, moreover, is poorly constructed for navigating a tortuous river with a swift current. The ratio of length to beam is too great and the rudder power insufficient. -Such vessels have been developed for a special purpose, and while affording a most economic method of transporting freight on the Great Lakes, would be a failure if employed in either ocean or river navigation.

The Board is of the opinion that a 14 -foot waterway is suitable for neither existing lake nor ocean vessels; that freight originating on lake or gulf will require transshipment to vessels adapted to its navigation, and that its principal value will be to provide for commerce that originates along its banks, or those of its tributaries, until the introduction of some form of vessel adapted to all conditions of navigation. When such a vessel shall be designed, there will be an immediate demand for a channel of greater depth than 14 feet.

WIUTHER OTHER PLANS OF IMPROVEMENT CAN BE DEVISED BY WHICH THE PKOBABLE DEMANDS OF TRAFFIC, PRESENT AND PROSPEOTIVE, CAN BE ADEQUATELY MET.

It is the opinion of the Board that the present demands of traffic are adequately met by the existing projects for improving the river, and that only the creation of a commerce, which must originate from sources that do not at present ship by river, would justify the great cost of a 14 -foot waterway. The present condition of this waterway appears to have been generally overlooked, and few people who have not specially examined it realize what has already been accomplished.

In the Mississippi River, as at present improved, there usually exists, and has exisind since 1901, a good navigable channel of at least 8 feet depth over at least 200 feet width for the 182 miles of river between St. Louis and the mouth of the Ohio River; and of 9 feet depth and 250 feet width for the 790 miles from the mouth of the Ohio River to just below the mouth of the Red River; and of at least 30 feet depth and several hundred feet width for the remaining 320 miles to the Gulf. During the low-water season when the shoaling of some crossing took place suddenly through rapid fluctuations in river stage at a time when the dredging plant was engaged elsewhere minor deficiencies in channel depths for short periods have occasionally occurred. In the winter season navigation has been interfered with by ice for periods aggregating, above Cairo, only about one month per year, and from Cairo down to Memphis only a few weeks in occasional years. A good channel of at least 14 feet depth can usually be found every year between St. Louis and Cairo during from

Nouso Doo. No. . 60 ; Glat Cong., Ist Sass.
one to two months, and betwreen Cairo and the Gulf during from five to eight months.

The existing improved waterway of the Mississippi River below St. Louis fully equals, and over the greater part of its extent far excels, in depth and duration of unobstructed use, the existing river systems of Europe where the nontidal sections are usually given depths of only' 3 to 9 feet, 9 feet being exceptional and 10.5 feet a maximum.

The immense commerce of the Rhine could be carried more readily and cheaply on the Mississippi to-day than on the Rhine, if such commerce were available for transportation by water and demanded such transportation.

The decline in the commerce of the river has not arisen from its lack of navigability but from the reduction in amount of material available for shipment. When a large proportion of the grain was raised east of the river, St. Louis was a natural outlet to grain and other farm products seeking Gulf ports, and a flourishing commerce existed between St.' Louis and New Orleans by water, but at the present day 70 per cent of the whent and 50 per cent, of the corn of the country are raised west of the Mississippi. Kansas City, Omaha, and Minneapolis have become the great grain centers. Grain and other farm products seeking Gulf ports find a rail line from Kansas City to Galveston which is chemper than a rail transportation to St. Louis increased by the cost of river transportation from St. Louis to New Orleans, and the only grain that can move down the river is that locally consumed along its banks.

The Mississippi River from St. Louis to New Orleans flows through a sparsely settled country. According to the census of 1900 there was between these points but one town on its ganks of over 15,000 inhabitants (Memphis), and but six others with a population exceeding 5,000 . The manufacturing industries, or demands for manufactured articles, in so thinly a settled rerion are slight. There are no mineral deposits along its banks, and its agricultural products are principally corn, cotton, sugar cane, and rice. The alluvial soil of the Mississippi Valley, with the heavy rainfall of this region, renders its common roads almost impassable, so that a long haul to or from the river bank becomes very expensive, and confines the commerce of the river to those products raised or expended on its immediate banks.

While the Panama Canal moy have a tendency to divert more commerce to a northerly and a southerly direction than heretofore, it will be principally in high-grade articles, and not in crude.products, which experience has shown are adapted to water transportation.

Ninety-seven and one-half per cent of the commerce which passed through the canals at Sault Ste. Marie in 1907 consisted of iron, coal, lumber, and grain. In a thickly settled community, such as is found along the Hudson River, a heavy water-borne commerce may develop in building material, such as stone, brick, lime, and cement, but with the small population in the Mississippi Valley below St. Louis, the transportation of these items would be insignificant. It is considered probable that if a deeper waterway existed from Chicago to the Gulf, the principal additions to existing commerce would be coal from Illinois moving toward New. Orleans and lumber from the South toward Chicago.

As was shown in a report on a survey of the Ohio River, House of Representatives Document No. 492, Sixtieth Congress, first 'session,
products can be cheaply transported on barges having a draft of $8 \frac{1}{2}$ feet. It has been estimated that coal can be shipped in barges from Pittsburg to New Orleans on a 9 -foot canalized river at 0.376 of a mill per ton-mile, while the estimated cost of transportation on the ocean in vessels of 21 feet draft is 0.35 of a mill per ton-mile.

Finished products seek rail transportation, and the only effect of navigable waterways upon their transportation is a possible reduction or control of freight rates. The existing improvement of the Mississippi River has had a marked effect on freight rates between St. Louis and New Orleans, reducing them nearly to those between St. Louis and New York. These latter rates have resulted from the influence of the Great Lakes and the Eric Canal on the competing Chicago rates; similarly, the influence of the Mississippi River on southern rates from St. Louis affects those from Chicago south, and but little reduction can be expected from a further deepening of the river.

The Board is of the opinion that the development of the waterways of the Mississippi Valley into a harmonious system will be of immense value to the country, but the Ohio Valley has been and probably will continue to be the line of greatest commerce; and probable demands of commerce, present and prospective, for many years to come, can be adequately met by a channel of 9 -feet depth between Chicago and Cairo, of dimensions similar to those proposed for the Ohio River, a project which requires no violent change in existing methods of improvement, and which will not necessitate the diversion from the Great Lakes of a water supply which will injuriously affect the channels through which its immense commerce passes.

SPECIFIC QUESTIONS OF CONGRESS.

So far as known to the Board, the greatest depth so far sought by regulation in a nontidal river is 3 meters (9.8 feet), to which depth the lower Rhine is at present being improved. The Board is of the opinion that the Mississippi River from St. Louis to Cairo is susceptible of improvement to the same depth; but to obtain a greater increase in depth by regulation works alone is problematical and without precedent.

A plate at the end of Appendix No. 1 shows graphically the changes in the heights of bars due to fluctuations in water stage in the Mississippi River from St. Louis to Cairo between the years 1896 and 1909 and indicates under present conditions 1 foot average rise of bar for every 2 feet rise in the river, giving for the average stage (12.6 feet) of the river a controlling depth of about 9 feet, and showing that a stage of 22 feet is necessary for a 14 -foot channel. The conditions are much the same from Cairo to Red River. Basing its opinion on the above and other local conditions, the Board reports on the specific questions contained in the act of March 2, 1907, as follows:

First. It is practicable to produce between St. Louis and Cairo at low water by means of regulation works a channel of at least 10 feet depth.

Second. A depth of at least 14 feet will obtain in such regulated channel at the average stage of water for the year, 12.6 feet on the St. Louis gatige.

Third. Fourteen feet depth of water will obtain in such regulated channel for at least an average of 163 days annually.

Fourth. The increase of depth which will be obtained by an added volume of water over the natural flow in such regulated channel will be much less than the increase in water stages, and between St. Louis and Cairo this increase in depth at low-water stages will be not more than 6 inches for 10,000 cubic feet per second nor more than 8 inches for 14,000 cubic feet per second, while at high-water slages the increase will be less. Below Cairo this increase in depth will be much reduced for low-water stages and will be inappreciable at high-water stages.

With the banks revetted, so that the supply of material to the bars is reduced to a minimum, the height which bars will attain during floods should materially diminish. On the improved Rhine River the ratio of the rise of bar to the increase in gauge height is reported as 1 to 3 . What the ratio would be on an improved Mississippi must remain conjectural until actually tested.

Fifth. It will not be practicable to produce at all seasons of the year a depth of 14 feet in such regulated channel by the aid of locks and dams similar to those projected and in use on the Ohio River improvement without extensive annual dredging.
Sixth. Regarding the water power to be created and the lands to be drained in the portion of the Mississippi River which the act of March 2, 1907, directed to be surveyed and in the proposed waterway from Lockport, Ill., to St. Louis, Mo., heretofore surveyed, the Board reports as follows:

This Board submits no project for creating water power, nor does it propose to drain any lands on the portion of the river directed to be surveyed.

The Board which submitted a report in 1905 upon a waterway from Lockport, III., to St. Louis, Mo., recognized the riparian rights of property holders and proposed a channel which would interfere with those rights as little as practicable, and its plans did not contemplate the drainage of any lands in the Illinois Valley. On the contrary, the Board invited attention to the fact that the diversion of 10,000 cubic feet per second from Lake Michigan into the Illinois River would cause extensive damage to the lands subject to overflow, for which the sanitary district of Chicago would be liable; and its estimates appear to have been prepared on the assumption that this district was to settle such claims for damages. The Board evidently considered the diversion of more than 10,000 cubic feet per second as unnecessary and undesirable. It further stated that with the limited discharge of about 4,200 cubic feet per second which was all that had been authorized prior to 1905, 224 suits had already been brought against the trustees of the district, the claims aggregating $\$ 4,409,180$.

A large water power can be developed by the diversion of either 10,000 or 14,000 cubic feet of water per second from Lake Michigan into the Illinois River, but its utilization as at present proposed by the State of Illinois will require radical changes from the project contained in the 1905 report, and will involve serious legal difficulties if the Government of the United States attempts to conserve such power.

An available horsepower, aggregating 173,000 between Lockport and Utica with a discharge of 14,000 cubic feet per second, is to be developed under a project submitted by the Internal Improvement Commission of Illinois, February 27, 1907, and subsequently indorsed
by the governor and the people of the State; but this project is a most radical departure from the project of 1905, and contemplates a lowering of the level of the river below Utica of about 10 feet. The nine locks of the Board's project are to be replaced by five with a corresponding increase in the heights of dams, and while the Board proposed to disturb the flood conditions as little as possible, the State asserts that "these should be disturbed as much as possible," and apparently assumes that the United States will accept responsibility for damages caused by overflow in the Illinois Valley. The proposed lowering of the river bed of about 10 feet below Utica will render necessary instead of the excavation of the $27,535,805$ cubic yards of material, estimated by the Board as necessary between Utica and Grafton, at first the excavation of some $190,000,000$ cubic yards of material ultimately to be increased to between $300,000,000$ and 400,000,000.

It is only by some such modified project that the lands in Illinois Valley can be drained by gravity, but the Board can suggest no method by which the cost of the improvement can be defrayed, in whole or in part, by the land benefited. On the contrary, it is of the opinion that if the United States accepts such a proposition it might be compelled to pay for the lands on which it would have to deposit this immense mass of dredged material, and to pay also for supposed damages from floods.

Under such circumstances, the Board considers that the question of land reclamation and of the conservation of the same between Chicago and the mouth of the Illinois River, should be left entirely to the State of Illinois; that the Federal Government should neither require nor accept from the State or the sanitary district any payment for any increase in valuation of such lands, and that it should in no way relieve the State or the sanitary district from the responsibility for overflow of lands by the Lake Michigan water diversion, the cost of flowage damages being a proper charge against the income from the available water powers developed by such water diversion.

The sites available for power purposes on the Des Plaines and Illinois rivers are now owned by the State of Illinois, the sanitary district of Chicago, large corporations, and private individuals, and their titles to power rights will have to be extinguished before the Government can intervene to conserve the power it is proposed to develop. By modifications in the project submitted by the former Board that will be in harmeny with its report, this Board is of the opinion that 100,000 horsepower can be devaloped by the ditersion of 10,000 cubic feet per second.

The experience of the General Government in renting power rights has not heretofore been such as to juetify the Boutd in assigning in general a fixed value per horsepower year for tuch rights. Water powers are reported to have been leased by the Fedetal Government at rates as low as about $\$ 0.65$ per hordepower ytar by the Forestry Bureau, for the first five years, at the Castade Mountinns; and $\$ 0.53$ to $\$ 2.65$ by the War Department on the Muislinget River, Ohio, these low rates being accepted because they wars the bathofered. In other cases, as on the White River, Arkansas, where Whter power was available for lease and coal was sold at about 64.75 per ton in car-load lots, the best offers (not'accepted) have belif froin $\$ 0.50$ to $\$ 1$ per gross horsepower year. On the other hand, wliere water power is in great demand, and can be sold in small quantities, a net horsepower
at the turbines is understood to have brought as high as $\$ 75$ per year. Water power is particularly valuable near large commercial centers like Chicago. The Sanitary District of Chicago and the State of Illinois, in presenting the matter to the public for vote on the question of a $\$ 20,000,000$ bond issue, have valued this water power between Chicago and the Illinois River as worth at reasonable valuation, $\$ 25$ per horsepower year, these figures being indorsed not only by the sanitary district of Chicago, but by the Illinois State Internal Improvement Association and by the governor. Under such circumstances, it seems proper that the Federal Government should assume, in its dealings with the sanitary district of Chicago and the State of Illinois, the principal beneficiaries, that the net horsepower developed by 10,000 cubic feet per second diverted from Lake Michigan should produce a revenue of $\$ 2,500,000$ per year.

The Board considers that the property owners along the canal and Illinois River are equitably entitled to the water power due to the natural flow alone of the Des Plaines and Illinois rivers, and that any power which results from an added flow diverted from Lake Michigan belongs to the people of the United States and Canada.

The Board is of the opinion that the-United States will receive adequate compensation for the water power created by the diversion of the water of Lake Michigan now authorized by the United States War Department to the Sanitary District of Chicago, and the latter will also be adequately compensated for its expenditures upon canal and water power, by an agreement between the United States and the Sanitary District under which the canal shall be openod to free navigation and so maintained by the district, said district to enjoy free use of the power so created, until the aggregate value of said power shall equal the cost of canal and power construction; after which the United States shall receive from the beneficiaries a percentage of the net profits from the water power so developed as a compensation for the resulting injury to navigation on the Great Lakes and connecting waters and loss of water power on the Niagara and St. Lawrence rivers, such percentage to be fixed by Congress.

In conclusion the Board deems it fitting to express its appreciation of the ability, energy, and care with which its recorder, Capt. G. R. Lukesh, Corps of Engineers, has performed the arduous duties devolved upon him in directing the field vork, office computations, mapping, and compilations necessary to the-preparation of this report.

Respectfully submitted.

> W. H. Bixby,
> Colonel, Corps of Engineers, U. S. Army, President, Mississippi River Commission. C. MoD. Townsend,
> Lieut. Col., Corps of Engineers, U. S. Army. J. G. Warren,
> Lieut. Col., Corps of Engineers, U. S. Army.
> Henry B. Riciandson,
> Member, Mississippi River Commission.
> Homer P RitTer,
> Assistant, D. S. Coast and Geodetic Survey, Member, Mississippi River Commission.

The Chief of Engineers, U. S. Army.
No.
Page.

1. Physical characteristics of the Mississippi River. 31
2. Memorandum of past and present projects for improvement of the Mississippi liver from St. Iouis, Mo., to the Gulf 48
3. Table giving amount of work to be done to complete improvement of the Mississippi River, St. Louis to Cairo, Ill., under the project of 1881 33
4. Project for obtaining and maintaining by dredging alone, a navigable chan- nel 14 feet deep in the Mississippi River between St. Louis, Mo., and the mouth of the Ohio River. 55
5. Project for obtaining and maintaining by complete regulation works, a navigable channel 14 feet deep in the Mississippi River botween St. Louis, Mo., and the tnouth of the Ohio River. 57
6. Project for obtaining and maintaining by means of locks and dams, a navi- gable channel 14 feet deep in the Miswissippi River between St. Lovis, Mo., and the mouth of the Ohio River. 89
7. Project for obtaining and maintaining by means of a lateral canal a navi- gable channel 1.4 feet deep from St. Iouis, Mo., to the mouth of the Ohio River. 100
8. Extract from a report on the reseryoir possibilities of the Mississippi River above the mouth of the Illinois River. 112
9. Report on experimental 14 -foot dredging carried on in the Mississippi River below the mouth of the Ohio River, by the Missiesippi River Com- mission during 1908, and estimate of cost of obtaining and maintaining a navigable channel 14 feet deep by dredging alone in that stretch of the river 119
10. Comprehensive profile of the Mississippi River, St, Louis, Mo., to Gulf of Mexico, showing river bed, high and low water slopes, and extreme stages roferred to mean gulf level 135
11. Profile of the Mississippi River from St. Louis, Mo., to Cairo, Ill., showing flood planes, low-water plane, river bottoms, and bed rock. Follows 135
12. Hydrograph of the Mississippi River, St. Louis, Mo., showing extreme and mean daily stages, January 1,1861 , to December 31, 1908....... Follows 135
13. Comprehensive hydrographs of the Mississippi River between Illinois and
Ohio rivers and of the lower sections of the Missouri and Ohio rivers,
Follows Ohio rivers and of the lower sections of the Missouri and Ohio rivers,
Follows 135
14. Hydrographs of the Mississippi River from St. Louis, Mo., to Cairo, Ill., for the year ending June 30, 1908. 135
15. Tabulated gauge readings at selected stations between Chain of Rocks and Cairo, Ill 136
16. Typical cross sections of the Mississippi River between St. Louis, Mo., and Cairo, Ill., in wide, medium, and narrow reaches.................. Follows 217
17. Mean discharge curves of the Mississippi River at St. Louis, Mo., $1880-81$ and 1900-1904 217
18. Discharge results, Mississippi and Missouri rivers, Grafton, Ill., and St. Charles, Mo., to Red River Landing, La., 1851 to 1908. 217
19. Map, in one sheet, showing caving banks of the Mississippi River between Cairo, Ill., and mouth of Red River, La., showing their extent and rates of caving 319
20. Present and prospective commerce. 31!)
21. Field and office operations carried on under the direction of the Board on Examination and Survey of Mississippi River in connection with the preparation of its report 370
22. Descriptions of triangulation points; bench marks, and high-water marks used in the survey of the Board on Examination and Survey of Mississippi River, 1907-8, and shown on the published charts. 380
Note.-Duplicate set of maps a of the Mississippi River below Cairo published by the Mississippi River Commission on a scale of 1 inch to 1 mile, Sheets Nos. 1 to 32, inclusive, is forwarded with the report for the use of reviewing officers.

Appendix No. 1.

PHYSIOAI, CHARACTERISTICS OF THE MISSISSIPPI RIVER.

[Prepared by the recorder urider direction of the Board.]
In connection with its report on the improvement of the Mississippi River below St. Louis, the Board deems it desirable to give the following brief statement of those physical characteristics of the Mississippi Valley that are pertinent to the subjectmatter of the investigations assigned to it:

The drainage basin of the Mississippi River extends from the Allegheny Mountains to the Rocky Monntains and from Wimnipeg and the St. Lawrence watersheds to the Gulf of Mexico. The area of the basin is given at $1,240,050$ square miles, about 41 per cent of the area of the United States exclusive of Alaska and outlying possessions.

The arcas of the secondary basins that go to form the Mississippi River Basin are given in thelvolume entitled "Floods of the Mississippi River," 1807 (U.S. Weather Bureau), as:

The Central Valley is the basin of the Mississippi River proper between the Missouri River and the Gulf of Mexico. This part of the river is frequently considered in two sections, that between the Missouri and Ohio rivers being designated as the "middle Mississippi," and the part below the Ohio being called the "lower Mississippi;" the section above the Missouri River is called the "upper Mississippi." The middle Mississippi receives drainage from about 14,000 square miles of the Central Valley.

Of the great basins forming the Mississippi Valley the Missouri is by far the largest, but is, comparatively, a dry region, in part even arid; the upper Mississippi has a moderate rainfall; the Ohio Basin is within the zone of heavy precipitation, and though its area is less than half as great as that of the Missouri Basin it contributes about three times as much water to the Mississippi River during the year.

The table on page 32 gives the average monthly precipitation at selected stations in the secondary basins; it will be noticed that the annual rainfall is very different at these various stations and that at the same station the monthly rate varies during the scasons, the greatest variation being in the Missouri Basin. The average rainfall shown for these stations does not, of course, necessarily give the averages for the whole basins.

The recorda of the United States Weather Bureau of rainfall at the various stations in the Mississippi Valley are quite complete for recent years, but however complete they may be they can afford only a partial index of the amount of water delivered into the streams; permeability of soil, temperature of the air, and many other conditions affecting percolation and evaporation being factors in determining the ratio of precipitation to river discharge. Thus the Ohio Valley is very different in this respect from the Missouri, where, owing to the highly absorptive sandy soil and drying winds, a much smaller percentage of the rainfall finds its way to the main river.

Normal monthly and annual precipitation, in inches, at selected stations in the basin of the Mississippi River.

It will be noticed in this table that in the winter months at the northern sources of. supply the precipitation is very light, while at the more southerly stations the winter precipitation is very heavy. Very rarely does the maximum precipitation occur simultaneously at both northern and southern stations, and there is no recorded instance when heavy rains have occurred over the whole waterched of the Mississippi at the same time.

In the Ohio Basin the annual rainfall is 43 inches, and the proportion of rain which goes into the rivers is about 30 per cent. The Upper Mississippi has a rainfall of 34.7 inches with a run-off ratio of 27 per cent. The Missouri has respectively 19.6 inches and 12 per cent.a From these figures it appears that the Missouri, notwithstanding the immense area of its basin, is the least important of the three great tributaries in regard to volume of flow throughout the year; but its flood volume is large and it contributes also the greatest amount of solid matter, in the form of sediment, to the Mississippi River.

The northern part of the St. Louis to the Gulf section of the river is subject to the influence of ice; it is reported to have been frozen over as far south as Memphis, Tenn. But the principal interference with navigation and injury to works of river improvement from this source are due to running ice. Periods of running ice occur almost every year, of varying length, depending upon weather conditions. During the past forty-two years navigation has been suspended in the vicinity of St. Louis on account of ice as early as November and as late as March. The averago length of time per year is thirty-one days according to the records of the St. Louis Merchants' Exchange. Below St. Louis conditions in this respect improve, and south of the Ohio River interference with navigation by ice is of quite rare occurrence.

Borings made by different boards of engineers and by the Mississippi River Commission show that the alluvial bed of the river, especially south of Cairo, is of great

[^3]thickness. It seems to be only in a few isolated localities that the present river scours down to bed rock, and that throughout there is a considerable margin in the alluvium for an increase in channel depth. A line of borings made by this Board along the channel from St. Louis to the mouth of the Ohio disclosed no bed rock within 40 feet of the low-water line of the river except between Thebes, Ill., and Commerce, Mo., where (considering a channel 500 feet in width), in places along some 3 miles of river bed rock approaches to within about 17 feet of low-water surface. Beaver Dam rock, 1 mile below Commerce, is a sandstone formation, believed to be isolated and to overlie the clay. Bacon rock, a formation said to be similar to the chalk bluffs at Columbus, Ky., and an obstruction to navigation in the Ohio River near its mouth, wab removed many years ago. Old surveys show another isolated rock formation, in the old channel of the Mississippi River above the mouth of the Ohio River. There is also a stratum of ferruginous sandstone near Memphis, the top of which is above extreme low water; the rock in the river bed about 5 miles below Memphis, known as Nonconnah rock, is probably a fragment of this formation. Above Cairo and below St. Louis the general depth of bed rock below low water is from 50 to 100 feet; a profile accompanying the Board's report gives the information in detail.

In the stretch below Cairo, the greater depth of bed rock is evident from borings and investigations, reports on which will be found in the Annual Report of the Mississippi River Commission for 1881, pages 139-168. A discussion of the "Blue Clay of the Mississippi River," by Doctor Little, will be found in the Annual Report of the Chief of Engineers for 1883, pages 2315-2339, and an analysis of the boringe, by Professors Hilgard and Hopkins, in the Annual Report of Chief of Engineers for 1884, pages 2885-2903. Further information will also be found in the annual reports of the Mississippi River Commission for 1882, 1880, and 1903.

The river for the entire distance from St. Louis to Commerce, Mo., flows through an alluvial valley of a fairly uniform width of about 5 miles, except for the "gorge", between Grays Point and Commerce, where the width is less than 1 mile. From just below the Missouri to Ste. Genevieve, about 70 miles, the river follows the Missouri bluffa; it then crosses to the Illinois btuffs, which it skirts fairly closely for about 14 miles; returning to Missouri bluffs at Red Rock it follows them at a distance of lees than a mile down to Cape Girardeau, some 42 miles. Between Cape Girardeau and Grays Point the river passes for 4 miles the low land forming the head of the St. Francis Basin, and at the latter point enters the "gorge," where the river is closely confined between bluffs on either bank. The gorge is about 7 miles in length. The bluffs on either side are generally of limestone with some sandstone formation. Below Commerce the alluvial valley widens out and takes in the extensive St. Francis Basin on the right bank, then the White River Basin on the same bank, then the Yazoo on the left and again the Tensas and Atchafalaya basins on the right bank, an average width of about 40 miles.

The low-water channel length of the river from St. Louis to the mouth of the Ohio (2 miles below Cairo gauge), as determined by the Board's survey, is 182 miles, the airline distance is 125 miles. In this section the river flows in a generally southeasterly direction. From Cairo to the mouth of Red River, about 790 miles, channel distance, and 440 miles, air line, the direction is generally southwesterly; thence to the mouth 321 miles by river, channel distance, and 210 miles, air line, the direction is southeasterly. The general direction of the river from its source in Minnesota to its mouth is southerly, and it is contained within the meridians $89^{\circ} \mathrm{W}$. and $95^{\circ} \mathrm{W}$., and the parallels $48^{\circ} \mathrm{N}$. and $29^{\circ} \mathrm{N}$.

An important feature of the Mississippi River below St. Louis is the variations in its widths along its course. Between St. Louis and Cairo the recent survey made by this Board showed a low-water width corresponding to the zero stage on the St. Louis gauge as small as 650 feet, as at Ables Point (170.5 miles below Eads Bridge, St. Louis), and as great as 4,000 feet, about 1 mile above Prices Landing (153.4 miles below Eads Bridge). Similarly the ordinary or "standard" low water (4 -foot stage on the St. Louis gauge) shows widths in the stretch ranging from 800 feet at Ables Point to 4,900 feet at the head of Grand Tower Island (104.3 miles below Eads Bridge). The bankfull stage (30 feet on St. Louis gauge) varies from 1,550 feet just below Devils Backbone (89.6 miles below Eads Bridge) to 6,600 and 6,800 feet at the head of Grand Tower Island, and at Greenleaf Bend (169 miles below Eads Bridge) and at other localities. The freshet stage widthe are considerably greater, the flood of 1844 extending practically from bluff to bluff, an average distance of about 5 miles. This flood width has since been gradually eucroached upon in places by levees and other prtificial structurea, but only to a small extent.

Below Cairo similar variations in widths are found. Low-water widitis aw small as 1,000 to 1,500 feet and as great as 6,000 to 7,500 feet have been found at several lucali-

[^4]ties. At bank-full stages the widths likewise vary from less than 2,000 feet up to 10,500 feet. Generally speaking, the width of the river becomes more uniform in the lower section, and averages somewhat less than the widths in the upper reaches. The area below Cairo subject to overflow was formerly of an average width of some 40 miles, but is now, through the construction of a general levee system, much reduced. Through a large part of the distance the river floods are confined within loyees along and near both banks, and through another large part between a levee on one bank and highlands skirting the other, giving an average restricted flood width of about 5 to 10 , miles, decreasing to about 2 miles in the lower section. Where the levee system is not wholly effective, as at the mouths of the larger tributaries, the freshet widths increase through backwater; and fallure or overtopping of the levee would, of course, increase the freshet width through overflow to an extent, possibly 10 to 30 miles, dependant on the food height and the character of the topography surrounding the point of failure.

The average slope of river surface in different sections below St. Louis, Mo., is shown in the following table:

Btation.	Distance between stations (midbank).	Stage above Gult level.		Slope between stations.	
		High water.	Low water.	High water.	Low water.
Bt. Iouls, Mo.	Mrles. .	Feet.	Feet. 377.90	Foot per mile.	Foot per mile.
Cairo, Ill .	175	- $323.20{ }^{\circ}$	$\cdots 27000$	0.563	0.616
	230			- 429	. 385
Mamphis, Tenn		224.47	181.62		
Vicksburg, Miss.	369	- 98.64	$\cdots 39.60$. 341	. 384
	154			. 291	. 238
Mouth of Red River.		63.77	2.97		
Carrollton, La.	182	…i9.290		180	. 024
Fort Jackson, La.	82	6.62	-1.38	. 154
	17		-1.38	. 0707	
Near Head of Passes.		5.27		

[^5]A natural channel depth of 14 feet or more may, in the St. Louis to Cairo stretch, be expected to occur during the months of April to July, with occasional periods of brief duration at other times of the year. The average length of time is about one and onehalf months per year. Below Cairo a channel of such least depth obtains during a greater period of the year, from about January to July, sometimes as early as December and as late as A ugust, with occasional short intervals during other months. The average period is from six to seven months.
[As an illustration of depths that are to be found in the river below Cairo, the following tables have boen prepared, giving the periods when 8 to 14 leet ohannel depths occurred. It should be remembered that the Mississippl River Commission was carrying on dredging operations to maintain a 9 -foot channel, and that but for these operations less depths than those shown would doubtless have occurred and the duration of depths less than 9 feet would have been greater.]

Low-water season, 1908, between Cairo and Memphis.

a The duration of depths given in these columns does not agree exactly with the corresponding intervals In the second column on account of slight oscillatlons in stage which are not evident with 1 -foot intervals.
REmarks.-From January 1, 1908, to July 25, 1908, depths greater than 14 feei at all times, except that a deciline of the river, beginning about January 24 and ending about February $\%$, resulted in least depths of 13.5 feet at Island 35 Crossing and 11 feet at Corona and Uzzells according to surveys of that date. The duration of depthis less than 14 feet was probably less than a week.
Nore.-Fulton gauge was solected on account of belng nearest the controlling bars-M. L. W.-mean of lowest waters of the years 1892-1901, inclusive, and $=+3.5$ on Fulton gauge.
Least depth in stretch derived from a table of most authoritative loast depths observed throughout the season (July 22, 1908, to January 15, 1009) by assuming uniform change in depths between observations.

Low-water season, 1908, between Memphis and Red River.

Remarks. - There is no record of depths less than 14 feet between January 1, 1908, and August 12, 1008, but they may have occurred at one or two bars for a few days in February duriag the exceptional decline of river in that month,
NOTE.-Memphis gauge wris selected on account of being nearest the controlling bars-M. L. W. $=$ mean of lowest waters of the years 1892-1901, inclusive, and $=+0.9$ on Memphis gauge.
Least depth in stretch derived from table of most authoritative least depths observed throughout the season (July 22, 1908, to January 15, 1909) by assuming uniform change in depths between observations.

Although the floods of the river do not form the subject of the Board's report, yet, on account of their influence on the low-water channel and on regulation works, they can not be left out of consideration.

The natural result of the greater volume of water flowing in the river at the higher stages is to produce immediately greater channel depths, to the advantage of navigation. But the high-water channel rarely coincides with the low-water channel, and not only does an increase in stage usually fail to give an equal increase in the lowwater channel depth, but a return to lower stages frequently finds the former lowwater channel wholly or partly obliterated. Until the scouring effect of the water can produce a new low-water channel, or, sometimes, combine many minor channels, the controlling depth is less than at an equal stage before the rise. The new lowwater channel on the crossings, the critical localities from the viewpoint of navigation, is usually in approximately the same pusition as before the rise, but often is above or below and at times at considerable distance from its former position-this, of course, at localities where works of improvement are not present to guide the stream into its proper channel.

The most injurious effects on the controlling low water depths result from a speedy fall in the river after a prolonged and considerable rise, the most beneficial effects of scour are produced by a uniform moderate flow of long duration.

The influence of the shifting character of the sides and bottom on channel depths is set forth at greater length later in this paper.
The Ohio and its affluents form a system by themselves, lying for the most part in the ordinary paths of the moisture-laden Gulf storms which sweep from the southwest in the early months of the year. The upper Mississippi and the Missouri are generally frozen during the early rises of the Ohio and usually have their floods about the time those of the Ohio have run out, but cause high water in the Mississippi River between the Missouri and the Ohio rivers and moderately high stages below the Ohio. The Mississippi River below Cairo is thus usually maintained at high or moderately high stages by successive contributions from different sources and this high and medium stage period generally lasts from about the beginning of the year to about August. Between St. Louis and Cairo the river is at or above medium stages from about April to August.

The greatest reliably recorded flood in the Missouri and Upper Mississippi rivers, and in the Middle Mississippi as far down as Price Landing (mile 153), that of 1844, did not produce as high a stage at Caire as those produced by the Ohio River floods of 1882, 1883, 1884, and many other years. The flood of 1858 was caused by the combined floods of the Middle Mississippi and Ohio rivers (Humphrey and Abbot's Report), but was not as high as a number of later floods at Cairo.

Floods that pass Cairo frequently meet others coming from the lower tributaries producing greatly increased flood effects in the lower river.

The following table gives the greatest and least measured discharges at selected stations on the Mississippi River and its principal tributaries, with corresponding gauge heights. As the measurements were not always, especially in the earlier years, taken at highest or lowest stage, a column of extreme gauge readings at the corresponding points is given for reference. In appendix 18 will be found tabulated all available discharge data pertaining to the Mississippi between Graftou and the Red River.

Maximum and minimum observed discharge of principal tributaries of the Mississippi River.

Station.	Discharge (cubic feet per second).							Highest and lowest known stages.		
	Date.	-	Gauge reading.	Channel.	Overbank.	Total of river.	Mean velocity in feet-per second. f	Date.	Gauge reading.	Referred to Gulf level.
Missour! River at St. Charles, Mo	June 19, 1908, p. m		Feet. 30.32		3,000		9. 44	High water, 1844.	Feet. 39.95	
	February 20, 1879.		6.30	24,060	3,000	24,050	2.79	1879.............	-3.85	417.56
Ohio River at Paducah, Ky.	January $21,1882$.		46.40	1,233,000		1,233,000	8.86	February $23,1884 . . .$.	54.25	340.51
	Norember 3, 1882		3.10	54,000		54,000	1.30	October 30-November 4, 1895.	-0.70	285.56
St. Francis River near mouth.	March 8, 1883....		- 46.90	373,000		373, 000	7.80	April 14, 1897.................	a 51.75	193.93
	November 17, 1896 April $6 ; 1906 . .$.		a 6.90 33.08	768 72906	137,134	$\begin{array}{r}768 \\ 210 \\ \hline\end{array}$	+ 40	November 8-9, $1895 . .$.	c -3.00	129. 18
White River at Clarendon, Ark.......	June 20, 1879.		33.80 6.80	72,906 5,962	131,134	210,040 5,962	4.02 1.09	March $20,1890, \ldots$.	36.63 4.07	143.17
Arkansas River at Little Rock, Ark.....	June 11, 1904, p.		229.40	440,089		440,089	9.95	Mīy 21, 1892....................	31.20	252.83
	October 20, 1897.		-2.60	1,160		1,160	. 91	October 23-24, 1879...........	1.80	222.53
Yazoo River near Chickasaw Bayou.	March 18, 1884.		- 46.50	161, 322		161,322	3.82	April 16, 1897................	${ }^{\text {b } 52.48}$	98.64
Yazoo River near mouth. .-	November 20, 1897		-2.60	2, 462		2, 462	2.86	November 13-14, 1895.......-	$b-6.50$	39.66
Red River at Alexandria, La.............	July 2, $1908 . . .$.		41.50	205, 000	5,000	210,000	5. 79	July 5-6, 1908 .	41.80	85.98
	November 19, 189		-1.80	3,143 56,182		3,143 56,182	1.12 2.24	September 29, 1881............ $1874 . ~$	-3.70	40.48 80.07
Ouachita River at Monroe, La.	June 1, 1892......		37.80 $c 1.00$	56,182 800		56,182 800	2.24	1874.........-................	49.10 0.00	80.07 30.97
Atchafalays River at Simmesport, Ls..	May 12, 1890		d 44.40	479,908		479,908	7.46	1899, 1801.	C 47.32	53.11
Neita, La.....................................	December 23, 1904		c3.60	10,586		10,586	. 59	November $12-13,1894$.	e1.00	1.44

a Helena gauge.
 Above low water.

Simmesport gauge
Aeivile gauge
f Overbank aischarge not considered.

The area of the alluvial valley below Commerce, Mo., overflowed during the 18821884 floods was estimated at 29,740 square miles; during the flood of 1903 the overflowed area was but 6,820 square miles, the reduction being due to the extension and improvement of the levee system during intervening years.

The levee system, now still nearer completion, held successfully the floods of 1907 and 1908 over the entire stretch from Cairo to the mouth except at the mouths of large tributaries, where the resulting overflow is attributable to the floods of the tributaries and backwater from the main river. A crevasse, it may be remarked, occurred below New Orleans in 1907, and another in 1908 and the water also escaped through 5 mall gaps below New Orleans made by the Gulf storm of September, 1906, but the overflowed territories were of insignificant area.

The levee system by confining the flood waters of the river, and its auxiliary works of bank protection by reducing caving of banks exert a beneficial influence on the channel depths, which influence may be'expected to increase as the levee system approaches perfection.

The early maps of the Mississippi River, by Lieutenant Ross, 1765, by Captain Pitman, 1768, by Captain Young, 1821, and by General Collot, 1826, compared with maps of surveys of the Mississippi River Commission shows that the river has been materially shortened by cut-offs during the intervening century, largely compensated by erosion at other points. The "Navigator," a pilots' guide published at Pittsburg in the carly part of the last century, gives much information concerning the river of that period, and it is believed was the first authority to designate islands below Cairo by numbers.

The Mississippi River from St. Louis to the Gulf is typically a river with an unstable bed-that is, one of caving banks and shifting bottom. No river in the world, under improvement for purposes of navigation, equals it in the magnitude of its bed disturbances. The same conditions of unstable bed extend up its principal tributary, the Missouri, from St. Louis to the mouth of the Yellowstone; also, in a lesser degree, up the Ohio River to Louisyille; and in a still lesser degree up into the Upper Mississippi River a considerable distance above the mouth of the Missouri, but the differences between the conditions in the Missouri and the Upper Mississippi are so great that the unstable conditions of the latter are of comparatively small account.

The extent and variety of caving banks on the Mississippi are not realized, as a rule, even by members of the engineering profession, unless they have had the opportunity of inspecting the river during all its stages, high, mean, and low; and the subject is even less understood by the general public. On this account a brief description of such banks seems advisable.

Caving banks may very properly be classified as eroding banks, slumping banks, sinking banks, and sliding or slipping banks, and these four classes of banks are markedly different from each other in general appearance, origin, or both.

An eroding bank is one where the whole side of the river bank from the water surface downward to the foot of such bank on the river bottom, in the channelway next such bank, is gradually wearing away under the scour of the moving water. The typical eroding bank is one whose soil is not cohesive enough to withstand the attack of the ordinary currents natural to the mean and low water stages of the river. Erosion is not dependent upon high water and freshets, but is to be expected at any stage of water wherever the river current approaches the river bank at a decided angle with the general line of bank in straight reaches, and with the tangent to the curve of the bank in bends. Little erosion is to be expected whère the river current is parallel to a straight bank, even though it be close to such bank. The erosion increases with the current, and especially with the angle of its approach. Unless an eroding bank be specially protected, any increase of stage will usually increase the erosion: In bends the maximum erosion is either at the point of first impact of the current or else near that part of the bend about, or a little below, the center, where the current is strongest. In uniform bends and homogeneous soil the erosion often proceeds uniformly, quietly, and steadily throughout the entire length of the bend; but if a deep gouge suddenly occurs at any point, the full current then striking the lower side of the gouge will extend it rapidly downstream till its depth gradually decreases to nothing. In aggravated cases within the past twenty-five years the erosion has been known to cut the bank back a distance of 500 feet in three months at one place, 800 fcet in a single year at another, and 1.5 miles in sixteen years at a third place, all at points of severest attack, and in some cases to affect a continuous lehgth of as much as 8 miles of bank in a single bend. Existing Mississippi River Commission maps of the river valley indicate that similar erosion in past centuries has been responsible for river bends which have gradually cut as much as 5 or 6 miles into what was originally solid bank.
The erosion of banks on the Miseissippi is much more extensive than is realized by casual observation from passing boats. What the casual observer notices is mainly the
erosion of the visible bank, which rarely stands more than 20 to 40 feet high above the low-water line. The main and most serious erosion is that of the unseen submerged bank below the low-water line, reaching from that line down to the deepest part of the chamel, a distance which may easily be from 20 to 45 feet vertically between St. Louis and Cairo, 30 to 90 feet between Cairo and the mouth of the Red River, Louisiana, and from 50 to 140 feet between there and the Head of the Passes, giving a depth of erosion little imarined by the general public. The slope of the eroding bank below low-water line depends on the nature of soil and force of the current, and while commonly about 1 on 2 (1 foot vertically for every 2 feet horizontally) between St. Louis and the Gulf, may vary anywhere between 1 on 4 in soft soils with gentle currents to 1 on 1 in stiffer soil and stronger currents and even to a vertical or overhanging bank in tough soil or semirock.
As the erosion progresses the bank becomes undercut at the water surface until the upper portions break away and fall into the river. Eroding banks are therefore usually manifest to passengers on passing boats in the shape of low earth bluffs; in which case the freshness of its broken surface and sometimes the height of a bluff serve as a partial measure of the progress of the erosion; the volume of eroded material being, however, mainly dependent on the depth of erosion below the water surface.

Should the upper portions of the eroding bank, below the water surface, be protected from such erosion by tougher strata or a covering of any sort, then only the lower portions of the bank erode and the upper portions are undermined until they tumble down and in their broken condition are carried off by the current; after which the uniform erosion proceeds gradually as before.

During erosion a small part of the soil is actually dissolved by the water and remains permanently in solution; a large part (the lighter portion) is taken up as sediment in suspension; and the rest (the heavier portion) is rolled along the bed of the river until it gets away from the full force of the current, when it piles up on the river bed in the form of a bar. Wherever the current slackens, the heavier sediment is deposited to assist in the bar formation or to build up the river banks on the noneroding side of the river.

As the river rises in freshet the total erosion increases somewhat, the increase being due to the increased area exposed directly to the action of the water as well as to the increased current; but, since the freshets and high waters are limited in duration while the low-water erosion continues steadily throughout the year, it is the low-water erosion which is most to be feared and which needs the most attention. Wherever the erosion below the low-water line can be stopped, the erosion above the low-water line can usually be easily handled.

In some cases where the river elope is unusually steep or the river width unusually contracted, the erosion may extend over the river bed itself and sometimes even from bank to bank, especially if the bed is of less resistant material than the banks. In such cases the erosion occurs sometimes only at high water, filling up again at low water; sometimes at low water, filling up at high water; and sometimes at one or the other stage without ever refilling to its original height.

The greatest danger to the regimen of a navigable river, due to eroding banks, is when such a bank in one bend approaches another eroding bank on another bend across an intervening neck of land. In such cases the junction of the two eroding banks produces a cut-off of the river by which the end of the intervening neck of land is converted into an island; after which the river adopts the cut-off as a new channel, the river length is shortened very appreciably, sometimes many miles, the river currente are greatly increased, extensive new caving is started, extensive new deposits and bars are created, and the new river channel is rendered especially unstable and eccentric for many years until the former fairly permanent conditions of river slope (fall and length), river breadth, and channel direction and depths can again be reestablished. Similar danger, usually however of lesser magnitude, exists where the erosion undermines and cuts through a levee behind which there exists a large area of low ground or a waterway affording a new short drainage route to the main river below.

The enormous injury to the regimen of the Mississippi River, and to its navigation interests, which arises from a cut-off across the neck of a point of land between two bends, is not well understood nor realized by the mass of the United States public. One specially good past illustration of such effects is to be found in the case of the Commerce Cut-off and Bordeau Chute Cut-off (at points 270 and 280 miles below Cairo), as shown in considerable detail on sheet No. 9, Mississippi River Commission maps, scale 1 inch to 1 mile, published in 1890, and revised in 1906. The Commerce Cut-off, which occurred in 1874, across the neck of Linwood Point, left Council Bend at one side of the resulting river channel, shortened the river at this point about 10 miles, and consequently greatly increased the river currents in its imme-
diate neighborhood both above and below; and these increased currents gradually led up to excessive caving of the river banks in the adjoining bends and excessive scouring of the river bottom in near-by bends and chutes. Following the Commerce Cut-olt (at mile 270), and as a direct result therefrom, Ashley Point on the right bank (at mile 275) was rapidly eroded; the full force of the water was then thrown into the bend near Mhoons Landing on the left bank (at mile 276), and rapidly eroded Bordeau Point; the overflow across Bordeau Point and the increased current in Bordeau Chute (at about mile 281) developed this chute into a second cut-off and left Walnut Bend outside the main river, thereby shortening the river at this point an additional 5 or 6 miles, the violence of the increased current being then such as to fling the river with full force into the right bank near Rogers Landing (at about mile 281), cutting back the bank for a distance of over a mile and eroding an area of nearly 2,000 acres to an average depth of over 60 feet; the river, after leaving Wainut Bend, was then flung back into the left bank above Fox Island (at about mile 284), after which Hardins Point on the right bank (at about mile 288) was considerably eroded and similar cavings and erosions, though to a lesser extent, folluwed at Harbarts Landing on the left bank (at about mile 292), and at Shoo Fly bar on the right bank (at about mile 294). All these caving banks in the bends and all these erosions of points are clearly a result of the Commerce Cut-off of 1874, followed by the Bordeau Chute Cut-off of a little later date. Omitting any movement of earth and river channel which occurred before 1884, and confining discussion to the changes shown on the Mississippi River Commission charts (sheet No. 9), between 1884 and 1906, a peripd of twenty-one years, it is found that these cut-offs caused the desiruction of over 6,000 acres or nearly 10 square miles of property, and the erosion of a total volume of over $600,000,000$ cubic yards of earth, equivalent to a pile of earth 1 mile square and nearly 600 feet high, all of which material was washed into the newly forming river channel and deposited in bars farther downstream, from which much has already been dredged, and more will have to be redredged in later yeara, in order to maintain a channel of navigable depth through this section of the river. The destruction of property at this point was, during these twenty-one years, in the neighborhood of over $\$ 1,000,000$, and the extra work thrown upon the United States in preserving and maintaining the river channel during the past years and during the next few coming years may afely be estimated at over $\$ 2,000,000$, and may easily exceed $\$ 3,000,000$. At the present time the advance of the caving bank in Walnut Bend is still so rapid, and has reached so far into Lee County, that even the new levees are in danger of being cut through, and upecial bank revetment was necessarily begun during the past year and will probably require future extension. All of this trouble has resulted primarily from the single cut-off at Commerce, followed by the secondary cut-off at Bordeau Chute. The derangement of the regimen of the river was seriously felt over at least 25 miles and the difficulties of river navigation were seriously increased during a period of at least twenty-five years. It is quite possible that an expenditure of $\$ 1,000,000$ prior to 1874 would have saved the entire situation, and would have not only saved the loss of property and all the cost of subsequent improvement work, but would have left the river channel over these 25 miles in far better condition for navigation than it is at present.

In addition to the damage to the regimen of the river that may be caused by cut-offs, there is also a further serious financial damage possible wherever (as near Greenville, Mise.) the cut-off might leave a town or city several miles away from the new river channel, requiring the establishment of new railway connections and terminals and possibly the abandonment of the old city and the development of a new one.
The slumping bank is one whose origin is almost entirely due to freshets or ordinary high waters. Such a bank, usually steep and perhape vertical on the side next to the river, becomes dry and perhaps cracked by evaporation during a continued lowwater season, becomes thoroughly soaked and filled with water during freshets and other high waters, and then, as the water falls and the support given it temporarily by the water pressure is taken away, its front breaks off from the dryer or tougher portions of the bank behind and it slides down into the low-water bed of the river. The material from the slumping bank reaches the flowing water in such broken and soft condition that it is easily picked up and carried away by the river currents. As the slumping bank is composed almost always of material from above low water, it rarely changes the condition of the river bank below low-water level, except so far as it adds débris thereto. The slumping bank merely throws into the river all at once materials which would otherwise go in gradually at a later date by ordinary erosion. These slumping banks are often the ones which attract the greatest attention from the steamboat traveler. Yet they are not in themselves the most serious caving banks of a river, as the slumping process is merely a natural grading of the river bank above its low-water lines. After a bank has once alumped and assumed its natural slope above
such low-water lines, it will usually remain undisturbed indefinitely until the bank below it is so cut away that when the new upper bank becomes eaturated it in its turn is liable to fall from want of support.

The sinking bank is one where a large mass of earth material rests upon a layer of very soft material, or of quicksand, which may be squeezed out by the pressure of the superincumbent earth or may be washed out by the river currents or by flowing water passing through the soft layer under considerable hydrostatic head, from any pool, artificial or natural, in rear of the river bank. In such case the entire bank may settle uniformly, or nearly so, for any depth from a few inches to many feet, its top surface remaining practically horizontal, trees and structures resting on such surface still retaining their vertical position. On the Lower Mississippi River sinking banks have been found where the drop has been fully 20 feet, over a length of nearly a mile up and down the river, and extending over a width of several hundred feet from the water's edge. In süch cases the stratum of quicksand or other soft material, washed out or forced out, is usually many feet below the ordinary water surface of the river, and such sinking banks are therefore liable to be developed at any stage of water from extreme low up to extreme high, being dependent mainly upon heavy rainfall and poor run-off behind the bank, except in a few cases where the hydrostatic head is due to pondage from recent river overflows. The sinking bank, as a rule, is of no serious injury or danger to navigation, except so far as its soft strata may be forced out into the riyer, or so far as the bank itself, by being broken up, is thereby rendered more easily eroded by the river currents.
The sliding or slipping bank is one where a large mass of material, mainly from above high-water level, slides down the bank into the river. The slide is usually due to the fact that material of considerable weight rests upon a smooth inclined surface, either of rock or other slippery material, such as clay or quicksand, and under influence of heavy rainfall by which the earth or rock is eaturated or covered with water, the earth mase slides as a unit until its foot reaches some solid point of support farther down the bank, usually the base of the bank in the river bed. In such cases trees or other objects standing upon the original surface of the sliding mass may retain their upright position during the sliding motion; or the mass may break into a series of steps, the trees on the surface of each step still remaining vertical. Such slides may be found on the upper Missouri River, covering in some cases several thousand feet of length, and extending back from the high-water line 600 to 1,000 feet, and they may be occasionally found on the Mississippi River below St. Louis, although much less frequently and covering much smaller areas than on the Missouri River. Slides are usually entirely independent of freshete, and dependent almost entirely upon heavy rainfall and poor run-off back of the river bank. In some cases on the lower Mississippi the slipping surface may, however, be of quicksand, made slippery by the water flow from behind the river bank coming from a temporary pond, due to preceding overflows of the river. Such slipe or slides are apt to occur at any stage of the water between high and low. The sliding bank is of no injury to navigation or to the river conditions until it reaches below the water level, in which case it may serve to form a short artificial dike, causing the river channel to shift, or it may offer to the flowing water a large amount of looee material in iavorable condition for rapid erosion.
The shifting bottom oi the Mississippi attracts attention mainly by the rise and fall of its river bars. An erosion of the bed or a change of depth of the river in deep pools between bars, is rarely noticed by anyone but the surveyor, as such change seldom directly affects navigation. But the river bars, especially those acroes the main channel, are constantly in evidence as they directly limit the draft of passing boats.
River bars on the Mississippi below St. Louis are mainly deposits of material coming originally from eroding banfe; although augmented somewhat by material eroded originally from the river bed itself in contracted portions or specially steep portions of the river, where at cortain stages the current exceeds that which the river bed can resist. River hars are usually to be expected below each caving bank at the point where the cusvature disappears, or at any point of a straight reach where the river is unusually broad, the bar being due generally to the slackening of the current at such point and to the consequent local deposit of rolling or suspended matter. A river bar rarely maintains a location square across the river, because in such case it is exposed to the full direct attack of the water flow which then usually cuts a fairly deep channel through it. As a rule every bar is soon forced into a position diagonally acroes the river, such that its length may be two or three times the breadth of the river, and such that the water flows sideways across it from the up-river boat channel on one side to the down-river boat channel on the other side, making the crossing specially diff. cult for large boats and tows; moreover, in such a case the length of the bar is usually so great that a very small depth thereon is sufficient to pase all the water flow of the river without increasing the water velocity to the couring point and the available
boat draft is correspondingly reduced. These oblique bars, which exist at nearly every channel crossing in straight reaches and sometimes at the head and foot of bends and which determine the available depth of the river for boat navigation, are bars which usually build üp rapidly and cut away slowly. A bar once formed does not usually remain stationary, but often moves gradually downstream, its upstream material being washed down by the current and redeposited on its downstream side, its height diminishing as it moves along and its old location in many cases being later occupied by a new bar as troublesome as itself originally. Such traveling bars, as actually found in the lower river and measured, have shown heights as great as 22 feet, distance between crests as great as 1,000 feet, and daily travel downstream as great as 40 feet, and have been found in depths of water as great as 90 feet.

Moreover, between St. Louis and Cairo the amount of material rolling along the bottom is so great that where the bottom is scoured out at one stage of river (even if to 20 feet depth, as sometimes near Grand Tower and Thebes) it may be filled up again regularly at the next opposing stage, and where reaches of two or more miles length show continuous deep pools along the best channel in one year these pools may be found converted into shoals and the converse after an interval of a few years. (See profile accompanying this report as Appendix No. 11.)

In the Mississippi River, the bed constantly changing as shown above, reaches a fairly stable condition only in dry seasons and at the end of a long low-water season. At such times the erosion of the banks, though still active, is at a minimum, and the river bars, though high along most of their length, have usually been cut through at some one place with a channel way of fair depth.

As the water rises in the river the first action is a slight additional scour in the deepwater channel acroes the bar, but the extra depth so gained is usually more than balanced by the extra amount of rolling material brought down from the eroding banks immediately upstream. As the river rises still farther the increased current picks up or rolls from the river bed a great deal of the loosest material of the bars, leveling them down somewhat and largely filling up the former deep channel across them in much the same way as a strong wind will blow loose drifting snow into and fill up a recently excavated pathway through a snowbank. As the river rises still farther to a medium stage it gathers up in this way an enormous amount of rolling material and sediment deposited during the low-water stage, and it becomes full of shifting material ready to be deposited in new places at the first slackening of the current. Should the river stop rising at this time and commence to fall, the deposit is liable to be so rapid as to force the river currents into new channels and to leave the available depth over the new bars hardly, if at all, greater than was the former depth in the well-formed channel at extreme low water. Such changes in the river bed are typically shown every year on the upper Missouri River where it passes through North and South Dakota, and where at extreme low stages there is a good continuous channel of about 4.5 feet over the bars; but where after the river has risen about 10 feet and then fallen to a stage of 5 feet above low water the best channel across the numerous river bars instead of being the sum of 4.5 feet original depth increased by the 5 -foot stage, making 9.5 feet in all, is actually found to be only about 2.5 feet in all, showing a rise of 7.5 feet in the bar crossing, which therefore actually stands 2.5 feet higher than the original surface of the water at its extreme low-water stage. In 1907-8 on the lower Mississippi River between Memphis and Greenville there were five bars which at river stages of between 7 and 12 feet above low water showed for a while in the best boat channel a depth of only 6.5 to 9 feet, and even as far down the river as Natchez and the mouth of Red River, where the river is over 3,000 feet wide between banks and where at least 7 feet channel depth exists at low water, there are other bars which rise at least annually, and sometimes at nearly every sharp rise and fall of the river, so as to show at 7 to 17.5 font stages sometimes a best depth in the boat channel of only from 6.5 to 13 feet, proving the rise of the bar surface at the crossing at these places and stages to have been nearly as much as the rise of the water surface, and in at least one case 0.5 foot more, and thereby making evident but small gains and even losses in navigable depth although accompanied by an incraase of water flow varying from more than 80,000 to 250,000 cubic feet per second. Repeated measurements (see graphical plot hereto appended) on the bar crossings of the Mississippi between St. Louis and Cairo show that up to a stage of about $2 n$ feet above low water the available depth across the new bar is increased on an average only about one-half foot for every font in the rise of water. (Between Cairo and Red River similar measurements show even leas increase in navigable depth per foot of rise of water surface.) Ata 22 -font stage (St. Lnuisgauge) the water flow above Cairo amounts to about 320,000 cubic feet per second and the natural depth over some bars is about 1.4 feet. As the water flow at ordinary low water (4 -foot stage) amounts to about. 65,000 cubic feet per ser.ond and gives ordinarily about 6 feet on the bars, it followe that a 14 -foot depth on thees bara, obtained by

Water flow alone, unaided by dredging or other methods of improvement, arrives only after the low-water flow has been increased by about 255,000 cubic feet per second, or an average of about 32,000 cubic feet per second for each foot increase in controlling depth. Although the water flow for each foot of gain in depth may be locally less in the contracted portions of the river, yet it must necessarily be much greater in all broad shallow portions of the river.
Similar conditions of small increase of navigable depth in spite of great rise of river surface were noticed long ago on European rivers, for example, on the Dnieper (second longest river in Europe), where the natural navigable depth at low water was 0.80 meter, the corresponding depth at high stage (7.25 meters) was found to be only 2.60 meters, showing a gain in navigable depth only about one-quarter the rise of the water surface. (See Jammund, in Hague International Congress of Navigation, reports of 1894.)

Should the water continue rising to the top of the natural banks, that is, to 25 or 30 feet above low water, the upper portion of the dry bank becomes water-soaked and the bank erosion becomes especially active. As the water recedes from a bank-full stage, after having been against the bank for many days, the upper portions of the water-soaked bank slump into the river as the water recedes, adding considerably to the amount of earth readily washing away from the eroding banks. It is at this stage of the river, while the water is commencing to fall and the current to slacken, that the suspended material is deposited most rapidly, and the river bars are enormously augmented and are changed in location. As the water still continues to fall, the total deposit increases gradually, new banke are built up rapidly on the sides of the river bed away from the main current, and the bars scour off slowly if at all; so that at a stage of from 8 to 5 feet above low water the channels over the bars are not much better than they were originally at low water. As the water still continues to fall to extreme low water, the river currents begin to select a single passage across the newly developed bars, and to deepen this single passageway down to its former good condition.

It is at this stage of river with falling water that the aid of the dredges becomes most useful in assisting the river current to select a proper bar crossing and to hasten the development in depth. Without the aid of dredges the ruling depth on the bars from St. Louis to Cairo would hardly exceed 5 feet, perhaps not more than 4 feet, as in former days; but with the assistance of dredges, an 8 -foot depth has been maintained for many years throughout the navigation season, with an occasional interruption of a few hours, or a day or two, while a dredge was being moved to a newly formed bar at some distance from the last station of the dredge; such short, temporary delay as a rule not having actually interfered with the use of the river by existing beats.

Above Cairo during the winter season the above river conditions are considerably affected by floating ice, and especially by ice dams forming across the river, pooling the water above the ice dam, and draining the river below the dam to a level lower than ordinary low water.

The river conditions below Cairo differ from thooe above Cairo mainly in magnitude; in the lower river the eroding banks rising higher above and extending deeper below low water, and furnishing more local material for new bar and new bank formstions; these bars and banks being larger; the volume of water in motion being greater; the river bends and stretches being longer; the shifting of bars and the recession of banks under erosion being more rapid and violent when once started; the bars carrying a little more water over them at low stages and being spaced at greater distances, but being longer measured in the direction of the river current, and being much broader; the rise of the bars during rising water and during the first stage of falling water, and the cutting away of bars during the middle and last stages of falling water, following practically the same rules as in the upper river.

The above river conditions are not peculiar to the Miseissippi River alone, but are general for almost all other rivers of unstable beds. The distinguishing feature of the Mississippi River is merely the magnitude of these conditions.
While the limit of river depth available to navigation in the Mississippi River below St. Louis is evidently due to the height of the river bars at channel crossings, it is evident from the above that such height of bars is itself primarily due to the material coming from caving banks, and especially from the eroding banks, and that it is the erosion which goes on all the time out of sight below the low-water line to depths of from 30 to 70 feet which has always been the main cause of the final deposit in the river of the enormous quantities of earth that fill up its bed, that lead to the formation of its bars, and that destroy its otherwise good general regimen. The extent of such erosion was hardly thoroughly understood and realized even by engineers until the United States Engineer Department and the Mississippi River Commission, about 1879, began a long series of measurements of the auspended sediment of the Mimouri
and Mississippi rivers, followed in 1891 by other measurements of caving banks. An examination of all caving banks between Donaldsonville and Cairo, a distance of about 885 miles, measured along the midstream, made in 1892, under special orders of the commission (see p. 3110, Annual Report, Chief of Engineers, 1892) gave results as follows:

Average annual amount of caving on both banks, Mississippi River, Cairo to Donaldsonville.

Locality.	Area.	Height from river bottom to top of bank.
Cairo to Memphis.	Square yards. $6,112,000$	Feet. 53
Memphis to Helena.	2, 178,000	47
Helena to Arkansas City..	4,137,000	62
Arkansas city to Vicksburg.	12,024, 000	67
Vicksburg to Natchez.	9,371,000	76
Natchez to Rod River.......	3,106, 000	73
Red River to Donaldsonville.	1,263,000	84
Total.......	38,991, 000	-66

a Annual average, 66 feet.
Annual averages per mile, 43,810 square yards $\approx 9 \frac{1}{2}$ acres, $1,003,579$ cubic yards.
The text of that report gives so much information that it is quoted in full, as follows:
Report of Assistant Engineer J.A. Ockerson on caving banks from Cairo to Donaldsonville, with tabulated results, and plat.a

Ofica Mississippi River Comisision, St. Louis, Mo., May 31, 1892.
Captain: I have the honor to submit the following tabulated results derived from a study of the recent caving-bank survey of the Mississippi River from Cairo to Donaldsonville, and a comparison of the same with previous surveys.
In order to make a ready and accurate comparison the shore line of the survey of November, 1891, to March, 1892, was platted on the detail charts of the old surveys, mostly made from 1879 to 1883 , and the area between the shore linee was carefully measured with a planimeter. This gave the area of caving.

The data for the depth of caving were derived from the old detail charts, which show the height of bank above datum, elevation of water surface, and depth of water. From this the height of the bank above the bed was easily deduced. Where the river had maintained its width and the channel lay close to the caving bank the height of the bank deduced was measured from the deepest part of the bed to the top of the bank. Where the channel lay some distance from the bank and the caving had widened the stream without shifting the channel materially, then the average depths between the thalweg and the depth near shore were taken as the depths of the bed and the heights of bank deduced accordingly.
The dates of the surveys of each section considered are given in the table and from them the average amount of erosion per annum was derived.
An inspection of the maps shows that caving rarely occurs on both banks of the river at the same time in the same locality. It shifte from bank to bank, and as it ceases on one side it begins on the other, so that the caving areas often slightly overlap each other. The total length of caving banks from Cairo to Donaldsonville, a midstresm distance of 885 miles, is 921 miles. About 15 miles of this pertains to islands.

With a very few exceptions there is more or less caving at all of the bends, but the amount of caving does not seem to bear any definite relation to the curvature. The maximum caving occurs in comparatively straight reaches, such as Leota, Raleigh, Milliken, Carlyle, Oak Bend, etc., while the extraordinary bends above Greenville show caving far below the maximum. Darnell Point, 80 miles from Cairo, is anexample of excemoive caving in a long, straight reach of river.

[^6]The annual erosion per mile of river reaches its maximum in the vicinity of Raleigh. In the vicinity of Oak Bend, below Vicksburg, it reaches nearly the same amount. After passing Natchez the erosion becomes rapidly less and from the Red River down is quite small in amount.
The character of vegetation on the banks has no apparent influence on the extent of the erosion. In a caving bend which is partly cultivated and partly timbered the shore-line curve is smooth and regular, showing that they are eroded with equal facility.
Of 37 localities between Cairo and Vicksburg, where depths of less than 10 feet were reported in 1891, 21 were found to be at the foot of or immediately below rapidly caving banks.
The amount of erosion given in these tables is doubtless considerably less than the total movement. In some localities where rapid caving was going on at the time when the first surveys were made now we find a heavy fill.
Opposite Commerce, Miss., is a case of that kind, where a caving bank in 1879 has filled about 2,000 in width and about 5 miles long, a part of which is now cultivated.

It is not improbable that there are places where the process of scour and fill has been repeated several times during the intervals between the surveys. The total movement by erosion would probably exceed the amount given in tables by about 15 per cent.
The average annual amount of erosion, as derived from the tabulated results, is found to be about 92 acres in area by 66 feet deep for each mile of river, or a total for the river between Cairo and Donaldsonville of 10 square miles by 86 feet in depth annually.
Erosion does not necessarily mean a widening of the bed of the river. The eroded bank is generally followed by an equivalent fill on the opposite bank, and in some localities of excessive erosion the bed has actually grown narrower.

The composition of the banks is not given in sufficient detail to determine the relation, if any, between character of banks and erosion. In the region of excessive caving the banks are largely composed of sand. In some localities where the banks are described as being clay the erosion has been but slight.

Respectfully submitted.

J. A. Ookerson, Assistant Engineer.

Capt. Oarl F. Palfrey,
 Corps of Enginects, U. S. A., Secretary.

New estimates of the area and volume of caving banks computed by the $130 a r d$ during the past year from the Commission maps of the river between Cairo and Arkansas River, about 400 miles, show for the period 1891-92 to 1902-1904 an annual volume of caving approximating that of the eariler period, indicating that from Cairo to the Arkansas River, a stretch where little revetment work has been done, the rate of caving has been practically unchanged since 1876-1882.
Measurements of the length of caving banks from Cairo all the way to the mouth of Red River made by this Board show a total length of 749 miles of caving along a river channel of about 790 miles. Only banks actually caving were measured.

Similar measurements were made during the present year (1908-9) as to the extent of caving banks on the river between Cairo and St. Louis, by which it was shown that the volume of earth falling into the river from that reach averaged annually $64,000,000$ cubic yards from 1879-1889; nearly 48,000,000 cubic yards from 1889-1899; and about $49,500,000$ cubic yards from 1899-1907, the diminution of such caving in the last eighteen years evidenced thereby being considered due to the extensive revetmente that were built along this reach between 1881 and 1905.

Experiments conducted in 1879 under the direction of the St. Louis U. S. Engineer Department at the mouth of the Missouri River to determine the amount of sediment coming into the Mississippi River from the Miseouri above St. Louis (p. 1653, Annual Report Chief of Engineers, 1881, and p. 3090, Annual Report Chief of Enyineers, 1887) showed that the floating sediment alone, resulting from caving banks in the Missouri itself, amounted to $187,000,000$ cubic yards during nine months of the year. As these observations took no account of the heavier matter in the foot of depth nearest the bottom, nor of the solid material (such as sand or gravel) driven along the actual bed of the river by its currents, Colonel Suter considered it safe to assume that fully $400,000,000$ cubic yards of material then came out of the Missouri River in twelve months. It is probable that at least the same amount of material is still coming out of the Missouri River at the present time. Other observations by the U. S. Engineer Department and the Mississippi River Commission indicate an outflow of sediment and rolling material of about $36,000,000$ cubic yards per year from the Ohio River, about $5,000,000$ cubic yarde per year from the Arkansas River, and about $6,000,000$ cubic yards per year from the Red River.

By the above showing, the amount of material originating from caving banks which the Miseissippi River, between St. Louis and permanently deep water in the river
below Donaldsonville, must carry along and diapose of every year, amounts to more than one and one-fourth billion cubic yards. This is over twenty times as much as is carried annually by the Danube, Dnieper, Volga, Rhone, Nile, Hooghly or La Plata, and over fifty times as much as by the Loire and Durance, although these foreign rivers are considered specially difficult of improvement because of their silt and other water-borne material. This one and a quarter billion cubic yards of material coming every year into the river from caving banks along the Mississippi and lower Missouri rivers is equivalent to a volume 1 mile square and almost 1,200 feet high, and this amount must necessarily be picked up by the water currents of the Mississippi below the mouth of the Missouri and carried dura the river until it is deposited by some freshet at other places above low-water level, or reaches the Gulf of Mexico.

Until the caving of banks can be stopped in the Mississippi River below St. Louis, either entirely or to a large extent, it is practically hopeless to expect any improvement of low-water conditions in the open river. The bank erosions must continually bring about new conditions of river bends and river channels, and the loosened material as it goes down the river must necessarily continue to form obstructing bars, shifting with every change of water conditions and requiring constant removal. As above explained, sliding banks and sinking banks are mainly independent of river conditions, and the slumping banks occur only intermittently at high-water stages; but the eroding banks, especially below low water, are constantly in action. Under such circumstances any increase in water flow near low-water stages is liable to do-as much damage by extra erosion of banks as it is to do good by adding increased channel depth. The only known remedy for eroding banke is their protection both below and above low water by some form of continuous revetment. The experience of the government engineers during many past years has shown that protection of banks by mattress below low water and by paving above low water can be secured anywhere along the Missouri and the Mississippi rivers.

In the ábove description of caving banks and shifting bottom of the Mississippi River little has been said of the river below the mouth of Red River, since in this section of the river the boat channel has always had several hundred feet of width over a depth far in excess of that at the river mouth, and no work of channel improvement has been necessary except the removal of occasional snags and the protection of caving banks along city wharves and landings and at a few places where an undermining of the levee might cause exceptional danger to the river from crevasses. For a long term of years all ocean steamers able to go from the Gulf through the Passes up the Mississippi River to New Orleans have been able to go fully 175 miles farther up the river with perfect ease and safety to and past the cities or towns of Donaldsonville, Plaquemine, Baton Rouge, and Bayou Sara.

Appendix No. 2.

MEMORANDUM OF PROJECTS FOR IMPROVEMENT OF THE MISSISBIPPI RIVER FROM ST LOUIS, MO., TO THE GULF:

[Prepared by Assistant Engineer Kivas Tully, under direction of the recorder.]

The first general projects for the river from the mouth of the Missouxi River to New Orleans were submitted in connection with an examination of transportation routes. to the sea under act of Congress approved June 23, 1874. That portion of the river between the mouth of the Missouri River and the Ohio was included in the project of Col. J. H. Simpson, Corps of Engineers, and from Cairo to New Orleans in that of Maj. C. R. Suter, Corps of Engineers, members of the Board appointed under that act. In the absence of reliable data at that time these projects were stated to be merely tentative.
Under authority of act of Congrees of June 28, 1879, creating the Mississippi River Commission, and subsequent laws relating to the subject, a detailed survey of the Mississippi River from the Head of Passes to its headwaters has been completed; also extensive hydrometrical and other observations have been made and valuable data collected, all of which have been available for the purposes of the present Board.
The present and prat projects for the improvement of the Mississippi River below the mouth of the Missouri will be referred to separately in the following order:
(1) Mouth of the Missouri River to the Ohio River:
(2) Mouth of the Ohio River to the Head of Passes.
(3) The Passes.
(1) Mississippi River between the Missouri and Ohio rivers.-In 1836 Congress appropriated $\$ 15,000$ for improving St. Louis harbor. As this was insufficient for the pur-

```
CAVINGBANKS
```


Horizontal - 1 inch $=100$ Miles
Vertical - $1 "=1,000,000$ Cu.Yeis. (Annuahhy)
2,000,000
Cu.Yds.
,000,000 Cu.Yas.

House Doc. No. 50 ; 6ist Cong., Ist Sess.
pose, $\$ 35,000$ additional was appropriated in 1837. These funds were applied to a system of works projected by Lieut. R. F. Lee, Corps of Engineers, which, by the assistance of the city of St. Louis, resulted in closing the chate east of Bloody Island. The next appropriation for St. Louis was $\$ 25,000$, June 11,1844 , for removing obstructions to navigation in that harbor.
Improvement work was continued at St. Louis in 1872 under the appropriation of that year for the section of the river from mouth of Missouri River to the mouth of the Maramec River; the appropriation was made in accordance with recommendations submitted by a board of army engineers April 13, 1872. This practically began the work on the Mississippi River between the mouth of the Missouri River and Cairo, and work was continued for several years as appropriations were made by Congress.
Before work was begun this section of the river had a channel depth of only $3 \frac{1}{2}$ to 4 feet at low water. These first works consisted of dikes and dams of brush and stone, erected with a view to confining the low-water volume to a single channel, and of revelments to hold and preserve the banks where it was deemed necessary. This improvement work was in progress in 1875, and was along the lines of the project for this portion of the river submitted by Col. J. H. Simpson, Corps of Engineers, January 20,1875 , in connection with the examination of transportation routes to the sea.
The project followed up to the present time, with some later modifications relative to temporary expedients, has been that adopted in 1881, approved by letter of the Chief of Engineers dated March 31, 1881.
This project contemplated the confinement of the flow of the river to a single channel having an approximate width of 2,500 feet at bank-full stage (the natural width in many cases being a mile or more at mean high water), this result to be sought by closing sloughs and secondary channels and by building out new banks where the natural width is excessive, using for this purpose permeable dikes or hurdles of piling that collect and hold the solid matter that is carried in suspension or rolled on the bottom of the river; the banks, both new and old, to be revetted or otherwise protected where necessary to secure permanency.
The object of the improvement is to obtain ultimately a minimum depth, at standard low water, a of 6 feet from the mouth of the Missouri to St. Louis and of 8 feet from St. Louis to Cairo.
The act of Congress approved June 3, 1896, modified the project of 1881 by making the appropriation for this section of the river, and any balance of former appropriations, or so much thereof as might be necessary, available for the construction and operation of dredge boal3, portable jetties, and other suitable appliances, with the view of ultimately obtaining and maintaining a navigable channel from St. Louis to Cairo.
The next river and harbor act, June 13, 1902, made appropriation for carrying on the systematic improvement of this section of the river. It also authorized the Chief of Engineers to operate one or more of the dredges then under control of the Mississippi River Commission, operating expenses to be paid from the appropriation for this section of the river. This authority was not exercised, however.
A board of enzineers constituted under the act of Congress approved June 13, 1902, in its report dated November 12, 1903, eatimated the cost of the work remaining to be done at $\$ 20,000,000$, with annual expense of $\$ 400,000$ for maintenance, but it was hoped that the cost might be materially reduced by a more extensive use of dredging, which was made one of its recommendations.
The river and harbor act of March 3, 1905, made a radical departure from the project of 1881 as previously outlined, confining the work of improvement to dredging and temporary expedients and providing for the construction of two additional hydraulic dredges of the most approved type.
By joint resolution of Congress approved June 29, 1906, the Secretary of War was authorized, in his discretion, to expend any portion of the balance then remaining to the credit of this improvement for the repair or completion of improvements under way, or for the construction of other works in accordance with general plans already made or approved.
The river and harbor act of March 2, 1907, reaffirmed dependence upon dredging as the principal means of improvement, and, as subsidiary thereto, provided also for the maintenance and repair of existing works of permanent improvement, and finally for the construction of similar works with any portion of the appropriation not necessary for the accomplishment of the purposes first named. The annual appropriation was reduced to about 40 per cent of that hitherto made, continuing contracts to the amount of $\$ 750,000$ were authorized, and the expenditure in one year limited to about $\$ 250,000$.

$$
a \text { Standard low water reads } 4 \text { feet on the St. Louis gauge. }
$$

A partial improvement of the entire extent of the river from St. Louis to Cairo has been accomplished under the foregoing projects and navigable channel depths have been materially increased.

The total amount appropriated by Congress for the Mississippi River from mouth of the Missouri River to Cairo is approximately $\$ 12,778,579.92$.
(2) Mouth of Ohio River to Head of Passes. -The commission of engineers appointed by act of Congress, approved June 22, 1874, to report upon the best system for the permanent reclamation of the alluvial basin of the Mississippi River from inundation submitted a report in January, 1875, recommending: First, keeping open the Atchafalaya and La Fourche and possibly reopening the Plaquemine; second, a general levee system extending from the head of the alluvial region to the Gulf, including the valleys of the tributary streame. The main lines to be of sufficient height and strength to restrain the floods, and where reasonable security against caving requires large areas of front lands to be thrown out, protection against ordinary high waters to be given by low front levees closely following the bends. This board also recommended that an elaborate survey be made as soon as possible by the General Government to furnish data for carrying out the plans recommended. The board also suggested that a central governing body, composed of representatives from the several local levee boards, be organized in order to secure uniformity of action throughout the different districts.

Extensive levees had been built prior to that time by private or local and state authorities; these levees, however, were originally of insufficient height and cross section, and had been built without regard to a uniform grade line.

The report of this board is particularly mentioned here as the building of a complete levee system is now regarded as necessary to give ease and safety to navigation as well as to fulfill the purpose for which the board recommended it. The subject will be again referred to further on.

Maj. C: R. Suter, Corps of Engineers, in his report dated February 18, 1875, in connection with navigation routes to the sea, before referred to, suggested that a thorough survey be made of the river from Cairo to the mouth of Red River and states further: "To increase the low-water depths from $4 \frac{1}{2}$ feet to 6 feet is, in my opinion, about as much as should for the present be attempted. This, in all ordinary seasons, will probably guarantee 8 feet, except for, probably, at the most, a few days in each year."

The report recommended the appropriation of $\$ 200,000$ for improvement work for the following season, and of $\$ 25,000$ for a survey from Cairo to Reeves bar, 250 miles below.

A board of engineer officers was appointed July 8, 1878, to consider the improvement of the low-water navigation of the Mississippi River below Cairo, and submitted a report on January 25, 1879, containing the following recommendations:
"First. That an appropriation of $\$ 600,000$ be asked for the improvement of Plum Point reach.
"Second. That the improvement be effected by narrowing the shoal and wide portions of the low-water river to about 3,500 feet and by protecting caving banks where necessary. This narrowing and limiting of the low water to be effected if possible by constructions of much lighter and cheaper character than those heretofore used if, after thorough experiment, such shall be found efficient; if not, then in last resort, by ordinary dikes of brush and fascines, stone and gravel, used in such works in this country and Europe."

By act of Congress approved June 28, 1879, The Missiseippi River Commission was created and certain duties asaigned to it. Among these were to direct and complete such surveys of the Mississippi River between the Head of Passes, near its mouth, and its headwaters as were then in progress. To take into consideration and mature such plan or plans as will permanently locate and deepen the channel and protect the banks of the Misaissippi River; improve and give safety and ease to the navigation thereof; prevent destructive floods, and promote and facilitate commerce and the postal service.

On February 17, 1880, the Mississippi River Commission made a preliminary report in which various plans of improvement were discussed and the plan of the Low Water Board in the first and second recommendations, as given above, was substantially approved, recommending, however, a low water width of 3,000 feet.

The project recommended by the Mississippi River Commission for the systematic improvement of the river from Cairo to the Head of Passes was practically adopted by act of Congzess, approved March 3, 1881. This contemplated ultimately obtaining - channel depth of at least 10 feet at low water below Cairo.

Under this project work has been done principally in two reaches known as Plum Point reach, 147 to 186 miles below Cairo, and Lake Providence reach, 517 to 552 miles below Cairo. These reaches were selected purposely as they included some of the places of most difficult low-water navigation on the river at that time.

The methods of improvement employed under this project consisted mainly of contraction works and bank revetment.
In Plum Point reach the works comprise about 67,400 feet of bank revetment, the closure or partial closure of chutes by brush and stone dams and pile dikes, and a levee along the left bank to confine the flood waters more nearly to the low-water channel. As a result of all these works the banks have remained practically fixed and the navigable depth at low water has been materially increased since the works approached completion. Some revetment work is now being done at Osceola, Ark., and at Fletchers Bend above Wolverton Eddy where some abatis dike work is also in process of construction.

In Lake Providence reach the works consisted mainly of pile dikes for the contraction of the width and revetment of banks to prevent erosion. A considerable deepening of shallow crossings has resulted from this work, though most of the structures, which were comparatively wealt, have been destroyed. The cost of revetment work has been gradually increased ps more substantial methods of construction have been devised in order to secure beiter results.
At present, work of this kind is mainly confined to maintenance of existing works and revetment of caving banks where inportant levees or river interests are threatened by erosion. Dependence for maintaining the low-water depths for navigation is now placed upon the improved hydraulic dredges which have been constructed since the modified project of 1896 was adopted.

Prior to 1881 levees had been built by private owners of land and by local and state authorities, as previously mentioned, and always for protection against overflow. During the war of 1861-1865 the levees were destroyed in many places and for some years thereafter were allowed to deteriorate still more.
Since 1881 the building of levees has been carried on extensively by the United States as part of the general project for the improvement of the river below Cairo, with some restrictions in the appropriation acts prior to that of September 19, 1890. State and local levee organizations have also aided extensively in levee building, the work done by all parties of late years has been in conformity with the grades and methods of construction adopted by the Mississippi River Commission, and the present efficiency of the levee system has been largely due to this fact. The extension of this levee system on the right bank up to Cape Girardeau, Mo., was authorized in 1906.
The system of levees existing at present comprises a total length of 1,486 miles with a content of about 220 million cubic yards of earthwork, including that built by state and local authorities. During the high water of 1908, which was of unusually long duration, the flood waters were carried from Cairo to the Gulf without any breaks occurring in the levees.a Much work still remains to be done in order to complete this levee system.
In accordance with the act of Congress approved June 3, 1896, a modified project was adopted for obtaining and maintaining by means of hydraulic dredges a channel in the Mississippi River below Cairo having a width of 250 feet and a depth of 9 feet throughout the year, except when the river is closed by ice.
Under this project ten hydraulic dredges have been constructed and operated below Cairo and have succeeded in maintaining the project depth and width except for short periods in 1903, 1904, and 1908.

During the low-water seasons of 1907 and 1908 dredging was done at three selected localities in order to test the feasibility of maintaining a channel 500 feet wide and 14 feet deep at low water. (See Appendix No. 8.)
Work of harbor improvement below Cairo has been carried on at the following places, the number in parentheses being the distance in miles of each place below Cairo:
Columbus, Ky. (21), Hickman, Ky. (36), New Madrid, Mo. (71), Caruthersville, Mo. (110), Osceola, Ark. (163), Memphis, Tenn. (230), Helena, Ark. (306), Greenville, Mise. (478), Vicksburg, Miss. (600), Natchez, Miss., and Vidalia, La. (700), New Orleans, Ls.. (957 to 964).
Rectifica,tion work has also been done at the mouth of Red River. This has mainly consisted of aill dams near the head of the Atchafalaya. Bank revetment has been done for the protection of important levees at the following places:
Old Town Bend, Ark. (324), Bolivar, Miss. (417), Panther Forest, Ark. (487), Longwood, Mise. (500), Lake Providence, La. (542), Fitlers Bend, Miss. (552), Reid-Bedford Bend, Le. (605), Bondurant Chute, La. (644), Kempe Bend, La. (658). Revetment work and abatis dikes were also constructed at Walnut Bend, Ark. (281), in connection with the prevention of a cut-off into the St. Francis River and for the protection of the levee.
a An unconfirmed press report states that a small break, quickly closed, occurred about 8 milea below New Orleans.

At all of the harbors, except Memphis, Helena, Greenville, Natchez, and New Orleans, the improvement works have mainly consisted of mattress work and bank paving. The Vicksburg Harbor work has included the canal work from the Yazoo River into the old river bend.
At Memphis about 14,800 linear feet of bank is now protected by mattress revetment and spur dikes. At Helena the work consists of about 4,900 linear feet of bank protection, of which 1,400 feet is dike work and 3,500 feet continuous revetment. At Greenville the first work done in 1887-88 consisted of spur dikes. Additional spur dikes were placed in 1890. Some of these dikes were washed out in 1891 and the plan was changed to continuous revetment work in that year. About 12,500 linear feet of bank is now effectively protected by revetment. At Natchez the work has inainly been confined to the protection of Cow Pen Neck to prevent a cut-off just above Natchez. At New Orleans work under the present project was begun in 1883 and has continued since as funds were available. The steep banks and great depths make the preservation of the banks difficult and expensive. The method of piling used by municipal and private corporations has not been successful, and the methods used by the Mississippi River Commission, consisting of spur dikes and mattress revetment, are now recognized as the best and are used at present-about $5 \frac{z}{z}$ miles of bank have been so protected.
These works generally have given satisfactory results as far as they have been carried; in many cases the work is still in progress.

The total amount expended on the improvement of the Mississippi River from the mouth of the Ohio to the Head of Passes, including the general survey to the headwsters, is, approximately $\$ 58,714,191.28$.
The above does not include the locks at Plaquemine, La.
Passes at the mouth of the Mississippi River.-At present three passes branch from the main river. These are, named in the order of their importance, Southwest Pass, South Pass, and Pass a Loutre.

South Pass has been improved and has been the main pass for navigation for the last thirty years, with a central depth of 30 feet. Southwest Pass improvements are now nearing completion and will give this pass a depth of 35 feet. Detailed statements of the work done at the Passes and the results accomplished will be found in the annual reports of the Chief of Engineers.

The improvement of the bars at the mouth of the Mississippi dates from 1837.
The present method of improvement, by "parallel jetties at the mouth of the Passes combined with the closure of lateral outlets if necessary," was recommended to Congress by a special board of United States engineers in 1852. The recommendations of this board were as follows:
First. That the process of stirring up the bottom by suitable machinery should be tried.
Second. If this failed, that dredging by buckets should be tried.
Third. If both these modes failed, that parallel jetties should be constructed, 5 miles in length, at the mouth of the Southwest Pass, to be extended into the Gulf annually, as experience should show to be necessary.
Fourth. Should it then be needed, that the lateral outlets should be closed.
Finally, should all these fail, a ship canal might be resorted to.
The act of Congress of August 30, 1852, appropriated $\$ 75,000$ for improvement by stirring up the bottom and dredging, in accordance with the first and second recommendations above given, with the requirement, however, that the work should be done by contract; this money was spent at the Southwest Pass with as successful results per dollar as any dredging of its day. No additional funds were appropriated by Congress for this work for several years thereafter, and the channel gradually filled up again.

In 1856 Congress made a further appropriation of $\$ 330,000$, for opening and keeping open for five years the Southwest Pass and the Pass a Loutre, with the requirement, as before, that the work should bedone by contract; this money being spentin accordance with the third recommendation of the United States Engineer Board of 1852, upon the construction of parallel jetties on the bars combined with the closure of the minor passes. The failure of the contractors to do the promised work and the war of 18611865 put a stop for several years to any continuation of the system of improvement by jetties and dredging.

Capt. A. A. Humphreys, Corps of Engineers (later Chief of Engineers), in a report of February 25, 1860, attributed the failure to obtain the desired depths to insufficient appropriations, coupled with the requirement in the act of 1856 that "the work must be done by contract."

The subsequent improvement of the Passes by Mr. Eads, beginning in 1875, and in accordance with the third recommendation of the 1852 United States Engineer Board,
proves the correctness of the judgment of that board. All subsequent improvement of the Passes, up to to-day, has followed those recommendations.

The present projects for the improvement of the Passes provide for depth of 26 feet over 200 feet of bottom width, with a central depth of 30 leet at the South Pass, and 35 feet depth over 1,000 feet bottom width at the Southwest Pass. The channel at the South Pass, commenced in 1875 by Mr. Eads, was practically completed by him in 1879, and, with the help of annual dredging, has been practically maintained up to date. The channel at the Southwest Pass, commenced in 1900, is now nearly completed, but, like the other, will probably require constant redredging.
The total amount expended to date for improvement of the Passes of the Mississippi River, including surveys, is, approximately, $\$ 16,713,109.15$.

Recapitulation of appropriations for improvement of the Mississippi River from the mouth of the Missour River to the Gulf of Mexico:
Mouth of the Missouri to mouth of the Ohio.......................... a\$12, 778, 579.92
Mouth of the Ohio to Head of Passes...................................... b 58, 714, 191. 28
The Passes.
16, 713, 109. 15
Total $88,205,880.35$
Note.-The above amounts have been compiled from official records. House Executive Document No. 64, Forty-eighth Congress, first session, and House Docu-. ment No. 421, Fifty-seventh Congress, second session, except as noted above, to 1903, and from that date on from the appropriation bills.

In the Mississippi River, as at present improved, there usually exists, and has existed since at least 1901, a good navigable channel of at least 8 feet depth over at least 200 feet width for the 182 miles of river between St. Louis and the mouth of the Ohio River; and of 9 feet depth and 250 feet width for the 790 miles from the mouth of the Ohio River to just below the mouth of the Red River; and of at least 30 feet depth and several hundred feet width for the remaining 320 miles down to the Gulf. Minor deficiencies in channel for a few hours or days (until a dredge could reach the locality and dredge the crossing) have occasionally occurred during the low-water season when the shoaling of some crossing took place suddenly through rapid fluctuations in river stage while the dredging plani was engaged elsewhere; but deficiencies for more than a few days at a time heve occurred only in the winter season when navigation was closed by ice or fear of ice, agsec eating above Cairo about one month per year, and from Cairo down as far suyth as idsmohis only a few weeks per year in occasional years. A good channel of at least 14 ieet depth can usually be found every year between St. Louis and Cairo during from one to two months, and between Cairo and the Gulf during from five to eight months.
The existing improved waterway of the Miesissippi River below St. Louis fully equals, and over the greater part of its extent far excels, in depth and duration of unobstructed use, existing river systems of Europe, where the nontidal sections are usually given depths of only 3 to 9 feet, $\boldsymbol{\theta}$ feet being exceptional and $10 \frac{1}{2}$ feet a maximum.

Appendix 3.

Work done and remaining to be done to complete improvement under project of 1881, improving Mississippi River between Ohio and Missouri rivers.

[United States Engineer Office, 8t. Louis, Mo.]

distriot, ohio river to missouri river, 190 miles.

Rock banks 75
Banks protected by hurdles in construction works. 71
Banks protected by hurdles in construction works, proposed. 30
Banks protected by revetment 60
Banks protected by revetment, proposed 54
Banks which will not require protection(city fronts, sheltered points, etc.). 90
Total 380

[^7]| Island sloughs already closed | | 22 |
| :---: | :---: | :---: |
| Island sloughs open.. | | 6 |
| | Above Grand Tower 116 miles. | Below Grand Tower 74 miles. |
| Hurdles built (average length 1,400 feet) no. | 243 | 24 |
| 334,888 linear feet above Grand Tower. | | |
| 37,640 linear feet below Grand Tower. | | |
| 372,528 linear feet total. | | |
| Hurdles now in order................. do. | 220 | 17 |
| 200,396 linear feet above Grand Tower. 25,410 linear feet below Grand Tower. | | |
| 225,806 linear feet total. | | |
| Hurdles probably required............................ . . do. | 100 | 70 |
| 150,000 linear feet above Grand Tower. | | |
| 105,000 linear feet below Grand Tower. | | |
| 255,000 linear feet total. | | |
| Bank protection built (304,043 linear feet) miles. . | 41.0 | 16.6 |
| Kepairs built 11 per cent. | | |
| Bank protection now in order do. | 30.7 | 14.0 |
| 161,868 linear feet above Grand Tower. | | |
| 74,290 linear feet below Grand Tower. | | |
| 236,158 linear feet total. | | |
| Banks which may yet need protection.... do. . . | 96.0 | 25.0 |
| Banks which may yet need protection, in front of hurdles. | 60.0 | 12.0 |
| Banks which may yet need protection, in front of proposed | | |
| hurdles................................. miles. | 14.0 | 16.0 |
| Total banks which may yet need protection...do. | 104.0 | 53.0 | costs.

Construction between Illinois and Missouri rivers.	\$201, 420.06	
Dikes and dams; prior to 1881, 28,771 linear feet (average cost, $\$ 24.05$)	691,893.46	
Hurdles, 372,528 linear feet (average cost, $\$ 17.37$ per linear foot), inclusive of maintenance.	6, 471, 352. 56	
Protection, 304,043 linear feet (average cost, $\$ 10.50$ per linear foot), inclusive of maintenance.	3, 192, 822.16	
Jetties (temporary expedients).	114, 603. 53	
Dredging........................	662, 203.25	
Surveys.	289, 327. 60	\$11, 623, 622.62
Property on hand.		722, 917. 59
Material on hand.		72, 138. 40
Depreciation, care, and sundries for plant (thirty-five year	ars)	643, 991.59
Appropriation unexpended June 30, 1908.		376, 703. 86
Total.		13, 439, 374. 06

PROBABLE COST TO COMPLETE.

Hurdles, 300,000 linear feet, at $\$ 22.50$.	\$6,750,000
Bank protection, 900,000 linear feet, at $\$ 15$	13,500,000
Repairs, maintenance, etc	1, 000, 000
Total.	21, 250, 000

Appendix No. 4.

LETTER OF ASSISTANT ENGINEER WM. B. MITCHELL.

Enoineer Ofrice, U. S. Army,
St. Louis, Mo., January 21, 1909.

Colonel: I have the honor to tranemit herewith a memorandum on a project for obtaining and maintaining by hydraulic dredging alone a navigable channel, 14 feet in depth by 500 feet in width, in the Mississippi River between St. Louis, Mo., and the mouth of the Ohio River, in accordance with the resolution of the Board on Examination and Survey of Mississippi River, convened in third session, May 7 and 8, 1908, reading:
"Resolved, That estimates be prepared of the cost of improving the Mississippi River from St. Louis to Cairo."
"Second, by obtaining and maintaining, by dredging, a depth of 14 feet for at least 500 feet width in the open river;"
the preparation of the required memorandum and estimate having been aesigned to me. Very respectfully, your obedient servant,

Wm. S. Mitohell,
Assistant Engineer.

Col. W. H. Bixay,
Corps of Engineers, U. S. Army,
Senior Member, Boara on Examination and Survey of
Mississippi River, St. Louis, Mo.

MEMORANDUM ON A PROJECT FOR MAINTAINING BY HYDRAULIC DREDGING ALONE A NAVIOABLE GEANNEL 14 FEET IN DEPTE BY 500 FEET IN WIDTH IN THE MISSXSSIPPI RIVER BETWEEN BT. LOUI: "O., AND THE MOUTH OF THE OHIO RIVER.

The natural depths of channel throughout the river section in discussior do not reach or exceed the 14 feet desired except at stages above 20 feet on the St . Louis gauge, a height but a few feet below that of mean annual high water (26.5 teet).
These high stages may, and do occasionally, occur as the result of sudden freshets at any time of year, bnt they are unusual except during the annual high water of the spring and summer, between the latter part of April and the early part of July, a period of about two and one-half months. High stage, however, is not sustained throughout this entire period, but owing to fluctuations aggregates about one and onehalf months.
For this length of time, therefore, artificial aid for the maintenance of the 14 -feet depth will probably be unnecessary.
Again at low water navigation is usually suspended intermittently because of ice during December, January, and February, but in the aggregate the suspension is rarely for longer than one-third to one-half of the winter season.
During the remainder of the year, July to December and February to April, reliance for maintenance of the desired channel depth must be placed upon artificial means, which, in the project under consideration, is by dredging, and throughout these periods any dredging plant provided will have to be in commission continuously, and at work continuously or intermittently as may be needed.
During the winter the formation of ice gorges will probably partially or wholly obliterate the channels which may be secured by dredging during the fall low-water period, compelling, during the spring period referred to-about two montho-a repetition of a part or of the whole of the work of the former season.

This short spring season will most likely test fully the total dredging capacity of the plant, which, therefore, must be based upon performance of the full amount of work required during that time.

Nevertheless the major part of the year's work of dredging will probably be done during the long low-water period of each year commencing in early July, almost immediately upon the beginning of fall in stage from annual high water, and continuing until the appearance of ice in early December, a period of about five months.

The iwo main sources of supply of sedimentary matter passing through this river section and forming within it the obstructive bars are the Missouri River and the caving banks of the reach. From the former it is estimated that between $250,000,000$ and $400,000,000$ cubic yards are annually received and from the latter one-fifth to onefourth as much.

Measurements of the erosion of the banks by ten-year periods for the thirty years during which bank-protection works have been in progress show annual losses as follows:

1879-1889, 921 acres, $64,000,000$ cubic yards.
1889-1899, 633 acres, $48,000,000$ cubic yards.
1899-1907, 676 acres, $49,500,000$ cubic yards.
Although the direct relationship is unknown, the decrease in caving in the latter two periods may be credited to the extension of protection works, which, at the mid periods 1885, 1895, 1905, had reached totals of 66,000 linear feet, 106,000 linear feet, and 289,000 linear feet, respectively, of banks protected.

The bars formed of the materials thus brought into the river fluctuate in height with the river stages, and examination of the channel soundings of the past thirteen years shows that for each foot in rise of water surface only about 0.6 foot is gained in navigable depth throughout the district, which means that the crests of one or more of the bars within the reach rise correspondingly about 0.4 foot.

Owing to these fluctuations in bar heights and to the influence of duration of atage upon channel depths, estimation of the full amount of excavation and its removal to one side of the channel that may be necessary to secure 14 feet depth of channel at all stages above zero on the St. Louis gauge, can not be exact; but as based upon the soundings and profiles of the Board on Examination and Survey of the Mississippi River, which are thought to represent typical conditions, removal of $35,000,000$ cubic yards will be required from 68 localities or bars within the district of 175 miles, and the total length of excavated channel will be 61 miles.
Mean annual low water is, however, about 2.2 feet above zero, St. Louis gauge, and such average condition of stage would reduce the excavation to $20,000,000$ cubic yards from 61 localities, and the length of excavated channel to 47 miles.

The present project to obtain 8 feet depth for 200 feet in width of channel requires excavation at zero stage of only $2,300,000$ cubic yards from 39 localities, and a length of excavation of 19 miles.

Using the largest quantity, $35,000,000$ cubic yards, of excavation required and the shortest time, two months, for its accomplishment, the dredging plant must have capacity for the removal of $17,500,000$ cubic yards per month.
At least one-third of the time in commission of each dredge must be spent in maneuvering on each bar, in traveling from bar to bar, in minor repairs, in cleaning boilers, and in many incidental interruptions to actual dredging. The dredging time, therefore, will probably be reduced to only twenty days per month, and the total capacity of plant must be correspondingly increased to about 900,000 cubic yards per day, or 40,000 cubic yards per hour, which for its accomplishment will require at least 20 dredges, each in capacity as great as the dredge Harrod of the Mississippi River Commission (2,000 cubic yards per hour) and even this number of dredges will be able to work simultaneously upon less than one-third of the number of bars which may become obstructive.
The cost of such a plant, including the attendant veasels, shops, etc., necessary, is based upon coets of vessels in existence of the various types indicated, and will be as follows:

Forty wood-hull fuel barges, 500 tons capacity, at $\$ 6$,	240, 000
Three steel-hull towboats, King type, with sufficient power to tow to repair depot a disabled dredging plant, two of the steamers to be used ordinarily for distribution of fuel and supplies, and one for channel examination	
and inspection, at $\$ 75,000$ each.....................................	225, 000
Four steel-hull survey boats or tenders, at $\$ 20,000$ each	80, 000
One engineer depot for supplies and repairs, with storee buildings, machine and boiler shops, forges, etc.	50, 000
One marine ways at engineer depot	50, 000
Tools and appliances, office and survey outfits,	25, 000
Contingencies and miscellane	330, 000

Total cost of plant
6,000,000

It is not probable that so great a plant can be fully assembled in less than five years, because of the small number of building yards on the Mississippi and Ohio rivers, and the time required may be much longer.

The annual operating expense is based upon the expense of dredges under this office during the past ten years, with charges for fuel, deterioration, etc., suited to the larger dredges contemplated; the whole plant to be-
In commission and operation during nine months of the year, at $\$ 10,000$ per month for each dredge.
$\$ 1,800,000$
And laid up in fleet undergoing repairs, etc., three months, at $\$ 2,000$ per month for each dredge.

Total annual expense for operation.
2,000,000
This charge is equivalent to an average annual expenditure of $\$ 100,000$ per dredge, and includes deterioration and all charges for the use of subsidiary vessels, plant, and forces.

As the fluctuations in river stage and channel depths are frequent and sudden, reference need hardly be made to the difficulties of organization and manning quickly and efficiently such a number of dredges for work of intermittent character and at points remote from labor supply, unless the crews are retained continuously, thus greatly increasing the expense for operation.

Very respectfully,
Enaineer Oppioe, U. S. Army, St. Louis, Mo., January 21, 1909.

Wu. S. Mitchell, Assistant Engineer.

Appendix No. 5.

Project for the niprovement of the Mississippi River (middie bection) between St. Louis, Missouri, and Cairo, Ilhinois, to produce a waterfay having a channel depth of 14 feet at low water in the open river, by means of complete regulation works; with estimates of the cost of construction, of maintenanoe, and of the probable the required for completion; and btatement of a proposed yge op hydraulio dredging in connection with the permanent regulation works to maintain the desired depth, in advance of the completion of those woris.
[Prepared under the direction of the B/ard on Examination and Survey of Mississippl River, by Wm. M. Pennimana, Assistant Engineer.]

TOPICS OF COMPLETE REGULATION WORKS PROJECT.
Outline of project, with comment on methox's and needs..................... ${ }_{57}^{\text {Page }}$
Conditions, and general features of the project..................................... 61
The low-water plane and slope.. 72
Depths and widths.. 74

Side contraction... 79.
Bank protection... 81
Croes weirs or sill dams.. 82
Order of work in execution of the project... 85
Estimates of time required to complete the work, of cost, and of maintenance.. 86

OUTLINE OF PROIEOY, WITH COMMENT ON METHODG AND NEEDS.

On this section of the Missiseippi the interests of navigation would at all times be best served by an open river; it is believed a 14 -foot channel can be obtained therein at a cost commensurate with prospective through commerce between the Great Lakee and the Gulf of Mexico, with the interior traffic that would be developed throughout the length of such a waterway, and with the regulative efiect that it would have on freight rates over a large section of country.

If the project adopted gives a channel that is not only practicable for single veseels of the seagoing type, but that is also available for the larger towboats with their barge fleets unbroken, that meets the needs and has the resulting confidence of water trans-
porlation interests, a large traffic would be assured immediately on obtaining a sufficient channel depth.

For a waterway such as is now contemplated, the most feasible project is one that not only gives the required depth on completion, but affords that depth at the earliest possible moment after work is started. This desideratum is met by the project for permanent improvement by complete regulation works, dredging being used to give the desired depth in connection with the permanent improvements as installed, the amount of dredging being reduced as the works extend, until, on their completion, it would take its proper secondary place and become a branch of the general work of maintenance for the quicker removal of temporary shoals.

To promote commerce on the open river it is not sufficient to have merely the requisite depth and width of stream; this would serve only the demands of through commerce between large centers that can maintain proper terminal facilitites.

Whatever the method devised, there must be a permanency not only of channel but also of bank lines, and landings must become definitely located points not liable to erosion or separation from the navigable channel through accretions. And any project adopted should have this in view as an ultimate-result in order to meet successfully the requirements of local traffic, to promote commerce, and to develop towns and cities along the improved waterway. If only the needs of through commerce were considered in the adopted project, and a method of accomplishing the desired end evolved that did not' result in permanence of bank lines, landings, and position of channel, such project, though affording the requisite depth, could not, if the question were ever to arise, warrant the assessment of benefits against the owners of reclaimed riparian lands, as they would derive practically nothing of benefit from an improved river with variable channel-a river equally liable to diverge from their lands and leave their shipping improvements valueless, or to attack and totally engulf eie property.

No matter how attractive other methods of creating an inland waterway-a Lakes-to-the-Gulf channel-may at first appear, a more deliberate consideration of natural conditions in the immediate alluvial valley of the Mississippi River clearly manifests and definitely shows the greater advantage and desirability of complete regulation.

It seems fitting to mention the accepted advantages an improved open river has over all other methods that are, under the conditions, applicable for obtaining a 14 -foot channel: It has capacity for practically unlimited traffic; it affords equal access to either side of the stream at definitely assured points; it would ofier the means of reclaiming, wholly or in part, large areas of land which must eventually become valuable; it offers no locks (liable to inflict or suffer damage) to delay the movement of boats; it interposes no delay at the opening of each season of navigation to close secondary channels that may be opened through the action of ice gorges, nor to remove by dredging the deposits formed during the winter. With the location of channel once fixed, landings and warehouses can be permanently located with necessary conveniences for the losding and unloading of vessels; the time when navigation is suspended on account of ice would be minimized; and whether or not of profit to the country at large, which only its construction and use can definitely show, the cost of producing such a waterway would be a safe investment in this respect, that it would not be in jeopardy of serious injury or of complete annihilation from the ravages of the river when in flood. In addition, with the danger of their grounding eliminated by the definite location of the channel, the use of large ice-breaking boats becomes practicable; a very few such craft would maintain an open river below St. Louis during all except the most rigorous winters.

But the particular benefit to be derived from a completely improved and regulated open river is that the high-water season annually converts the 14 -foot waterway into a 20 -foot ship channel for about one hundred and seventy consecutive days, comprehending the season of wheat harvest.

That any one method of improvement has given best results in some special locality, even on this stream, is not sufficient warrant for its general adoption, but the merits of each system as applicable to the particular case under consideration must be carefully determined.
Whatever project is adopted, the river will require the construction and maintenance of regulation works if to be of service as a navigable stream for local commerce. If the project be one of lateral canals, security of river banks will be necessary to insure the safety of the artificial waterway. If a system of locks and dams for slack-water navigation within the river is chosen, bank protection will also be necessary, wing dams will be required to regulate the channel width and to remove obstructing sand bars, and the further aid of dredging may also be required.

For open-river improvement a combination and modification of methods now in vogue must be developed to meet general and local conditions throughout the district. Treatment unusual in this country, possibly unprecedented, will be required to
make thoroughly navigable as an oren stream and at the same time keep within due bounds this difficult section of a molt unruly river.
That the desired result can be attained is shown by past experience on the Mississippi River, and by the conditions that have been produced on this river through regulation; also by the successful improvement of the lower 200 miles of the Rhone with systematic training works, where even before their completion the navigable depth of an alluvial stream was more than trebled, and this betterment was accomplished over a section haviug a mean slope of more than four times that of the middle Mississippi.

The plans here outlined are, in the main, based on the thirty years' experience of the United States Engineer Office, St. Lot is, with this section of the river. If a reliable channel in the open river, of the requisite depth, permanent in location even under flood conditions, is ever to be obtained, it will be through regulation, with works so designed that the entire travisverse section of the stream may be controlled.
A depth of 14 feet or inure has generally been obtained at localities in this district where works have been placed to narrow the stream and remove obstructing bars. The objectionable accompanying feature is that depths much in excess of those required for navigation are produced in the reaches so improved, causing a flattening or local loss of slope that must be compensated at the ends of the stretch to the detriment of the regimen there and in the reaches above and below, the total fall for the district not being susceptible of change.

As illustraling the conditions to be ameliorated in this district, assume the case of a bar composed of ordinary Mississippi River alluvium-mud, sand, and a little gravelone such as may readily be cut with the modern suction dredge; also assume it to be a pool-controlling bar having only $3 \frac{1}{2}$ feet of water on it at low stages. If a well-defined channel 14 feet in depth is made across it by any means, the velocity of flow in that channel will be about doubled, and as a result of that increase the bar will gradually be cut away to a depth much greater than desired and will cease to exist at that point; the former shallow becoming a deep. Usually a compensating bar will form at the nearest favorable place above or below (perhaps at both places a lesser bar), but if no new bar be so formed, a general flattening of the slope or lowering of plane must result, causing marked disturbances of regimen. The requisite depth may thus be created by narrowing or by dredging, but the avoidance of a disastrous deeper erosion can be assured only by giving to the bottom of the stream the additional needed resistance to erosion.

Under such circumstances, no regulation works can be considered complete that govern merely the side boundaries of the channel; the general slope of the low-water surface must be regulated by fixing in elevation and position the crests of controlling bars or their artificial equivalent.
This requirement seems to call for such construction works as shall at all stages, from low water to bank full, give the required narrowing of the stream, permanently fixing all unstable banks on such alignment and with such slope as is requisite, and secure complete regulation by controlling at necessary intervals the hydruulic mean radius of the stream, and to do this without materially changing the mean slope for natural subdivisions of the river; and if flood control is also to be involved, as it must if any lands are reclaimed, the works should facilitate the river discharge at over-bank stages, but must not at any time create excessive velocities interfering with upstream navigation.

Such a system of regulation would embrace three forms of permanent construction, each distinct in its own function, but all closely interdependent as applied to the improvement of this section of river; and in the order of their effects in the producing and maintaining of sufficiently great controlling depths and of creating and preserving uniform slope they are:
I. Side contraction.-The building of new banks to the height of the bank-full stage on the projected alignment and slope, thus securing the contraction of the stream neceseary to produce the required depth; to be accomplished by works of side contrac-tion-wing dame, permeable or solid.
II. Bant protection. - The protection of all concave banks in alluvium, whether natural or created by induced accretion, also when required to preserve alignment of some sections of straight and slightly convex banks; to be accomplished either by low training walls or by revetments.
III. Stream-bed control.-The regulation of the entire bed of the stream by fixation, in sufficient number and on predetermined slope, of the crests of controlling bars, whether these bars be natural or artificial, thereby equalizing the fall and preserving a uniform recurrence of neither more nor less than the required depth and width of crose section at these determining points for complete regulation; to be accomplished
by sill dams or cross weirs, thus maintaining the desired depth of channel when obtained by the works of side contraction and bank protection.

Although hydraulic dredging is not in itself a part of a system of regulation works, although it is not essential to the success of a project for obtaining and maintaining the requisite depth by regulation works, the permanent works in themselves being fully adequate for the accomplishment of such purpose, yet hydraulic dredging is, under certain conditions, an adjunct of such value that it is included among the features of this project as the instrument by which the required depth can be made available in advance of the completion of the permanent works and can be quickly regained at any time thereafter in case of emergencies.

Not only during the construction period, but later during maintenance work, after all the permanent works have been placed in position, dredging would be of service to hasten the removal of temporary shoals caused by sudden freshets with fall so rapid as not to allow even an improved river to correct itself simultaneously with decrease in stage.

That the association of the above-named three forms of construction, combined with dredging, will be very much more effective, more certain, and at the same time less expensive than the use of any one by itself alone, and that such association is necessary to insure the desired result, is clearlyshown by an examination of the defects inherent in each when used alone.

Considering side contraction by itself, the most seribus objection to its use is the inevitable lowering of plane and flattening of slope due to excessive crosion of river bed. Not only is an abnormally steep slope produced at the upper end of any long alluvial stretch where increased depth is so obtained, but the decreased fall and unnaturally narrowed river obstructs the free discharge of floods, and thus aids in obliterating the low-water channel. Such lowering of slope and delay to the passage of flood waters resulte in a greater than normal range between the high and low water planes and adds to the time required for estathishing a final equilibrium betwecn slope and discharge, both being disadvantages from the view point of navigation alone.

The river could by side-contraction works be narrowed to increase the depth, but any added depth so obtained may not be permanent, probably will not, and for such works that might extend to bed rock the cost would be prohibitive, considering the indefiniteness of any result so obtained.

If the river from St. Louis to Cairo were continuously narrowed to any considerable degree without control of the bottom of the stream, erosion would be expected to continue till a new equilibrium between slope, discharge, and character of bed obtained everywhere. This erosion might go to bed rock at certain localities, thus creating at each a natural weir, and the slope being materially reduced a good navigable river would result if the slope would remain fairly uniform. On this hypothesis the lowwater plane at the upper end-that is, at St. Louis-would be lowered indeterminately, causing rapidsat the Chain of Rocksabove the Merchants Bridge that would completely obstruct open-river navigation to the upper Mississippi and the Missouri rivers and necessitating an additional lift by means of locks between the lower and the upper rivers.

It is obvious that bank protection by itself, if applied to the natural banks, would not give a permanent or a navigable channel of greater than natural depth, siace on most crossings a more than a verage width already prevails; the channel on such crossings is continually shifting and the desired depth is lacking. Moreover, if the alignment of the banks and their separation, were that necessary to afford the depth now required, and if such banks themselves were completely protected, even then bank protection unaided by other works could not secure permanence of depth, because it would fail to accomplish its own purpose, for the reason that to be permanently effective on this river the subaqueous portion of a revetment must extend to the line of deepest acour; and as production of the required depth calls for a cross section narrower than that naturally formed in alluvium on croasings by this stream, erosion of the bottom, not only below the former line of maximum scour but generally below the line to which scour might be desirable, is under these conditions unavoidable and will continue until followed byitsinevitableconsequence-eitheradecrease in river slopeand lowering of its plane or the settling and destruction of the revetment, with its attendant recession in bank line, resulting later in greater widths and consequent shallower depths than those contemplated in the project.

Though in general successfully maintained in this district, several sections of reyetments have been completely destroyed, mainly by reason of lack of stability of river bottom, resulting in local increase of river slope and variation in direction of attacking currents that greatly increase the erosive power of the stream.

This might not happen in every selected case, nor in general throughout the entira district, because the extent of scour would depend on the resistance of the bottom,
but that it would occur in some places with considerable injury to the regimen of the stream and with serious interference to navigation is evident, and is proved by experience.

In a similar way it is obvious that bed protection alone would be insufficient, no matter how extensive and effective were the protection works on the bottom, designed merely to equalize the slope and limit vertical erosion. While pools of unusual depth could not exist, the river would be liable to widen proportionately, until, if not restrained by contraction works within definite side lines, the river would ultimately silt up, and then, shifting away from such bottom protection alone, seek a new channel through the alluvium, where the natural alternate pool and crossing characteristics of the river could again prevail.

The ideal regulation works for a stream of this nature may be described as consisting, essentially, of recurring sections of stream-bed control, flume like in character, through which the stream is directed by intermediate works of side contraction and bank protection, the combined result being at all times to lead the channel flow, and the water at all except flood stages, through an aqueduct of which the walls are for the most part composed of the natural banks of the stream after they have been aligned by induced accretion or directed erosion produced by side contraction, and after their protection with revetments or training walls. The bottom of this aqueduct is the natural stream bed strengthened, at the intervals requisite to result in evenness of fall, by the placing of completely controlling cross weirs in suflicient number to maintain uniformity of slope and water prism, and to prevent scour of the bottom beyond that needed to obtain the desired channel depth.
All the difficulties mentioned as pertaining to the individual use of the three forms of permanent works will be overcome by their combination, using each to produce its special effect only, reliance being placed on their combined action for obtaining all required results--the desired depth, width, and permanent location of the steamer channel--whether it be for an 8, a 14, or a 16 foot channel.

Even this last depth could be obtained on first construction by placing the sills of the cross weirs lower and decreasing the area of the low-water prism, the width of which would probably still be sufficient for navigation; or after the completion of 14 foot improvement, by sufficient contraction to produce the additional depth, with in cither case but little effect on river slope and higher stages of water and with but slight increase in current velocity.

With the river rapidly falling after the occurrence of high stages, especially following a rise of the silt-bearing Missouri, it is almost certain there will exist, temporarily and in isolated places, depths somewhat shallower than those that the actual stage normally indicates as existing in the improved river. These temporary and comparative shoals will be cooded and washed out of the regulated channel by the current as soon as the river falls sufficiently to permit the side-contraction works to exert their greatest influence; but if immediate relief is needed, dredging will afford the means of such relief by assisting the diminished discharge, already properly directed by the permanent works, in cutting away and in removing the deposit.
Summation.-Briefly stated, this project for open-river improvement by a regulated channel with sill dams or cross weirs is intended to equalize and render more uniform the water prism at all points throughout the length to be improved and at all stages below the bank-full stage; to reorganize, but not radically to alter, the bed of the stream, transforming the bad passages into good passages by substituting for the natural controlling bars or sluices artificial bars or weirs, which shall maintain a fairly uniform slope and constant gauge height for a given volume of discharge, and to smooth out the present great irregularities of the stream, both as to the varying width and depth now obtaining, in such way as to produce and maintain at low water a practicable channel with a navigable depth of 14 feet. The places where too great width and insufficient depth now exist will be replaced by a regulated channel of the proper width to produce the requisite depth at the present available low-water discharge and without material change in the elevation of any stage.

And through all details of this project the idea has ever been kept in mind that in this large sediment-carrying alluvial stream with its shifting bed the normal condition of the river should be changed as little as possible, the natural forces should be opposed as little as possible, and that these same forces-destructive, erosive, and land-building-should be utilized in such way that they will serve a single definite purpose in the attainment of the conditions sought.

The most charscteristic featuro of the Mississippi River between St. Louis and Cairo is the facility with which it changes, or may be made to change, the position of the channel and its bed, which is, for the greater part, in alluvium.

From St. Louis to Ste. Genevieve the river practically follows the Missouri bluffs, a distance of 59 miles; thenco crossos the valley to Fort Gage (the cut-off into Kas-
kaskia River occurring in 1881), and for 14 miles flows near the Illinois bluffs to Liberty Island; returns to the Missouri bluffs at Red Rock, follows them closely (with Fountain and Grand Tower bluffs for about 5 miles on the left bank) to Grays Point, a river distance of 48 miles; and then flows though a gorge, 7 miles, to Commerce, where the bluffs on both sides sharply diverge from the river. The total length of rock bank thus available is about 140 miles (more than equivalent to one permanent bank from St. Louis to Grays Point), which the river could be made to follow if it were desirable to shorten it and slightly to increase the slope. Owing to accretions, some naturally caused, some resulting from works of improvement, at certain localities the river leaves the bluffs, but returns to them a short distance below after making considerable bends in the opposite banks. At the present time the channel flow is closely adjacent to 73 miles of rock bank, and by a judicious arrangement of regulation works this length can be increased to 77 miles without material increase of mean slope.
In this district damaging erosion and caving of banks usually occur at the lower rather than at the higher stages, especially after an overflow when a falling river has receded within saturated banks unable to stand unsupported. When underlying bank strata are composed of easily eroded materials the vertical face of the bank offers less resistance than does the flat slope of the bed, and erosion is then generally rapid antil the normal width of channel and equalization of slope have been produced.
One particular example of a bank that caves rapidly at high as well as at low stages may be cited, especially as this case al:o shows the necessity for systematic bank protection and the need of levees at certain localities.
During the last ten years the right bank of the Mississippi River in Dogtooth Bend (161 miles below Eads Bridge, St. Louis) has receded to such an extent that the concave bank of this bend now lies in the dry bed of former Big Bayout; whenever the river reaches a 25 -foot stage St. Louis gauge, water flows across an narrow neck of land through Big and Stevenson bayous, discharging through the latter into the river opposite the lower part of Cairo. Athigher stages, when this bayou can no longer accommodate the volume of water that pours over the bank in Dogtooth Bend'and into the bed of old Big Bayou, the overflow water then spreads out, and as the land for some distance above the mouth of the bayou and below Eurricane Field (mile 173)-that is, the land lying between the bayou and the Mississippi River-is lower than the banks adjacent to the bayou, this water is discharged into the main river above Cairo, falling over the bank in Hurricane Field Bend, and has been the principal cause of the destruction of about 1 mile of revetment in that locality. The, caving of this bank is especially rapid under the double attack of the main river currents in front and the over-fall water from the rear, and a cut-off may be expected ultimately unless the necessary steps are taken to prevent it.

In such case the distance by river from Dogtooth Bend to Eliza Point (West Cairo, mile 177) would be shortened from 16 miles to but little more than 3 miles, and the immediate result, with the Ohio River moderately low and the Middle Mississippi only moderately high, would be a slope of about 4 feet per mile. The effect such a cut-off would have upon the city of Cairo, situated on the alluvial peninsula almost directly opposite or just below the point of threatened cut-off, may be left to imagination.
There should be a marked tendency toward decreased erosion at lower stages if a practically uniform slope is substituted for the very irregular local slopes now obtaining for such stages, and when the cross section, slope for total natural fall, and consequently the flow throughout the entire district, are made uniform, there will exist no problem as to the ready disposition of even the great quantity of silt brought down by the Missouri River (about $400,000,000$ cubic yards annually), that is apparently the cas e in itself of remarkable deposits wherever the current is considerably slackened, although these deposits are without any doubt much influenced by, if not mainly due to, the erosion within the district itself, in which, for the last twenty-eight years, the mean rate of bank caving is an area of 1.2 square miles to a depth of 44 feet, or about $54,000,000$ cubic yards per annum for this form of erosion.

That the Missouri River sediment, per se, causes but little change in river bed between St. Louis and Caire is shown by the fact that low-water stages of the last fifty years and a comparison of profiles (surveys of 1884-1889 and of 1907) indicate that the thalweg of the river bed when considered as a whole over the entire district has not materially changed in elevation during these fifty years; the profiles show there has been no great change since the earlier survey, and the evidence of the survey observations for the latter part of this period warrants the assumption, on the support of the stage records, that the elevation of the channel bed has remained practically the same during that entire period. From this it may be concluded that no more material has been brought in and deposited than has been eroded and washed out, and conversely. Therefore great discretion should be exercised in adopting
any method of improvement that involves a reduction of slope and velocity-the rime factors in sediment transportation-which would permit the channel to silt up, or of any method resulting in steeper slope and increased velocity which would causo greater erosion of materials. There seems to be a well-established balance between discharge and slope and sedimentary deposits and erosion, which should not be disturbed.
In further support of the deductions from the low-water stages and profles may be adduced the results of actual sediment observations made in 1879 on the Missouri River at St. Charles, Mo., and on the Mississippi River at Columbus, Ky., which fully confirm the conclusions drawn from the other data. (See Annual Report of the Chief of Engineers, 1887, pp. 3090-3096.)
This report shows that during a portion of the time when sediment observations were taken at St. Charles a series of observations were taken on the Mississippi River at Columbus, Ky. Diagrams accompanying the report show that the agreement between the total sediment at St. Charles and at Columbus is very marked, and that with the exception of short periods of erratic variation, all variations in the amount of sediment passing St. Charles were reproduced at Columbus, with the resulting conclusion that the sediment carried by water reaching Columbus from sources other than the Missouri River was very small in comparison with the amount reaching that point with the water from the Missouri River, and that very close to the same amount of sediment in suspension in the Missouri River is still carried by the water of that stream when it reaches Columbus, with the natural resulting conclusion that it is practically the same sediment carried in permanent suspension between those points.
The mean slope per mile of the upper Mississippi River (lower 100 miles) is a little less than 0.5 foot; of the Missouri River (lower 100 miles) about 0.8 foot; of the combined rivers (between the Missouri and Ohio rivers) a little less than 0.6 foot; and below the Ohio River (230 miles) about 0.4 foot. The mean discharge in cubic feet per second for the eleven years 1880-1890 at Grafton (Mississippi River) is 100,000; at St. Charles (Missouri River) 85,000; and at St. Louis the total discharge is 185,000 . (Results deduced from discharge curves and gauge records for the three stations.) While the area of the Missouri River basin is more than three times that of the upper Mississippi River, the mean annual rainfall (inches) and the ratio of run- off to precipitation are considerably greater in the latter than in the former, because of the Missouri basin's more absorptive soil and dryer air.
For St. Louis and for stages of the Market street gauge the volume of discharge in cubic feet per second (according to the discharge curve of 1897-1904) is: At normal low water (0.0 feet), 34,000 ; at "standard low water" (4 feet), 66,000 ; at mean stage of river (12.6 feet), 158,000 ; at bank-full stage (30 feet), 606,000 ; for the flood of 1903 (38 feet), about 950,000 , and for that of 1844 (41.3 feet), about $1,360,000$ (this volume estimated).
The slope for the flood crest of 1844 between St. Louis and Grays Point (134 miles) is 0.57 foot per mile, and for the lowest recorded stages at these points it is less, the total fall being 74.4 feet. At St. Louis the range between lowest recorded stage and extreme high water is 43.8 feet; at Grays Point, 41.9 feet; and at Cairo, due to Ohiu River floods, it is 53,6 feet.
The maximutn recorded fall between St. Louis and Cairo (high water, September, 1905) is 109.6 feet, and the mean fall for the 13 floods since 1858 (exceeding bank-full stage) is 101 feet. The difference in elevation between the means of 49 lowest annual stages at St. Louis and the same number at Cairo is 107.2 feet, and the difference in elevation of extreme low waters is 108.3 feet.
The following table of slopes of the Mississippi River between St. Louis and Cairo shows, at gauge stations, the determinations for low-water and flood planes and (mean determinations) for intermediate characteristic stages with reference to the St. Louis gauge, the records of which are continuous for forty-eight years:

Table showing slopes of Mississippi River between St. Louis, Mo., and Cairo, Ill., for low and jlood stages and for intermediats characteristic stages with reference to the $\mathbf{S t}$ Louis gauge.

[^8]As to be expected, the greater depths exist in the narrower sections of river, but even in the sections where these greater depths occur they do not prevail over a bottom that is in any way constant; not only do they vary with stage, but, like the depths in the wider parts of the river, they are subject to variation from the rise and fall of the stream bed. In a comparatively narrow reach at La Cours Island (95 miles below St. Louis) a line of channel soundings taken at a flood stage in 1908, when compared with the low-water soundings of 1907, indicate a scour of about 12 feet over three-fourths of a mile of river. In 1907, a low-water depth of 52 feet was found at Grand 'Tower (mile 103), where the width is 1,400 feet, and in 1884 a corresponding depth of 104 feet was found very near the same point, showing that even in a gorge alternate scour and fill is going on.
In a narrower section at Devils lBake Oven (about 1 mile above Grand Tower) the low-water depth of the thalweg is only 35 feet, while below Devils Backbone (90 miles below St. Louis), in one of the narrowest sections of the river, that depth is 63 feet. At Ables Point (mile 171)-the narrowest low-water section in 1907-a depth of 40 feet below low water was found (width, 650 feet).

Least depths, with which alone navigation is concerned, are found on the steamer crossings, and during the progress of the Board's survey, when a continuous line of channel soundings was made, the least depth found on crossings was 8 feet at a stage of 4.8 feet, St. Louis gauge (only one-half foot above the lowest stage of the season, which occurred a few days later). In the fall of 1908 a lower stage prevailed (3.4 feet, St. Louis gauge), and a depth of 8 feet was maintained by dredging until a sharp rise caused a temporary silting up of the channel, which was again improved by dredging.

Greatest widths of clear waterway at the bank-full stage are found immediately above islands or tow-heads; for example, at Kaskaskia and at Grand Tower islands and at Thompsons and at Grand Lake tow-heads. The width at each of these places is about 6,750 feet, the widest being 6,800 feet at the last-named place.

Within less than 2 miles upstream from each of these sections of maximum bankfull width, unusually narrow low-water widths occur, and a similar condition exists at ten other localities where bank-full widths varying from 4,000 to 6,600 feet are preceded by low-water widths of from 1,300 to 650 feet. But an unusually wide bank-full section is not always preceded by a very narrow low-water section, and in a very few cases reversal of this order is found, and the narrow low-water section occurs downstrean from a very wide high-water section, as shown in the narrow section above Grays Point occurring below the wide section in Cape Girardeau Bend. Hence, it appears that places extremely wide at the bank-full stage are, in their natural state, generally closely preceded by, but may be followed, though rarely, by abnormally narrow low-water sections, and the number of these cases found in the district indicates some relationship as to cause and elfect between these conditions. Whether the wide bank-full sections are caused by the narow low-water sections above, or the converse, the smoothing out of either the bank-iull or the low-water lines on regular alignment and with uniform width can have none except a beneficial effect upon the other, and an especial effect will undoubtedly follow the correction if the realignment of both is effected.

In a stream with unstable alluvial bed the deep water is always found in the bends and sometimes in the straight reaches. Submerged bars are the natural stream regulators, building out from convex banks, incidentally aiding in the caving of concave banks, following them into the bends, causing further shifting of the channel and forming natural dams across the river, generally in wide sections below the pools and always between successive concave banks on opposite sides of the river; that is, on the inflections of the line of the navigable channel. On these latter hars are the steamer "crossings" from pool to pool, either squarely across or obliquely from shore to shore.

Between St. Louis and Cairo there are approximately 60 such crossings (56 during low water, 1907) over which the channel depth may decrease to 8 feet or less at low water. Their distribution is fairly even, it being practically one to every 3 miles of river, and during low water any one of them may become a menace to 8 -foot navigation, although not more than ten or twelve have heretofore become troublesome at the same time or during one low-water season.

In a letter to Capt. C. J. Allen, Corps of Engineers, and Assistant Engineer R. E. McMath, dated February 16, 1873, Maj. Chas. R. Suter, Corps of Engincers, gave a brief discussion of a few places in the river which were shoal at low water, in connection with the holding-up effect of bars on river depth and the distance this effect extended up the stream:
"There are a few places in this reach of river which always become very shoal and generally in each low-water season one or two of these places form the principal obstructions.
"These places are Turkey Island, Liberty Island, Hat Island, Crawfords, Powers Island, Dog Tooth Bend, and Greenleafs. The three last go together and are mainly dependent on the stage of water in the Ohio.
"The intermediate shoal places generally have more water than those in the above list. As a general rule whenever one or the other of these places gets bad it remains so throughout the season and sometimes for several consecutiye seasons. Thus in 1868 and 1869 Hat Island was the worst shoal. In 1870 the main bar was at Liberty Island, and in 1871 it had shifted up to Turkey Island. When the main bar is as far up the river as this, the water is sensibly backed up as far as St. Louis and all the intermediate bars are drowned, as was the case in 1871, when there was but 4 feet at Turkey Island and 6 feet on all the bars above.
"When the main bar is at Hat Island, the river is generally in its worst shape, as this place is about halfway, and its influence does not extend up as far as Turkey Island, etc. In 1872 the worst bar was at 'Horsetail,' at the mouth of the river Des Peres. This bar was so far up the river that the bar at Devils Island was also uncovered and gave much trouble. Between these points was comparatively good navigation."

It will be seen that Major Suter's judgment of the effect of a controlling bar on backwater was not based on a uniform condition prevailing during the period of his observation, but that changes in the locations of the controlling bars extending over a number of years gave him ample evidence as to the varying effects from the several more important bars he mentions.

When the channel has a shifting tendency, as in wide reaches, these natural dams or submerged bars have a gradual downstream motion, due to the transfer of material fom their upstream to their downstream faces, and their crests are often suddenly raised by deposits of sediment caused by the decreased velocity of a rapidly falling river and also by caving banks above, but when the main confining banks are stable the general locations and forms of these bars undergo only slight changes. The effect of a high stage, with consequent excess of sediment, especially if long continued, is to obliterate the gencrally narrow and sinuous low-water channel. Hence during a rapid decline following a rise abnormal shoals (sometimes several well-defined but shallow channels occurring) are found on the bars in wide reaches, and it frequently happens that lesser channel depths are found on a bar at high stages than at a low stage after the diminished discharge has been concentrated to form a good low-water channel.

According to Janicki-
"The status, the general character of a river, therefore, depends on the united action of these three factors: The discharge, which is variable; the magnitude of the slope, which is likewise variable; and the nature of the soil, which is variable in different localities.
"That a river may be navigable it is necessary that it should have a sufficiently deep channel throughout its entire length. A river may have much water, but if the fall is considerable and the soil unstable it can not have a deep channel. On the other hand, there are rivers with a relatively small discharge and great fall which are yet quite suitable for navigation owing to their hard bottom.
"In undertaking works of regularization on any river with a view of improving its navigability, we should not rely altogether on the fact that it has a plentiful supply of water, and think that by sufficiently contracting its bed we can always obtain the desired depth. We must first satisfy ourselves, and this is indispensable, that the amount of fall and the nature of the bed are not opposed to regularization, for no palliative will remedy incompatible conditions.

* lowering of the water level above the bar; and he recommends that in undertaking works of contraction a careful examination of the longitudinal profile of the river should first be made, to see if the lowering of level which would follow would not bring out new obstructions in the pool above, by exposing shoals previously covered with a sufficient depth of water." (Merrill's translation, pp. 17 and 19.)
Modern French practice, as given by Professor Fourrey (1906) of the Special School of Public Works (Paris) in his text-book upon improvement of rivers with free flow of current, basing his instructions upon the results of the improvement works of 1882-

1905 upon the lower Rhone, states the necessity of preserving and regularizing bars, as follows:

* by narrowing * * * in a river with a freely movable bottom, unless the erosion of the bottom be limited by means of appropriate works, the low water level will be notably lowered (p.123). Principle: * * * We arlmit * * * the conservation of bars and the conservation of the staircase shape of the profile along the axis of the river * * * (p. 124). The method * ** has simply for its object, to change back all bad crossinge to good crossings. The work to be done to secure this result consists in:
"First. Concentrating all the low-water flow into a single bed.
"Second. Making permanent in position the pools and bars within this bed.
"Third. Regulating the orientation of bars. The constructions employed for such purpose are * * * and transverse spurs. These spurs have different names according to their purpose: * * *
"Fourth. If they protect the bottom of the bed over' a considerable part of its breadth, crossing the thalweg, they are bed-sills." (Pp. 126, 127.)

The gorge between Grays Point and Commerce exemplifies the effect of natural conditions similar to those that should be produced by artificial control; for 7 miles the river is confined between stable banks, the low-water and bank-full widths compare favorably with corresponding mean widths for the district, and the slope is only slightly less than the mean slope; at certain places the bottom is fixed, or practically so, resulting in a nonchanging cross section, and except for isolated bowlders and reefs, the required width and depth are found.

Permanent navigable depths not only exist throughout that reach, but extend for 3 to 4 miles above and below.

It is proposed to create an essentially parallel condition by means of works for complete regulation in parts of the river where the cross section varies from the one required to maintain a navigable depth of 14 feet.

For such localities, the required cross section having been determined, the boundary lines or the stream will be conformed to that section by the building or erosion oi the banks to the desired alignment by side-contraction works, the protection when necessary of all unstable banks, whether naturally or artificially produced, and the determining in elevation of the bottom at the necessary intervals by sill dams or cross weirs. To obtain this result, the weirs will be placed across the alluvial bed of the stream and approximately normal to the chosen thread of channel. The relative position of the thalweg of the stream and of the weirs crossing the entire stream bed to the bank-full stage may be described as resembling a broad arrow pointed upstream, in which the shaft lies along the thalweg and the barbs indicate the two sections of a cross weir meeting at a very flat angle in the propoed channel. The flat angle thus formed by the two spurs will have the necessary effect on the spill over them to train the currents into a central channel. Thus, with predetermined form of cross section, the low-water channel would always be over the same portions oi the weirs, the "navigable pass sills," with crests placed on uniform slope.

As to necessity and shape of bed sills, Professor Hourrey states:
"Wherever the bottom is very easily eroded, it is made permanent over its entire breadch by * * * bed sills; they are given the shape of a chevron, the point turned upstream and placed on the axis of the channel, whose position it determines by their fixing the maximum depth." (P. 138.)

As far as practicable the natural cross section of the stream and the existing lowwater channel are to be utilized. The thalweg would then be trained along the concave bauks, approximately as they may be found when the improvement is undertaken, and in so doing would cross the stream bed wherever a reverse curve occurs in its general éfrection.

At these places occur the bars or natural dams previously mentioned, which, as regards navigation, may be classed as "bad crossings" or "good crossings." a bad crossing or passage is generally found where the river is excessively wide, the bar extending across the stream on a long diagonal line, over which at low stages the water spreads out in a thin, broad sheet, and the ends of the successive pools extend along the separating bar far past each other, hugging opposite banks. At such localities the channel (generally undefined at low and medium stages) is found on a line almost squarely across the stream or approximately normal to the separating bar and anywhere between its ends.
beficient depth and abrupt changes in bottom and surface and in channel direction result in sharp local fall over the reef and render such a crossing extremely difticult for navigation.

A good crossing or pasage is found where the low-water channel is confined in a bed not too wide; conditions are the reverse of those on the bad crossing; the bar,
instead of the channel, extends almost squarely across the stream, and the ends of the pools, being on the same axis, permit direct and concentrated flow from the upper pool to the lower.
The improvement of any stream with unstable alluvial bed, to obtain for it a fairly uniform cross section, slope, and depth, and with the same volume of discharge, to increase the depth over that normal for the stream-that is, to add to the navigable depth over crossings-requires the regulation of the entire bed of the stream and not merely of a part of the bed, as is done by side-contraction and bank-protection works alone.

Wherever in contracted reaches the bed is ignored in designing regulation works and the building of new banks is given an undue importance, the bottom will be subjected to decp erosion, resulting in the detriment of regimen in the reaches above and below.
Jacquet holds that-
"In a water course with variable cross section, discharge, and velocity there can be no permanent equilibrium from the moment that the discharge is suflicient to act on the gravel composing the bed. As a general thing the bed is constantly in motion." (Merrill's translation, p. 49.)

Of attempted regulation by contraction alone, Janicki says:
"Regularization by contractions is seductive at first sight, because it seems to exactly meet the necessities of the case. It is also seductive by its simplicity; but in reality it is a bastard systern that has only one undeniable merit, that of being seadily defended. Its defenders do not pretend to deny its lack of success, but for any given case they have characteristic explanations.
"Regularization, with bank protection, is often indispensable in order to defend bottom lands from scour; but this is all it is good for, and the improvement of the navigation of the river must not be expected.
" * * * in a river with movable bottom, works of contraction cause a deepening of the bed at the shallow places, thus inevitably producing a lowering of the level in the pool above, and spoiling the pools still farther up, which formerly were deep enough." (Merrill's translation, pp. 181, 186, and 193.)
The creation of troublesome recurring steps of sharp local fall has long been recognized, and the ultimate result of cutting down an upper step to remedy conditions at any one point is well expressed by Pasqueau:
"If we remove one step of the stairway in order to get rid of this annoying obstruction, the preceding step becomes still more troublesome; and if we suppress several consecutive steps, we find ourselves confronted by a veritable wall, which it is impossible to surmount by any means.
"Scour in a homogeneous soil caused by contraction will continue indefinitely, whatever may be the initial height of the dikes, if the slope remains constant.
"The deepening of bars by contractions * * * has, as a necessary and inevitable consequence, a progressive and indefinite lowering of the water phane which renders it impossible to improve rivers with movable bottoms by these methods." (Merrill's translation, pp. 71, 74, and 76.)
Jacquei clearly brings out the difliculty of producing only the proper depth of scour by the mere narrowing of an alluvial stream:
"By forming a sufficiently contracted low-water channel we can always bring to bear a scour powerful enough to cut away the bar, and to secure a depth of water greater than that required for navigation. But the difficulty consists in restricting this action within proper limits, and as we can not avoid doing more than is strictly necessary, we must try to go only so far as not to compromise the ultimate improvement of the whole section." (Merrill's translation, p. 44.)

Sill dams or bottom ridges as a means of controlling stream lines and for the purpose of improving navigable depths have been in use for many years, especially on European rivers, and in certain instances they appear to have been evolved from the indiscriminate use of side-contraction works, and adopted to remedy the inevitable consequences resulting from such use of those works, as the necessary means again to distribute over a longer stretch the rapids and prohibitive slopes caused by attempting regulation without complete control of streams with beds of a yielding nature.

In commenting on works designed solely for the protection of the bottom of the stream, Jacquet says:
"It ought not to appear more extraordinary to try to regulate the bottom of a river than it is to attempt the rectification of its banks. For *** all rivers with movable bottoms, experience has made it clear that instability of the bottom is one of the greatest obstacles to a lasting improvement. The Germans understood this long ago, and by 'grundschwellen' they have obtained on their rivers a regularity which each day makes more perfect." (Merrill's translation, p. 168.)

No case so extreme as to constitute an absolute barrier has thus far occurred on the river section here considered, nor immediately above St. Louis, at the Chain of Rocks, where the worst conditions as to fall exist; hence it is thought that cross weirs placed about 13 miles apart would effect the satisfactory improvement of this reach, and it seems safe to predict that with the same spacing of weirs an almost uniform slope can be maintained in the other reaches of the district where the regimen has been but little if at all affected, and where the only changes in the natural slopes, and those changes but slight, will be a readjustment for natural river subdivisions rather than an actual alteration.

In this project the discussion is devoted mainly to an elucidation and accentuation of the use of cross weirs for stream-bed protection as a most important feature of the improvoment of an alluvial river by regulation. On account of their function in controlling the transverse profile, and of their interdependence and effect in maintaining the requisite slope, to which end they will extend across the entire stream bed to the bank-full stage, they have, in this project, been called "cross weirs;" this is justified, it is thought, not only to avoid confusion of terms, but, also by the fact that, in this country at least, they have not yet been used in so extensive a plan nor on so large a scale as now proposed.
Construction works for the narrowing of the stream, and revetments or other works designed for the protection of the resulting, or of the existing, bank lines, ard their use, either separately or in combination, for the closing of chutes and secendary channels, are not only so well known on this section of river, but are in such general use on other rivers that a fuller or more detailed statement of the purpose served and the results attained by them has not been deemed requisite in a preliminary determination of the possibility and feasibility of holding the channel depth by means of the cross weirs after it has been obtained by the usual contraction works with their necessary accompanying bank protection. Nor are any further details than are given considered necessary to show the place in this project occupied by hydraulic dredging as an accessory in accomplishment of the final result or as an aid in maintenance.

The side-control and bank-protection works proposed-wing dams and revet-ments-would serve as follows: Wing dams built from the convex banks would give the required narrowing; revetments or bank protections would hold the concave banks. Stability of banks might also be materially increased by draining near-by swamps and lowlands.

Schlichting' comments on the placing of works for side regulation are thought to cover the entire field concisely:
"In practice it is often found that while the main banks are essentially straight, the channel is tortuous and wandering from one bank to the other, so that in practice concave and convex shores have alinost always to be taken into consideration. Speaking, then, with reference to the channel of a stream, the convex bank will be built out with long spurs, the concave will be held by training walls or bank protection, and thus the double advantage is gained that the bars which are already connected with the shore will be retained in position, while the deep water which will follow the training walls will be at a distance from the heads of the spurs." (Abbot's translation, p. 174.)

The complete control effected with the worke for side contraction and bank protection and the cross weirs will limit erosion of river bed, botom, and banks; energy of flowing water and resistance of river bed will be in practical equilibrium; uniformity of slope at all stages will be approached; an ideal river regimen will result, followed by permanence of navigable depths.

The nature and effect of the submerged dikes in particular, and of the entire system of bank-protection and side-contraction works when used with them is described by Vernon-Harcourt, with reference to the actual use of such combination, as follows:
"These submerged dikes are kept below the limit of the navigable depth; and they serve, like the submerged spurs projecting in front of the concave longitudinal training walls, to regulate the depth of the channel, just as the other works regulate the width. Their lorm, moreover, directs the main current into a central course. By the judicious and gradual adaption of these different forms of training works to the various requirements of the channel, the fall, depth, width, and course of the low-water channel have been regulated * * * without unduly interfering with the natural condition of the river." ('The Training of Rivers, p.9.)

Preliminary calculations and the study of a large number of cross sections indicate that by means of permanent works for narrowing the stream, holding the banks in position, and conserving the slope by protecting the bottom, a channel having a depth of 14 feet below low water and a width of 500 feet can be produced and maintained in the river section under discussion at a reasonable cost, considering the end
attained, and this without material increase in mean velocities or undesirable change in the elevation of any water surface from extreme low to the bank-full stage.
Higher stages might be confined within levees permitting a river width of about 1 mile, which would raise the extreme flood plane a few feet in localities not now protected by levees. Cross levees, following the principal oreeks, would act as checks in case the main levees were topped or broken by floods. No estimate for levees is included here, as it is thought all old sloughs and river beds should be gradually filled giving banks of fairly uniform gauge height, before a levee project is considered.
The nature of the proposed works when in situ would be such as to obviate any possibility of their requiring reconstruction except for two reasons: One, a required change in location of the navigable channel, can almost certainly never arise, and could be considered only for such cause as would justify the expense of reconstruction; the other, the obtaining of depths greater than 14 feet, can, to the extent of about 2 feet, be met by slight additional works without removing any part of the original construction, by sufficiently narrowing the low-water channel to secure such further depth at that stage, without changing the elevation of the sills. This would raise the plane of low water throughout, the entire district. Immediately above St. Louis the slope would be reduced, and for a short distance above the Ohio River it would be increased, and there, if necessary, it could be adjusted to the requirements of navigation by a movable dam or by a further extension of the cross-weir system.

The river and harbor act of March 2, 1907, specified the consideration of an added flow of 10,000 or 14,000 cubic feet per second. After the proposed regulation works have been fully completed, 10,000 cubic feet would add about $1 \frac{1}{2}$ feet to the nevigable depth over the weirs at low water, and 14, 00 about 2'feet. But without complete regulation of the river-controlling stream bed and water planes--the increase of depth due to any added flow is indeterminate.
Pilot I. II. Baldwin published a statement, over his signature, that when the river had fallen to the bank-full stage after the flood of 1844 he with difficulty found a 9 -foot channel between St. Louis and the Ohio. (Report, Mississippi River Commission, 1881, p. 243).

By combination of side contraction of the cross section at weirs, and of the added flow, the plane of the zero stage discharge could be raised about 4 feet, or to the present plane of "standard low water," thus giving an 18 -foot channel for every day in the year unaffected by ice, and a 20 -foot channel for the greater part of the year. The effects on high and flood stages from contraction of the low-water prism and from the added flow would be but slight.

The flood problem should be carefully considered before adopting any particular method of improvement. Unfortunately we have no direct measurement of volume for the great flood of 1844 , estimated by two writers as $1,360,000$ and as $1,200,000$ cubic feet per second; but several of the original marks of that flood, determined in elevation for the first time by the Board's survey, show that, in parts of the valley where present bank conditions are about the same as those that existed in 1844, this flood was 6 feet higher than that of 1903, although at St. Louis, in the contracted reach, the 1903 flood lacked only 3.3 feet of the height actually reached by the 1844 flood at a time when there were no other than natural restrictions to the width of the stream. The flood of 1844 spread out from bluff to bluff (3 to 7 miles apart) from St. Louis to Grays Point, and was about 10 feet above the river banks. At Grays Point it was 8.6 feet higher than the gauge elevation for the flood of 1903. The flood of 1785 was equal in height and probably in crest volume to that of 1844. The recurrence of such a flood would, because of the contracted part of St. Louis Harbor, seriously threaten the proposed east side levee, as well as existing improvements, and the Eads Bridge superstructure would be greatly endangered by the effects of accumulated drift on the crest of such a flood, abnormally raised; but this could not damage regulation works such as are here proposed, as the uniform slope, and clear, regular river bed would have a tendency to reduce the flood plane without increasing the mean velocities.

Entirely outside the question of the available depths, there naturally occur, in this section of the river, and at different seasons, certain other interferences that either tend to restrict or totally prevent navigation, hence a project for the improvement of the open stream should, if possible, provide for the overcoming, or at least for the minimizing, of these troubles.

Of these, the simultancous occurrence of low water and ice constitutes the only obstacle of really serious magnitude. It is therefore almost exclusively the low-water regimen and its attendant difficulties that are to be considered.
The only other troubles are fogs and extraordinary floods. Only brief delays are caused by fogs; navigation is not stopped by them. They are not preventable, and the only provision that might be made for them lies purely within the regulationa governing navigation and does not pertain to a project for improvement.

Floods exceeding 35 feet, St. L̇ouis gauge, are uncommon, and generally of brief duration. In the last sixty-four years there have occurred only 5 such floods, total duration sixty days; and in the same period only 15 floods, including the 5 extraordinary floods mentioned above, have exceeded the bank-full stage, with a total duration for all over-bank stages of 284 days in the sixty-four years. Except for such extraordinary floods, with great quantities of drift and increased channel velocities, navigation is not seriously interrupted by floods.
There is no method known for obviating these troubles, but permanence of the general river conditions as to location of thalweg and fixation of controlling bars will do much toward lessening the practical difficulties presented.
As a rule, ice interfering for a period of varying length with the movements of boats, even if not entirely suspending traffic, occurs each year.
From 1865 to 1.908 , forty-three winters, the river at, St. Louis remained entirely open thirteen winters, but navigation has been stopped by ice 43 times in thirty different winters for a total of 1,305 days, giving for the years in which navigation was thus suspended an average closed period of 43.5 days. The longest closed season, 78 days, occurred during the winter of 1880-81. Considering the entire period of forty-three years, the average closing of navigation by ice was 30.35 days per annum. ('This data is taken from the records of the St. Louis Merchants' Exchange.) Severest ice conditions generally occur at very low stages. Ice forming along the river bank at a temperature of about $20^{\circ} \mathrm{F}$. and less is continually detached by the current, the quantity increasing as the temperature falls, and very rapidly if a heavy precipitation of snow accompanies. By attrition it is reduced to the form of mush ice, and heavy masses are cemented together by regelation. The moving mass is often several feet in thickness, and when in this state it arrives at a part of the river unusually narrow or shoal the ice is compacted on the surface and very quickly solidified under pressure. Other ice following adds to the mass above and below until a complete dam or ice gorge is formed, arresting both ice and water till the accumulated head fitrnishes energy cither to break through or cut around the gorge, or else to lift it high enough and detach it from the sides, unless these effects are anticipated by a thaw. The heavy runs of ice from the upper rivers thus generally pass out on medium and sometimes on high stages.
It is not thought possible entirely to prevent the formation of ice gorges by any human device, but a method of improvement that in general smooths the passages and reduces the inequalities of the river will diminish the tendency to the formation of such gorges by the removing of the natural conditions that aid them and by the freer flow of deeper bodies of water.
The plans outlined are believed to be conservative and aafe; they contain nothing wholly untried, being based upon rational combinations of tested river improvement methods; they are reasonably sure of success and will give the required navigable depth without disturbing the equilibrium of the river. The problems of construction do not involve new features, and work can be carried on continuously during all seasons and at all stages without being retarded except by extreme floods or by ice. By conducting operations at various distributed parts of the district improvement of navigable depths will be immediate as the works are installed, and the required depth of 14 feet below low water can be obtained throughout the district long before their final completion, their effects prior to that time being supplemented by dredging to obtain the required depth at unimproved localities, and the permanence of depths so obtained would be assured by extension of the works.
All forms of construction involved are of a reasonably permanent nature, especially below the low-water line, almost indestructible by floods and suffering but little from ice; above that line, though slight settling may occur through deterioration of wood-constructed parts, they will become reasonably permanent as the desired grade is produced and paved with stone.
In the actual execution of this projectadvantage would be taken of all construction works now existing in the river that would in any manner aid the proposed works, and it is probable that nearly all the present works, though not coinciding definitely with the lines of the new project, will in one or another feature, by constituting in effect a reenforcement of the different works-an additional line of defense against the various destructive agencies-lend a greater security to the permanent regulation works of this project.
Profiles; maps, and cross scctions.-A complete set (in 20 sheets) of maps, profiles, and a sheet of typical cross sections-submitted in portfolio form-shows the proposed regulation works and an improved open river throughout the district. There has also been prepared and follows herewith, as a part of the project, a small scale map with cross sections and profile of a typical stretch of the river, showing conditions before and after the proposed improvement has been effected.

As the successful improvement of the river under this project must to a considerablo extent depend on the low-water plane proposed, one that is safe but not needlessly low should be selected and need only be low enough to comprehend all stages when navigation is not obstructed by ice, as the selection of a lower stage would have no practical advantage. A zero stage, St. Louis gauge, volume of discharge about 34,000 cubic feet per second (discharge curve, 1897-1904) is considered amply low. Such a stage occurred in 1904, at a time when there was no ice in the district nor within 200 miles. And as this is the lowest stage of which there is authentic record, with the river open to navigation, it will be used as a basis in determining such low-water plane. Lower stages are always caused by ice.
The available data on luw-water slopes, gauge records, and discharge measurements in St. Louis Harbor indicate that the low-water plane at the Market Street gauge has lowered about 2 feet during the last thirty-five years.
The restoration of the former low-water plane would exert a beneficial influence in the reaches above and below the harbor and would be of especial benefit to the navigation interests in the former reach, since at Chain of Rocks the channel could be deepened to 14 feet whenever required without the otherwise inevitable detriment to the regimen still farther upstream. The restoration of the former plane is entirely feasible, and as the top boundary of the volume now passing at the present zero stage would be fixed at 2 feet on the St. Louis gauge, this mark has been selected as the upper controlling point of elevation for the proposed low-water plane in the St. LouisCairo district.
At the mouth of the Ohio River a corresponding and equally safe low-water plane for navigation must lie between the lowest recorded stage (when the river was probably closed by ice), and the mean of lowest annual stages, and as the determination must in a measure be arbitrary rather than exact, the stage registering 2 feet on the Cairo gauge (in Ohio River 2 miles above its month) is chosen for control at the lower end of the district, and the allowance for a mean slope of 0.2 foot per mile between Cairo and Columbus, Ky., determines the elevation for the proposed low-water plane at the mouth of the Ohio River.

The mean of 49 lowest annual stages at Cairo, including 6 prior to 1859, given in Humphrey and Abbot's Report, is 4.4 feet. The lowest waters recorded are - 1.44 feet in 1855 and - 1 foot December, 1871.

That a zero stage, St. Louis gauge, approximates a 2.8 -foot stage (Cairo), when the Ohio River is correspondingly low may be derived from gauge records and hydrographs.

A zero stage, St. Louis, occurred in 1904, when the Cairo gauge read 3.1 feet, and was one of the lowest known navigable stages in the Mississippi River. One of the lowest boating stages in the Ohio River occurred during the summer of 1908, when the Cairo gauge read 4.3 feet, but the middle Mississippi was not remarkably low, there being 3.4 feet on the St. Louis gauge.

On the profile accompanying the report on "Examination of Ohio River, 1908," approximate low water from Louisville to Cairo is shown, having a gauge height of about 2.3 feet at the latter point.

That the selected elevation, 2 feet on the Cairo gauge, will adequately meet the requirements is further indicated by the action of the Mississippi River Commission in tentatively assuming the 4 -foot stage at Cairo as a standard low-water plane of reference for dredging operations.
The top boundary of this low-water volume having-been flxed at the ends of the district, an intermediate controlling point must be determined, as a uniform slope of low-water plane between these two end points of control would involve lowering the plane 7 feet in the 7 -mile gorge between Grays Point and Commerce, and although desirable is considered impracticable. This gorge, some sections of which are fixed, or practically so, naturally divides the district as regards mean slope, and the section of river below the gorge is different in character from that above, owing to absence of rock banks and to the influence of the greater fluctuations in stage of the Ohio River.

The existing low-water plane as regards mean slope is relatively lower at Grays Point than at Commerce, and as the 2 -foot mark on the Commerce gauge corresponds to the stage of the 34,000 cubic feet per second discharge at St. Louis, it iis selected as the intermediate point of control.

These three fixed points, adopted as determining the low-water plane on which the proposed regulation works for the district are based, give, with the new alignment, a mean blope of 0.552 font per mile in the upper, and of 0.761 foot per mile in the lower section of this river district, the lower end of the 7 -mile gorge being the natural divisiou point.

House Doc. Mo. 50 ; Gist Cong.. Ist Sess.

Examinations of cross sections and profiles showing low-water plane, river bed, and bed rock, demonstrate the entire practicability of establishing a uniform slope throughout each of the two natural subdivisions.
The data for the determination of the existing low-water plane of irregular slope and of the proposed low-water plane-natural mean slope line-are given in the following table:

> Low-water plane of Mississippi River.

ST. LOUIS, MO. (BISSELL POINT) TO CAIRO, ILL. (MOUTII OF OHIO RIVER).

Stations.	Channel distance in milles from Eads Bridge.		Elevation in feet above Memphis datum plane.		Differences in elevation, in feet, for proposed plane.
	Iow water, 1907.	Proposed allgnment.	Present lowwater plane (dlischargo 34,000 enbie feet per second).	Proposed low-water plane (cllscharge 34,000 cubic feet per second).	
Bissell Point.	3.30	3.3	388.1	391.2	+3.1
Eads Bridge..........	0.00	0.0			
St, Louls (MARKET S'TREE'I)	0.40	0.4	387.1	389.1	$+2.0$
United States Engineer Jepot.	3.20	3.2	386.6	357.6	+1.0
Jetferson Barracks.............	10. 82	10.8	384.6	383.4	-1.2
Waters Point.	22. 40	21.5	378.9	377.4	-1.5
St. Nicholas Rock	34.30	33.1	371.3	371.0	-0.3
Brickeys.	45.10	44.3	365.4	364.9	-0.5
Little Rook Landing	5xi. 45	54.8	359.0	359.1	+0. 1
East Kaskaskia. . .	(it). 07	64.5	349.2	353.7	$+4.5$
Chester.	72.95	71.2	347.6	350.0	+2.4
Bishop Landing	82.28	80.0	342.3	345.1	+2.8
Red Rook......	80. 20	80.8	335.1	341.4	+3.3
Grand Tower	103.30	101. 2	332.4	333.4	+1.0
Moccasin Springs	116.80	114.8	324.5	325.9	+1.4
Cape Girardeau.	130.78	129.0	314.8	318.1	$+3.3$
Grays Point	131.82	135.4	311.8	314.5	+2.7
COMMERCE.	143.67	142.2	311.0	310.8	-0.2
Hacker Towhead.	15×1.48	155.3	303.7	300.8	-2.9
Thompson Lauding	163.70	162.8	297.0	295. 1	-1.9
Becehridge.....	160.45	170.3	290.9	289.4	-1.5
Bird Point. .i................	181.36	182.3	281.0	280.3	-0.7
Cairo (MOUTH OIMIO RIVER).	152.50	183.6	280.1	279.3	-0.8

Controlling points in capitals.
Proposed mean slope in upper section, 0.5522 foot per mile.
Proposed mean slope in lower section, 0.7609 foot per mile.
Mean slope between oxisting low-water plane at Chain of Rocks and proposed low-water plane ar Bissell Point is 0.83 leet per mille.
Memphis datum plane is 190.84 feet below the zero of the United States engincer gauge at Memphis, Temn., 420.84 feet below St. Louts City Directrix, and approximately 6.8 feet helow mean Guif level.

The existing low slope in the gorge (about 0.3 foot per mile) will be increased to the propiosed mean slope, and the existing mean slope in the reaches above correspondingly decreased.

The lowering of the plane in the places indicated is entirely practicable and well within observed changes in the low-water plane. It is proposed to raise the plane at the only points of critical influence-in the gorge above Commerce, in the vicinity of Grand Tower, and at St. Louis to improve the Chain of Rocks passage. The greatest change of plane-a raise-occurs at East Kaskaskia, where disturbances, due to a cut-off occurring in 1881, have been only partly readjusted by nature, and the reestablishment here of a uniform mean slope will greatly improve a place that is, so far as navigation is concerned, one of the worst on the river. The proposed plane at East Kaskaskia agrees closely with the low-water plane of 1872 for that lucality. The plane is lowered most at Hacker Towhead, a seetion of river wholly alluvial, the depth to bedrock being 100 feet or more; and at this locality the low-water plane of 1872 was below the proposed plane.
The mean slope in the lower section, 0.761 foot per mile (38 per cont greater than in the upper section), is obtained from a distribution of the same total fall as is now found between Commerce and Cairo over a somewhat longer distanco produced by the new alignment. Only occasionally are towboats obliged under the present conditions to divide tows and double trip upstream a part of the way to Commerce,
and the proposed mean slope, occurring only as a maximum, and then only when influenced by an unfavorable combination of stages in the two rivers, will be a distinct improvement over the present irregular slope.

In the upper section the existing mean slope from St. Louis to Commerce is 0.531 foot per mile, and the proposed mean rlope gives the but slight increase of 0.021 foot per mile over that, with the very grea :dvantage of uniformity instead of the present alternation of flat and steep slopes, : ase latter in general considerably exceeding the proposed mean slope.

DEPTHS AND WIDTHS.

That a navigable depth of 14 feet with the natural low-water discharge and the bottom width of 500 feet prescribed by the Board for a regulated channel can be obtained by narrowing the river and fixing the bottom and banks, is generally conceded by those familiar with the Mississippi River and works for its improvement. A slope comparatively steep for so large a river constitutes the principal obstacle to producing and maintaining the required depth, but it is believed even this difliculty will be overcome by the pioposed improvement, works.

At low water the mean depth of the proposed controlling cross sections, that is, over cross weirs, will be, for any subdivision of the river, considerably less than the existing mean low-water depth of that subdivision.

The crests of the navigable pass sills or horizontal portions of the cross weirs that establish the controlling least depths of the thalweg are to be placed at a depth of 15 feet below the adopted low-water plane which will be maintained at or a little above its theoretical elevation by decreasing, if necessary, the projected cross-sectional area of the low-water prism over the cross weirs. A suflicient decrease in area for this purpose may be accomplished without interfering with the requirements of navigation by making the side slopes stenner in the lower part of the cross section and llatter in the upper part.

The dimensions to be given to the cross-sectional area of the river at cross weirs are susceptible of considerable change and may be modified toward increased depth with almost no increase of cost. A narrowing of botlom width to 300 feet, or even the adoption of a triangular cross section, are possibilities worthy of consideration.

Between weirs the deeper pools will have a tendency to fill with the heavier materials pushed and rolled along the bottom, but there also will be a counteracting tendency for the depths to bo greater than on the weirs since in the low-water bed (uniformly narrowed by side-contraction works) will be found mean depths greater than would obtain in the same gection of natural river, and they will create enough velocity to cause scour of the river bed, thereby increasing the cross-sectional area sulliciently to influence the velocity, which will thengradually diminish until it is in equilibrium with the resisting power of the material composing the bed.

A protile along the thalweg of the river when so improved will present a series of gradual and fairly uniform ridges or undulations, their cresta being the sills of the cross weirs, followed by slopes quite abrupt, the anterior slopes being correspondingly flattened. This downward pitch and upward slope of the thalweg, in any particular section of the river, will of course largely depend on the character of the materiala composing the bed of that section and on the current velocities obtaining for different stages of the river, but in general the profile of the thalweg when the river is completely regulated will closely resemble the typical or probable river bed, as shown on the profiles and cross sections.

A depth of 15 feet should result at all navigable times. According io records of the St. Louis gauge for the last forty-eight years a stage of at least 5 feut obtains from March to Nugust, $^{\text {assuring positively a ship channel of } 20 \text { feet dopin for about one }}$ hundred and seventy consecutive days per annum (more than half the period normally open to navigation), and probably for three hundred days, under this method of improvement.

In the forty-eight years the consccutive days in each year when the stage has been 10 feet or more on the St. Louis gauge have been as many as two hindred and sixtyseven, and as few as fifty, the avorage boing one hundred and seventy-two; and there have been only five years in that time when a 10 -foot stage did not continuously prevail for at least one hundred and twenty days. That the increase in channel depth would not always be indicated by the gatuge height is very probable; but under this method of improvement, with the river uniformly narrowed and with only a limited amount of local erosion to form obstructive bars, a 24 -foot channel should obtain for from fifty to one hundred and fifty days annually.

To maintain a 14 -foot depth to a landing that is not on the same side of the river as the steamer channel, or to landings on opposite banks when the channel is in mid-
stream, occasional or continuous dredging may be required. The cost of such dredg. ing must be borio by the interests affected, the United States undertaking only to supply the trunk line for navigation between the principal cities, towns, and natural landings.

Widths for low-water, bank-full, and intermediate characteristic stages have been determined from the conditions of slope and discharge by observing the widths assumed by the natural bed at various stages and at controlling sections and from actual known results in the district from the use of side-contraction works. A large number of cross sections of the river bed, especially in those reaches where the local slope approximates the moan slope for the entire river section under consideration, furnished valuable data in deducing the mean uniform widths. For the upper, the St. Louis-Commerce section, the widths tentatively adopted for the low-water and bank-full stages are 1,700 and 3,000 feet, respectively; for the lower, the CommerceCairo section, with its steeper slope, they are 1,500 feet and 2,750 feet. In St. Louis Harbor these widths have already been fixed by the Secretary of War at 1,500 and 2,000 feet.

Widths for intermediate stages and dimensions of controlling low-water sections in the two subdivisions are shown on the sheet of typical cross sections.

Elements of the cross sections studied in connection with velocity formulæ indicate that these normal widths afiord a sufliciently narrow low-water bed to give the required depth, and, for higher stages, a bed of sufficient capacity for unobstructed flow.
These normal widths should be carefully maintained in crossing from one bank to the other, and the proposed works have been designed with that object in view. But uniformity of widths is not intended to be absolute, nor are the widths as shown on the maps always uniform, and at certain localities, as Chester, Grand Tower, and Grays l'oint, it may never be considered practicable to remove all portions of the high banks lying within the proposed prism, although, to a certain extent, they constitute obstructions to uniform mean slope and flow. Until such changes in widths do become necessary the natural and deeper sections at these places will be utilized, but all obstructions within the standard cross sections and within the limit lines, as shown, should be removed by dredging, blasting, or otherwise as soon as may be repuired.

The following opinions by Jacquet concerning requirements for the successful training of rivers are considered worthy of quotation:
"The action of a river upon its bed depends upon its discharge, and, for any given diseharge, upon its duration. The most permanent state corresponds to that of a moderate discharge of sufficient magnitude to sensibly act upon the bed, and sufficiently long continued for this action to be quite efficacious. We can imagine that a mean bed is thus formed (that is to say, a mean position and profle of the thalweg) for a certain mean condition of the river. This bed is modified in one way successive scour and fill) by high water, and in an opposite way (successive fill and scour) by low water. Therefore the low-water navigable bed should be contained within the mean bed, and as the stages below the mean stage can not generally have a very energetic modifying action, we immediately conclude that the low-water bed ought to be established as far as possible on the same thalweg as the mean bed. So, also, in order that the mean bed may be securely fixed and not liable to be completely demoralized by the higher stages or by extraordinary floods, it is advisable that it should not materially differ from the thalweg of higher stages, and, as far as possible, it should make but a slight angle with the direction of the current during overflow.
"We are thus led to formulate into a rule the requirement of concentrating as far as possible during low water the entire river into a sufficiently narrow low-water bed, and, on the other hand, of giving the river its full width for the flow of water when above the height at which the depth required for navigation is assured." (Merrill's translation, pp. 49 and 52.)

Should more complete hydrological data and actual experiments in construction prove that the widths should be changed, this may be done without vitiating the project in any degree, nor will it increase the estimated total cost, this being ample for such a contingency; moreover, an increase or decrease in length and cost of wing dams would practically be offset by an equivalent value in cross weirs correspondingly decreased or increased, and the required amount of revetment would be practically unchanged for any reasonable width of river.
In the following tables (for the surveys of 1907, Board on Examination and Survey of Mississippi River, and of 1884-1889, Mississippi River Commission) are shown for certain river subdivisions or stretches the mean widths and depths as derived from the measurement of a large number of cross sections; also mean velocities obtained from the areas of those sections and the known discharges for the stages considered.

MISSISSIPPI RIVER, ST. LOUIS, MO., TO CAIRO, HLL.
Table of mean depths, widths, and velocities, by river stretches, derived from the cross sections of the hydrographic survey of 1967. Also the total fall and the fall per mile, as derived from the normal low-water plane.

Subdirision of district.	$\begin{gathered} \text { Length } \\ \text { of } \\ \text { stretches. } \end{gathered}$	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { cross } \\ & \text { sections } \\ & \text { consid- } \\ & \text { ered. } \end{aligned}$	Normal low water (0.0 feet, St. Louis gauge, $34,000 \mathrm{sec}-$ ond-cubic feet).			Mean stage of river (12.6 feet, St. Louis gauge, 158,000 sec-ond-cubic feet).			Bank-full stage (30.0 feet, St. Louis gauge, 608,000 sec-ond-cuble feet).			Fall in feet.	
			Mean depth.	Mean width	3́ean relocity.	Mean depth.	Mean width.	Mean velocity.	Mean depta.	Mean width.	Mean velocity.	Total.	Per mile.
	Milles.		Feet.	Feet.	Ft.per sec.	Feet.	Fect.	Fit.per sec.	Feet.	Feet.	Ft.per sec.		
St. Louis (Market street) to Waters Point.	22.0	109	11.92	1,776	1.60	18.79	2,595	3.24	27.35	3,618	-1.13	8.2	0.373
Waters Point to Little Rock Landing.	34.1	152	11. 41	1,802	1.65	16.24	3,036	3.20	23.36	4,407	5.89	19.9	. 584
Little Rock Landing to Chester......	16.5	80	11.13	1,597	1.91	14.83	3,181	3.35	22.66	5,248	5.10	11.4	. 691
Ches.er to Grand Tower......	30.4	131	12.53	1,690	1.61	17.33	2,740	3.33	27.32	3,746	5.92	15.2	. 501
Grand Tower 0 Grays Point.	33.5	141	11.11	1,758	1.74	15.44	3,261	3.14	24.21	4,464	5.61	a 19.6	. 583
Grays Point to Commerca...........................	6.9	29	14. 22	1,591	1.27	20.20	2,557	3.06	30.16	2,984	6. 73	a 1.8	. 270
Commerce to Beechridge........	25.8	102	10.32	1,828	1.80	14.61	3,486	3.10	23.04	4,998	5.26	20.1	. 780
Beechridge to mouth of Ohio River...............	13.1	38	10.54	1,249	2.58	14.76	2,511	4.26	24.19	4,363	5.74	10.8	. 828
above Commerce) Commerce to mouth of Ohio River (total balow	143.3	642	11.75	1,745	1.66	16.73	2,925	3.23	25.25	4,145	5.79	76.1	. 531
Commerce)...	38.8	140	10.38	1,668	1.96	14.65	3,219	3.35	23.35	4,819	5.38	30.9	. 798

a Gauge record at Grays Point has been corrected +1.1 feet.
The mean depth of a single cross section is obtaired by dividing its measured area by the measured top width of the cross section at the water surface; the mean depth of a river subdivision is assumed st the average of the mean depths of all the cross sections in that subdivision;- and the mean width of a subdivision is assumed at the quotient obtained by dividing the sum of all the areas by the sum of all the mean depths of that subdirision; and the mean velocity of a subdivision is assumed at the quotiant obtained by dividing the discharge for a given stage at St. Louis (discharge curve, 1897-1904, United States Engineer Office, St. Louls) by the average of all the areas of that Subdivision for that stage.

MISSISSIPPI RIVER, ST. LOUIS, MO., TO CAIRO, ILL.
Table of mean depths, widths, and velocities, by-river stretches, derived from the cross sections of the Mississippi River Commission hydrographic surveys (1884-1889).

Subdirision of district.	$\begin{gathered} \text { Length } \\ \text { of } \\ \text { stretches. } \end{gathered}$	Namber of crosssections considered.	Nor:nal low water (0.0 feet St. Louis gauge, $34,000 \mathrm{sec}$ ond cubic feet.)			Mean stage of river (12.6 feet, St. Louis gauge, 158,000 second cubic feat).			Bank-full stage (30.0 feet, St. Louis gauge, 606,000 second cubic feet).		
			Mean depth.	Mean width.	Mean velocity.	Mean depth.	Mean width.	Mean velocity.	Mean depth.	Mean width.	Mean velocity.
St. Louis, Market street, to Wvaters Point	Miles.	109	Feet.	Feet.	Ft.per sec.	Feet.	Fect.	Ft.per sec.	Feed.	Feet.	Ft.per sec.
Waters Point to Little Rock Landing...	34.1	159	10.25	1.80	2.02		2,713	3. 50	26. 70	3,734	6.08
Little Rock Landing to Chester.....	16.5	80	11.41	1.819	1. 98	14.51	3,312 3.022	3.29 3.33	23.14	4,687	5.59
Chester to Grand Tōrich.........	30.4	131	12.51	1.7:13	1. 60	17.49	2,716	3.39 3.29	27.20	5,351	5. 51
Grand Tower to Grays Point.	33.5	141	10.68	1.878	1. 70	16.03	3,185	3.09	25.87	4,104	5. 71
Grays Point to Commerce...	6.9	29	13. 64	1.975	1.26	19.84	2,671	2. 98	31.32	2,939	6.58
Commerce to Beechridge.........	25.8	102	7.45	2.238	2.04	13.11	4,332	2.78	23.79	5,208	4.83
Beechridge to mouth of Ohio River...-..............................	13.1	38	9.23	1.502	2.45	15.02	2,676	3. 94	27.94	3,963	5. 47
St. Louis, Market street, to Commerce (total above Commerce)..	143.3	642	10.91	1,765	1.77	16. 20	2,985	3.27	25.44	4,173	5.71
Comuerce to mouth of Obxo River (total below Commerce)....	38.8	140	7.93	2,007	2.12	13.63	3,837	3.62	24.92	4,871	4.09

Note.-In the above table the same cross-section lines and the same stage lines have been used as in the preceding table, and the iepths, widths, and velocities are derived to the same manner as in that table (p.76).

A.LIGNMENT AND LIMIT LINEG.

The proposed thalweg of the stream-the central line of the improved channclconforms as far as practicable with the existing low-water channel; also the new boundary lines for the bank-full and for the low-water stages agree in all their salient features with the corresponding natural lines of bank. Along a very markedly concave bank the high and the low stage limit lines are characterized by a comparatively small lateral separation, their distance apart being generally from 60 to 300 feet, the central channel line lying about 300 feet from this shore, while along the opposite, the convex bank, the foreshore is relatively broad, about 1,200 to 1,000 fect. In the adjacent bends, conditions are the same but changed to the opposite bank; and midway between bends, where inflections of the channel occur, the proposed cross section is approximately symmetrical. It is at these places, where the predetermined cross section must be maintained as perfectly as possible, that the necossity for a rational and well-planned alignment becomes apparent.

The alignment is made up of practically straight reaches and of bends with easy curvature, the general trend being toward sinusoids rather than tangents and circular arcs. In certain instances where bluffs are to be followed, the straight reaches are of considerable length, and provision has been made for revetments as required when new banks have been built on the opposite shore.

Where the channel follows, or is to be made to follow a rock bank, the natural high and low water lines, smoothed to a certain extent, have been drawn along that bank, or rather, the lines with easy curves have been drawn through salient points in the rock banks with the intention of building new banks from the deeper indentations to the limit lines, and removing some of the bolder projecting points, while the corresponding lines along the alluvial bank have been drawn parallel and at the previously specified distances from the rock-bank lines.
Modifications of the proposed general alignment have been found necessary for certain localities where established limits or fixed portions of opposite banks in narrow sections of river determine the location of the limit lines. Such places are found at St. Louis (fixed harbor lines); Claryville, Mo.; above Grand Tower, Ill.; and below Grays Point.
Where such river widths differ from those proposed as at the localities just mentioned, and at Commerce, Mo., where the change in mean slope occurs, the changes in width have been gradually effected, the limit lines converging or diverging as required to effect the changes in the least abrupt manner possible.
That the proposed new alignment is entirely practicable and that the proposed changes are generally insignificant, when compared with the natural lateral movements of the river, is shown by a comparison of the present shore lines with those of 1884-1889 survey, which have been placed on the maps. The greatest proposed changes from the course of the present low-water channel gencrally occur in bends where the areas to be eroded are actually parts of the river bed and have no real value as land. As compared with the low-water channel of 1907, an increase of 28 miles in the channel length is thus obtained in the Commerce-Cairo section. This is a distinct improvement, which ought to be carricd still further when regulation of this section with its steep slope is undertaken and, especially where lands beyond the old high banks have but little value, three or four bends could be eroded to a more than ordinary extent by means of wing dams extended from the convex banks and the resulting increase in length of channel would give a further and very positive betterment of conditions.
As stated, the limit lines generally contain the present low-water channel, but when possible to obtain better alignment without destroying valuable lands, this has been done, especially when the channel can be deflected against a rock bank.
The only reaches materially shortened are those below Red Rock, Mo. (mile 89 below Eads Bridge, St. Louis), and below Grand Tower, Ill. (milo 104), where deep bends in the left bank have been eliminated in favor of the nearly straight rock bank on the right shore. A slight loss in channel length thus occurs between St. Louis and Commerce, but this loss is more than offset by the increase of $2 t$ miles in the section below Commerce, where it is most needed, and the result is a net increase of 1 mile for the district.
A comparison of areas between the existing and the proposed high bank lines shows that when the proposed works are fully completed, about 5 square miles-only a small part of which is cultivated-will have been eroded, but more than 36 square miles will have been wholly or partly reclaimed, a balance of about 20,000 acres of valuable land in favor of this method of improvement.
The proposed alignment presents only 34 crossings of the channel from bank to opposite bank, which reduced number of crosesings constitutes an additional argument

In favor of artificial weirs as a regulative instrument to be substituted for the natural controlling bars.
Conditions that are found naturally to exist on the Mississippi River and the problem created by the removal of the controlling river bars, are stated by Assistant Engineer R. E. McMath, as:
"* * * A very perfect system of automatic dams and sluices exists which holds the reservoir action of the channel in reserve, and regulates the discharge so effectively that it must be recognized as an important conservative agent.
"The specific purpose of channel regulation, as commonly advocated, is to destroy the shoals which constitute the dams of this system. It is therefore prudent to inquire what conservative agent can be substituted for them.
"The area and impounded volume above every variable bar in the river may not be so important singly, but when the aggregate is taken it is enormous." (Report of Mississippi River Commission, 1881, p. 256.)

The proposed channel line, limit lines, wing dams, revetments, and cross weirs depicted on the maps have been laid down for the purpose of presenting a comprehensive plan of improvement, and are not intended to indicate exactly the final locations and alignment to be followed in construction.

All lines are subject to a certain small amount of change as they merely represent a system of complete regulation works equivalent to those which will be required in such a project.
In sections of the river following the bluffs and partly improved, there would probably be no material future alteration in the projected lines, but in a section including a bend in an alluvial bank no one can predict where the channel of the river will be a year hence. The channel could be forced out of a deeply eroded bend, and a iormerly existing bank line restored, but the more economical plan to follow is to hold the bends approximately as they may be found when the improvement is undertaken, and to extend the side-contraction works from the convex banks.

gIDE CONTRACTION.

Building of new banks to the required alignment and slope from the bottom of the river to the bank-full stage by means of permeable hurdlo dams closing the chutes and secondary channels, and by wing dams-- permeable hurdles and spur dikesextending to the low-water lines, will give tho required side contraction and confine the river to a single channel.

Wing dams have been projected to extend from the natural high banks to the limit lines, approximately normal thereto, but, directed slightly upstream. The narrowing may generally be done from the convex banks, but in nearly straight reaches, or where necessary to correct the natural alignment, this may be accomplished from either bank or from both.

The wing dams, as permeable hurdles, are to be built to the bank-full stage from the high banks to the bank-full lines, thence in the form of solid or permeable spur dikes as needed; each will slope on its required transverse profile to the adopled lowwater line and flatten on a broad foundation at that line. The submerged outer ends of these sloping spur dikes can be more economically and successfully held against attack' of the river than could the abrupt ends characteristic of the old-style hurdles built to a 25 -foot stage and terminating in a piling and stone tee head, or ice buttress.

Except those dictated by practical experience on this section of the Mississippi River, no specific rules have been followed in the spacing of wing dams as shown on the maps. They are closer along a straight or slightly curved concave shore, while on a convex shore the separation is greater, depending on the degree of curvature. The least intervening space between the wing dams of a series is 525 feet, and the greatest, 5,000 feet; a fair average would be about 1,500 feet.

Some of these wing dams extend from the present high banks to the bank-full limit lines only, especially along a rock shore where a good foundation is readily to be obtained; also on convex shores where the tendency of the river is to form a broad fore shore with flat slope. But in a greater number of instances, owing to reaches being partly improved, only the sloping spur dikes are required. Spur dikes have been shown on the maps in addition to the revetments in several bends, so as to provide ample resistance against erosion for those banks which will be subjected to the incessant attack of the river currents. Some of these dikes may be constructed to restore or to extend a section of bank to the required alignment, but most of them would actually serve as submerged spurs and detlect the attacking currents from the protected bank slope.

For producing accmion by arresting silt, building up new banks, incidentally reclaiming land, and for causing erosion and scour by concentration of water flow, the
permcable wing dam or hurdle will be adopted. In the form that has been used on this section of the river, primarily for contracting the stream and deepening the channel by removing obstructive bars, this construction consists essentially of one to three rows of piling or clumps of piling, driven on a line about normal to the currents and to the desired stage height, generally penetrating and holding in place a foundation mattress of the needed dimensions. Usually the piles are so placed when driven that they may be then drawn together and fastened in clumps of three or four piles each. Occasionally a wattling or vertical curtain of brush is conjointly used to hasten the formation of deposits below the hurde, but such construction is more liable to act as a training wall and either cause scour immediately above the hurdle or undermine its foundation, and the better practice is merely to lessen the force of the current at first with piles or clumps and then promptly to sink, with mattress and stone, the large bodies of drift so common in this river as they collect above the hurdles.

Por a single hurdle dam by which a long chute is closed to the bank-full stage, an effective and durable structure, capable of sustaining a head of 4 to 5 feet of water, may consist of 3 or 4 rows of pile clumps, reinforced by stringers between the rows whereby the strength is more evenly distributed in resistance. Wide foundation mattresses and a liberal amount of stone for ballasting them and for two or three sinkings of drift must be provided for such construction. The foundation mattress of a wing dom may be of saplings or of sound cull lumber woven continuously along the proposed lino from the shore to the outer end in one piece; in two full-length pieces overlapping along that line; or in short overlapping sections. The overlapping of the full-length pieces, laid clapboard-wise, , Lhe piling being driven through both, affords the strongest construction; while inswit water the short section, constructed parallel with the current, is the most advantageous form for successiul sinking. Tho area covered by the foundation-the width of mattress to be placed both above and below the hurdle or dike line properwill depend on the depth of water and the nature of the materials composing the stream bed, and asa part of the local survey, test-boringsshould always be made. Thus gravel beds whose existence might not otherwise be known may wholly or in part be utilized as subfoundations for the mattresses, and bodies of quicksand avoided altogether or guarded against by stronger and more extensive foundations. Enormous deposits of silt occurring wherever the current is slackened will add greatly to the strength of all proposed works, and, because of the great volume of sediment in this river, the permeable hurdles or other silt-arresting devices may be used with a greater separation than would be permissible for accomplishing the deposit of suspended matter on almost any other stream, and still prove more effective.

The slight upstream trend of the line of piling will usually cause masses of drift to be held against wind and current until such accumulations can be sunk, and also will induce a more rapid fill near the old high bank where baak-full accretions are slowest to form.
The sinking of drift is a most important adjunct to the action of permeable hurdles and wing dams in producing accretion, adding greatly to the permanence and effectiveness of the constructed works, increasing the rate, and enhancing the solidity of the deposit.
In areas to be built to the bank-full stage it will be necessary to build the wing dams or hurdles only to the stage (20 feet to 25 feet) at which the Missouri willow grows, and the high banks will then form naturally. Between the bank-full lines and such levees as may be built, which should not restrict the freshet width to anything less than a mile, no reclamation should be permitted until the banks have been built to the desired stage. Until then the growth of willows and dense underbrush should be encouraged. This also applies to revetments above the vegetation line. Bermuda grass and the trumpet creeper ('Tecoma radicans), being tenacious, spreading rapidly, and rooting deeply, are particularly suited for this purpose. Alter the high banks have been formed only partial reclamation of the high-water bed should be per-mitted-that is, the lands adjacent to the river may be cultivated or used for pasturage, but there should be no levees except, as stated, about 1 mile apart.
In some localities it may be best to build the side contraction works by stages, the formation of land being hastened at and above the stage at which the desired vegetation and brush will thrive by merely encouraging such growth. In this manner more uniform accretions would be obtained, in some cases lessening the cost of the improvement. The use of "silt weeds," as on Indian rivers, and the anchoring of large snags, and combinations of the two, in deep pools to be partially filled and in areas to be reclaimed are forms of construction at least worthy of trial.
Every known device for the stoppage of stream-borne solid matter that has been tried on this section of the river has proved, in greater or less degree, to be efficacious, and it would seem that possibly other combinations than the types most used in the district might be applied to the problem with advantage, on an experimental ecale at first, and then in greater extent, os their success in use may justify their adoption.

BANK PHOTECTION.

Bank protection, a revotment or training wall, is to be placed at every alluvial concave bank when that bank, whether natural or artificial, shall have reached the proposed limit line. Some banks will be permitted to wear away considerably, and in some cases erosion will be directed to produce the desired alignment.

Especially when the channel is to be trained near them, banks composed of sand and fight alluvium should be revetted continuously to the top, while those consisting of clay or clay and gravel mixed may be allowed to grade themselves under the action of the water, and above the low-water protection they may not need further attention for several years, in which instance more urgent work may be taken up to advantage.

The lengths of the bank needing protection have been tentatively determined for the proposed alignmont, which, with a distance of 187 miles between the Merchants Bridge and the muth of the Ohio River, gives a total of 374; miles of bank. Of the about 300 miles in alluvium, 70 will require the combination of wing dams and revetments; the application of wing dams and sheltered points will effect the protection of 126 miles, and revetments either alone or with submerged spur dikes will serve for the remaining 104 miles.

Revetments are proposed and shown along every concave bank in alluvium which the channel will naturally follow; 55 sections, containing in all 551,450 linear feet, are so planned. lincluded in the estimaie of cost, but not fully shown on the map, are 16 additional seesions, totaling 92,684 linear feet, to be used at localities marked " R " on the maps, either as ordinary bank protection, as low training walls connecting the ends of spur dikes, as sections of paved bank when the desired grade shall have been obtained on the broad foreshore, or even as additional spur dikes, equivalent in cost.

The first item of revetment, 551,450 linear feet, provides for a contingent quantity amounting to 65,000 linear feet of revetment, or its equivalent in cost in other forms of construction. 'That reserve, considered ample to meet; any unforeseen emergency, is obtained in this manner: There are 42,000 linear feet of old revetment in good condition that is now in place on the proposed alignment, permitting the cost of this amount to be saved; 23,000 linear feet of new revetment, intended to protect the ends of certain cross weirs, has been counted in measurement and in cost as both bank protection and weir construction to provide for any possible need of additional strength at these points.

Revetments will generally consist of a foundation mattress of required width (about 150 feet or less, depending on the configuration and character of the bank to be protected), placed below the low-water line and heavily ballasted, and of a pavement of stone on the upper bank section when graded on a slope not steeper than two horizontal to one vertical from the subaqueous portion of the revetment to the bank-full stage. Until a cheaper but equally effective form of construction may be devised, the mattress will be of the woven type of green saplings or sound cull lumber, which have been used in this district for several ycars with satisfaction. When in place and properly ballasted, the woven mattress of brush or lumber has the advantage that it will outlast the fascine type, which may break up when the cables used in that form of construction deteriorate. In mattress construction provision should be made for a thoroughly substantial method of fastening the top and cross poles to the mattrese proper, as on these fastenings and their durability depends the preservation of the "pockets," or cribs, that hold the stone in place as distributed. Retaining the ballagt in these pockets is a very important matter, because on steep banks, and especiallyr when scour and settlement take place, much of the stone will otherwise roll off the mattress and be lost. Even though considerable settling takes place in a mattress so constructed and evenly ballasted, it will not break up, but will accomıodate itself to the natural unevenness of the bank and to small caves which may be scoured under its outer edge. The use of bronze in place of iron fastenings for holding the top poles and stone cribs secured in place is a construction detail worthy of mention, and reenforced concrete slabs for protecting the bank slopes above the low-water line may eventually prove more effective and cheaper in use than storie alone.

In revetment work hydraulic dredging would aid in preparing the bank below the low-water line to receive the mattress, by cutting off the "false points" of harder formation less rapidly eroded, that would otherwifte give irregular alignment; by grading the bank in places too steep for effective subaqueous protection, and by cutting an artificial shore terrace of a uniform grade and a regular alignment on which the inner edge of the mattress may be placed at the low-water line.
H. Doc. 50, 61-1-6*

CROSE WEIRS OR BILL DAMg.

The cross weirs will effectively replace the natural dams or submerged bars, regulating the flow, and for a given volume of discharge absolutely controlling the surface plane and imparting an ideal, though partly artificial, regimen to the stream, as the side contraction works in the wide reaches and bends will prevent obstructive deposits forming permanently in the channel between weirs. The low-water flow will always be confined to the same part of the weir, the navigable pass sill, which will be scoured clear by a falling river, and will probably remain so during medium and high stages. A permanent "lead" will be established from each weir to the next, insuring fixation of "crossings" and their guiding marks for navigation.
The number of cross weirs necessary to produce a 14 -foot channel might exceed the total number of natural submerged dams (about 60), any one of which might have heretofore become obstructive to 8 -foot navigation. One hundred weirs should be more than adequate, and that number would allow them to be placed about 1 miles apart, the mean fall between weirs being 1.1 feet. From Ruehlmann's functions and formule for backwater it appears that should the crest of any such weir be raised 1 foot at low water the backwater effect would extend about 10 miles; also that a raise of weir crest of 0.12 foot at that stage would give a corresponding rise of 0.08 foot at the next weir above. The results of these calculations are cited to show the systematic interrelation of the weirs, the desirability of equalizing the fall throughout the district, and that with the tentatively chosen separation they would form a practically continuous fixed river bed giving an almost uniform water plane. As the work of installing the weirs progressed, experience would probably demonstrate that this separation could be increased by placing, say, about two weirs to each crossing (new alignment) which would reduce their total number and estimated cost about 40 per cent.
Jacquet well describes the action and effect of the cross weirs in his general statement that-
"* * * just as the new banks of the minor bed form and regulate themselves by the deposits which the river drops between the spurs, so likewise the bottom rises and levels itself by the deposits which the current drops between the successive grundschwellen. Success, being due to the saine causes, is the same in both cases, and it only needs a little experience, which is very rapidly acquired, to determine what ought to be the distance between the works in order to insure the deposits which are to form the bank or the bottom of the regulated bed." (Merrill's translation, p. 152.)
The action of spurs in producing new banks by accretion is well established on this stream; the results from the cross weirs will depend on their separation, and the "little experience" needed to determine the spacing of the buttom protection works is furnished in the case of the Mississippi River by the stream itself in the number of natural crossings found in the district.

Modern French practice as to the number and arrangement of regularized bars to be left in the river to secure good results is stated by Professor Fourrey (1906) as follows:
"The position of bars can not be arbitrary; they constitute in effect a halting place where water-borne material should lodge when the waters fall. . Neither can the distance between two bars be arbitrary, for it depends essentially upon the regimen of the river. It is determined from observation of a river section where analogous slopes and discharge exist, conserving very closely the number of bars which naturally form in such section; if we are led to modify slightly such number, it is better to increase it rather than to diminish it in order to secure the smallest possible fall over each bar. * * * In order to orient the bar suitably, the channel should be given the crose sectione which are observed at bars of good river crossings; and this croes section is formed by means of submerged spur dikes, which, placed in deep water low enough not to interfere with movement of boats, produce an enlargement of the channel and at the same time prevent excessive erosion on each side of the crossing" (pp, 135, 136).

Professor De Mas, National School of Bridges and Highways, Paris, France, in his cextbook (p. 343 of 1899 edition) uses almoet the same words as regards pointa of inflection of the improved river channel, asauming a regularized bar at each inflection.

In a river naturally so good as the Mississippi it seems probable that the number of bed sills or regularized bars can be safely reduced to the number of the chanuel crossings.
The distance of about 3 miles that exists between the natural crossings can not be used as an accurate guide to be followed in spacing the cross weirs, as the purpose of their artificial control is to replace the variable slope now produced by the natural controlling points, which are separated by practically the same intervals, and instead, regardless of horizontal spacing, to eatablish vertical steps over which the total fall for the district will be so distributed as to create an approximately uniforn slope, and
their location as to horizontal separation will therefore depend on the new alignment of the channel and on the local conditions of slope that are to be corrected.
The latter part of the general proposition expressed by Vernon-Harcourt, in his statement that "an overfall weir * * * is very efficient in preserving a fixed minimum water level above it, but is not suitable for the rapid discharge of flood vaters," does not apply to the use of cross weirs in the special manner under consideration, particularly on the Mississippi River with its discharge at low water very small as compared with that when in flood; the main object of the cross weirs in this regulation scheme being the maintenance of a definite low-water plane for a known volume of discharge to give a specified depth for a certain stage height, and above that lowwater plane to give the waser prism a cross section that will permit the free discharge of the higher stages and of floods. And Hagen, quoted by Janicki, said:
"* * * in no case will regularization allow the free and full attainment of a proposed result. * * * We have, then, to obtain a sufficient chanrel depth in times of low water, and so-called regularization works are in themselves usually powerless to give a suitable depth unless the water level is raised by means of dams or other similar constructions." (Merrill's translation, p. 20.)
The purpose of the cross weirs being to maintain the requisite depth at the lowest known navigable stage and to aid in preservation of river regimen by limiting erosion of the bed, and not primarily to elevate the water plane at any or at all higher stages, the cross-sectional area of the proposed water prism will be so arranged as to correspond at high stages with the mean of the controlling cross sections in the natural river, and to accommodate the eame volumes now passing at these high stages without increasing their elevation; hence there will result no interference with the passage of flood waters.
The proposed number of cross weirs (97) given in the estimate of cost and shown on the maps and on profile No. 1 is to a certain extent an arbitrary maximum.
The cross weirs shown on the maps are indicated on profile No. 1 by vertical broken lines below the bank-full stage and by shaded areas (exaggerated horizontal scale) which represent transverse sections through the pass sills, the grade or bottom slope line connecting these pass-sill crests or controlling least depths of thalweg being 15 feet below the proposed low-water plane.
The profile also shows the channel bed in 1907 as compared with that of about twenty years ago; and what would generally be noticed first in a study of this comparative section along the thalweg is that pools occurred in many places in 1907 where during the earlier survey the more troublesome shoals existed; and this fact in itself, if such demonstration were needed by one not familiar with this characteristic of the Mississippi River, would show that existing shallows may be converted into deeps, and the reverse, as such change may be required, by means of complete regulatton.
As the effect of a controlling bar on this section of river extends at low water a long distance upstream (from Turkey Island to St. Loutis, as cited by Major Suter, or 10 miles for 1 foot of bar rise, as indicated by backwater formulx) the number of cross weirs that will actually be required to secure absolute control of the low-water planethe water surface over the artificial bars and the pools between them-should be much less than the maximum number of cross weirs that has been proposed. To produce and maintain uniformity of slope from weir to weir and to hold the water in the intermediate pools, the nonchanging cross weirs, with permanent location and definite elevation of crest, should, in fact, be fewer than the natural crossing bars that normally exist, which are continually changing in height as well as in position, with consequent variation in effect and loss of influence.

Profile No. 2 shows the cross weirs that would be imperatively needed, and that would be constructed first; and the intermediate cross weirs that, would besubsequently placed to furnish in artificial stream-bed control the equivalent of the natural bars removed. Thirty-one such weirs have been deemed absolutely essential, and have been located, one near the middle of each actual crossing, according to the proposed alignment, except at Arsenal Island, Chester, and Grand Tower, where they are not needed, and numbers have been placed below the depicted weirs (profile No. 2) to indicate the croseings in their order below St. Louis. The Chester and the Grand Tower crossings (Nos, 13 and 20) are merely indicated on the profile, as is also crossing No. 1 at Arsenal Island. To restore in effect the normal number of controlling bars an additional 29 cross weirs may be required, and these have been located sccording to the seeming necessity for them, as shown in profile No. 2, and are not numbered.
Should experience demonstrate that this alternative may be adopted, and that not to exceed 60 crose weire will suffice to accomplish the purpose they are built for, and that the two other forms of permanent construction will effectively serve for the stream regulation and control of the bank in certain sections, a reduction of $\$ 5,581,000$ in the total estimated cost would take place.

It is reasonable to assume that this sum can he saved on the one item of cross weirs, not alone through reduction in number below the estimated maximum, but as well by marked decrease in the actual below the assumed unit cost, which has been made more than ample.

The absence of crossings which will result in certain cases where the channel is directed along a rock bank for a distance greater than the normal separation between natural crossings is compensated by placing cross weirs at the necessary intervals to control or hold up the low-water plane.
There will be a static head on each cross weir, especially at low stages, but with the slope made uniform by the proper distribution of weirs it will be much less than that obtaining on the greater number of the natural submerged bars which now produce a variable slope. A boat going upstream will therefore have less diffculty in crossing such a weir than in mounting a natural reef that might require an oblique approach.

At low water a static head will be indicated at each weir by a slight ripple in the water surface over it, the local fall probably amounting to three-tenths of a foot in a channel distance of 300 to 500 feet; the remaining fall between the successive stairlike weirs will be found on an almost uniform slope of about five-tenths of a foot per mile, a slope that in this section of the river is conducive to mean depthe greater than are actually required.

The slope of the cross weirs should be made quite flat on the downstream sidesay a slope of one on six-and the mattress protection, with heavy ballasting of rubble, or other reinforcement, may be continued downstream, as required, beyond the foot of the weir to prevent the bed of the river from being scoured by the overfall. On the upstream side of the weir a slope of one on two is considered flat enough.

Whenever a section of shoal river bed on the site of a proposed cross weir becomes acoured to the desired depth as side-contraction works are placed, the foundation for the cross weir will be promptly laid over that section. When the sills are to be placed across deep pools in the main channel, deposits may be advantageously induced by proper determination as to which wing dams of a series should be built first, or by the use of silt weeds as mentioned under side contraction.
It is probable that there will be no rock cutting needed to place the sills or any part of the cross weirs, but if any is necessary it will be required only to a very small extent.

The construction of a cross weir would consist, essentially, of a submerged dam of wood and stone, the length and elevation of which is governed by the width and depth required for the low-water channel. The ends of the dam, from low water to the bankfull stage, except when joining a rock bank, would be connected with the improved high banks by construction similar to that in the dam, thus giving the required crosssectional area and desired side slopes for the calculated prism, with revetments protecting the adjacent banks so built up. These revetments are not shown on the map, but are includ 3 d in the estimate of cost of the cross weirs.

SUMMARY OF CONSTRUCTION.

1. A broad foundation of special construction laid according to the required alignment and cross section and as nearly as practicable to the profile grade of that cross section.
(a) Fills to be made as required by aid of permeable dikes in secondary channels and by solid dikes or dams in the main channel. The fills may be effected in stages, accretion meantime taking place.
(b) Cuts necessary to place the foundations to be made by aid of wing dams or dredging.
if. The weir would be brought to final transverse section, profile and grade, by means of piling, grillage mattresses, crib and stone works.
(a) Portions below low water to be substantially capped with timber and stonework as required.
(b) Portions above low water to be revetted with stone on the required slope and profile.
III. Bank protection to be placed as required above and below the revetted ends of the weirs.
The advantages of concrete when used as a capping in connection with the wood and stone of the general construction, and in particular when so used below the low-water line, are such that it may profitably be used when it can be applied without much increase of cost, and also in such cases as its greater strength offeets the slightly higher expense of such construction. Considering the controlling cross section at low water, and at higher stages as well, the strongest scour will be on the pass sill of the crose weir; and here will also occur the greatest violence of attack by ice gorges if formed.
In the estimate of construction costs provision has been made to cover the additional use of 1 cubic yard of concrete for each linear foot of crose weirs.

On the premise that ample funds are available for commencing operations on an extensive scale, and at as early a date as the engincering and constructional problems involved will permit, and will continue available in quantity as needed until its completion, the project can and should be considered as a whole, and a systematic order of work decided on that will earliest and at the least cost produce the desired depth and width of channel.
With ample funds, and assured supplies of material and labor, economy of time is possible through employment of a large number of construction parties, and no increase in the total cost of the improvement results, provided the localities for work are selected in such order that the regulation works at one point will not exert on unregulated portions of the river a detrimental influence that could be avoided by continuous improvement.

As the general position of the works is here predetermined and is not dependent on empiric deductions as installed (they could be placed over the entire district with no discrimination as to locality and without affecting the ultimate result), the point of origin from which work is carried on becomes of interest and value only when it influences either immediate benefits or the time of final completion, and as both will to a very considerable degree be affected by the direction in which the construction advances and the places from which this work is started, the order of work becomes a most important integral part of this project.

If there exist any points in the district at which there will be no change made from the present elevation of the low-water plane, whether cross section be altered or not, it is evident that work can be started at such points without injurious effect on the regimen in any other locality, even temporarily. The low-water plane being fixed for these points, the advancement of the works thereirom would either raise or lower it to the predetermined height at intermediate points.

With the proposed low-water plane such points are found at or near both ends of the district-Arsenal Island and the mouth of the Ohio River-at Commerce, at Grand Tower, and at Little Rock Landing, thus effecting the subdivision of the district into four sections or subdistricts, in each of which construction work could be advantageously commenced, and, if thought necessary, at both ends, advancing toward the middle portions until completion.
As a general proposition, however, work should start at tho lower end of each construction section or subdistrict and be continued without interruption. In this manner of working any injury to the improved portions of the same subdistuict will be the least liable to occur, as, in general, the influence of regulation works in an alluvial stream extends mainly downstream. And working upstream from the points whers no change is made in the elevation of the low-water plane affords an opportunity which it would be advisable to utilize, to determine from actual results the position and number of the cross weirs that must be constructed.
The backwater effects from the weirs as placed could have no other than a bencficial effect on the regimen of the other reaches farther above those where they are being placed, and the added flow, if available, would further greatly assist in carrying of the natural sediment of the stream.
The principal advantage in downstream progression of construction work, that with each modification of the river channel the far-reaching elfects upon the river lower down may be allowed time to dovelop and their consequences carefully studied, does not have the weight in a project such as this that it might have in a system of empiric improvement for immediately apparent results; as the course of treatment and the ultimate conditions, for any stretch or for any locality, so far as the elevation of the low-water plane and the alignment of banks is concerned, is practically determined from the beginning.
Besides, the permeable hurdles and the catchment areas between them would be ready, successively, to stop and retain their full share of the volume of silt made up of that normally in suspension and of that eroded from shoal reaches above, as tho construction of side-contraction works gradually extended upstream; and with works for complete regulation of the bottom and banks of the river being carried on continuously in this direction the heavier material eroded from the reaches farther upstream and rolled along the bottom would have much less tendency to deposit in an improved channel than in an unimproved river bed.
But while in each independent subdistrict regulation works should be installed from the lower end, yet the treatment for each locality within the subdistrict must be determined from local conditions, and in some cases, as in training the thalweg from a concave bank on one side of the stream to a concave bank on the other, a downstream progress of work may give the best result.

Beginning operations at the lower end of a reach and working upstream leaves an improved river through which normal sediment and that from directed erosion during construction farther above will pass more readily than through the natural stream. That subdivision of the entire district and the commencement of work at various points croates alternato improved and unimproved sections is recognized and while to some extent this reduces the bonefit derived from the conditions mentioned it does not entiroly offset the advantages of upstream work, as even, though not continuous, the regulated portions eliminate from the problem their own extent of otherwise troublessome natural rivor.

If thoro be doubt as to the provision of ample funds and regular appropriations, it would be well to restrict work to one subdivision at a time, commencing with the one at that time mont troublesome to navigation.

EATLMATES OF THE TOTAL TIME FOR CONETRUOTION OF DERMANENT WOREE, AND FOR FROIIUCINO THE REQUIRED DEPTFY IN ADVANOE OF THEIR OOMPLETION; OF TEE TOTAL OOET OF SUOF WORKS, INOLUDING MAINTENANOE; OFTHEAMOUNTAND OOET OFAUXILLARY DREDGING THAT MAY BE NEEDED; AND GTATEMENT AB TO THE AMOUNTE OI FUNDE THAT BHOULD BE PROVIDED,

TLME REQUIRED TO COMPLETE CONETRUCTION AND TO OBTAIN TEE REQUIRED DEPTEA,
It is believed the entire project for permanent improvement can be completed within fifteen years, and that a reasonable amount of dredging to aid the partly-completed regulation works in the production of increased depths will render a navigable 14-foot channol available in abolit seven years from the start of active work.

Such dopth will certainly be found throughout the greater part of the district after the worst localities have been improved by the three forms of permanent construction that assure complete control of the river, and after some of the intermediate regulating works have been placed; and the maintenance of this depth where existing, aud the creation of an equal depth where necessary, can undoubtedly be accomplished by dredging when this condition of improvement arrives. The time specifled for such occurrence, seven years after operations are commenced, is thought to be safoly conservative.

EATIMATE OF OOET OF RERMANENT FOREG.

Character of estimate.--The quantitiee given for all classes of work or forms of construction are believed to be ample-more than sufficient to install the permanent works needed to give the required result. The unit costa are safe and conservative also, being based on the actual costs of the same and similar classes of work constructed in this district.
These unit costs are comprehensive, including as they do all charges for material, labor, plant, supply depot, shipyard, repair shops, superintendence, engineering, and contingenciee.

UNIT COETS.
Wing damis and revetments.-The average costs to the United States engineer office, St. Louis, of aimilar classes of construction since 1870 have been used in estimating the unit costs, per linear foot of $\$ 25$ for permeable hurdle dams and wing dams; $\$ 23$ for sloping spur dikes, permeable and solid; and $\$ 20$ for revetments, an increase having been made in each respectively of about 50,33 , and 100 per cent to allow for possible higher prices for labor and materials and for more subatantial forms of construction, insuring a higher degree of permanency.
Cross weirs.-The unit cost per linear foot of $\$ 60$ is based on the actual cost of sill dams and is estimated for the navigable pass sill, necessarily the strongest part of the croes weir, involving for each unit:
23 cubic yards, wood and stone, at $\$ 2 \ldots .$.

60.00

It may not be necessary to incur the expense item of concrete, but to provide for its use when more advantageous it has been included to make the estimate comprehensive.

MAINTENANOF OF THE PERMANENT FOREG.

Baced on the assumption that fifteen years will be required to complete the profect, the coet of maintenance during construction-the item covering the preservation of works until thidr completion-may advantageounly be conaidered in five three-year parioda.

No expenditure for maintenance should be required during the first period (when the necessary plant would be assembled, the organization perfected, and the work only fairly well begun), and probably only a very amall charge, if any, would be necessary during the second perfod, since no part of any one of the three forms of the proposed permanent works should bo considered as finished prior to that time.
At the close of the third and fourth periods the works may safely be assumed to be one-half and threefourths comploted, and for these periods, respectively, annual appropriations of $\$ 220,000$ and of $\$ 330,000$ will be required. Probably the greatest changes in river regimen will be taking place in the early part of the last period, and thoroughly to maintain the efflciency of the works an annual appropriation of $\$ 440,000$ may be required for the last three years.
Thuis the total estimated cost of the maintenance of the regulation works during the fifteen-year perind of their construction is $\$ 2,970,000$, an average annual expenditure of about one-half of one per cent of their estimated cost.
After completion of the project, the maintenance of permanent works, of accretions, and the allgnment of banks and channel, and the maintenance of the required channel depth, including the dredging of temporary shoals, will require an annual expenditure of less than $\$ 500,000$.
The actual maintenance charge when the worke are in place should, howover, be much less than the sum named, but to provide for the possibilities incidont to construction works of this nature and on such a stream the estimate has been made amply large.

Estimate of cost of complete regulation works, showing the cost of improvement by subdivisions, and the total cosi for the district.

Class of work.	Number.	I.Inear feet.	Unit cost.	Amount.	Total amount.
Subdivislon No. 1 (Merchants I3rligo, St. Louls to Little llook Landling, 68 miles): WIng danns, permeatile. WIng dams, permeesble and solid. Rovetments. \qquad Cross welrn. Maintanance.					\$11,878,502
	165	81,820 84,80	825	12,045,600	
	137 18	84,840 131,410	23	$1,951,320$ $2,628,200$	
	27	76,000	60	4, 6000,000	
				763, 872	
	112	94, 800	25	2,872, 500	
	108 19	62, 1600 1000	20	1,197,380	
	22	00,000	60	3,900, 000	
				726, 309	
A verage cost per mille; ;240,243. Subdivition No. $\%$ (Arand Tower to Commerce, 41 milled): Wing dam, permeable. Wing dams, permeable and soild. Rovetneanto Malntenenci					11, 450,279
	102	85, 600	25	2,141, 500	
	76	63, 810	23	1,238,320	
	21	112,84 68,000	60	$2,258,880$ $3,780,000$	
				- 637,855	
A verage cont per mille, $\$ 245,233$. Subdivision No. (Commerce to mouth of Ohlo R(ver, 11 miles):					10,054,856
	0				13,433,054
Wing dams, permeable........	90	97, 800	25	2,440,000	
Wiag dams, permeable and solld	76 23	38,360 240,180	23 20	8882,280 $4,803,600$	
Cross wolin.	27	24,250	60	4, 455, 000	
Malntenance...				862, 174	
A verage cost per mile, $8323,088$. Distriot 8t. Louls to Calro (187 miles):	4593957197$\ldots \ldots$	1		$\begin{array}{r} 8,999,500 \\ 5,26\}, 300 \\ 12,882,080 \\ 16,695,000 \\ 2,970,000 \end{array}$	
Wlog dams, permeable.........		359, 880	25		
Wing dams, permeable and solld		229, 100	2.3		
Revetments............		644, 134	20		
Crosa weirs..		278,250	60		
Maintenance.					
Eatimated total cost.				46, 816, 480	46,816, 480

Average cost per milo, for the district, $\$ 250,355$.

In tho proceding table the items covering revetments include 16 sections totaling 92,084 linear feet not fully shown on the maps, but to be placed if required at places markod "R;" also 23,000 linear feet to be placed at ends of cross welrs and covered in eatimate therefor, and 42,000 linear feet now in place on the required alignment; a total of 157,884 linear feet of revetment, or an eçual value in other forms of construction, available for use at places marked "R" or elsowhere as may be required.

OOAT OF OBTAINING AND MAINTAINING DEPTES BEPORE THE HEOULATION WOREE ARB OOMPLETED.

Production of the required depth during the latter part of the period of construc-tion-to be accomplished by dredging as previously outlined-may also be considered in three-year porlods.

On-the conmervatlve Judgment that the use of eight dredges will, in connection with such works as can be placed during the flrst sevan yoars of construction, be able to maintain the dealred channol dopth, the ayailability of the proposed depth of 14 feet is almost detinitely assiured early in the third three-year poriod, and tho purchase of four new dredges which is involved may be conslidared as the part of the project that bears on the production of the required dopth at the earliest possible date after work is started.

That such depth at all except tho vory low stages, will bo found throughout the district in the seventh year is based on the condition that about one-third of the permanent works boing then completed, the worst places would be fimproved, and that dredging would then bo offective in producing greator navigablo depthe,

Four dredges are now avallable, and if tho consiruction of the four addlional dredges were completod prior to that thmo, or avon If thoy wore obtritied by purchase or loan, at the end of the third year (as provided for in estinate) an increase of channel depth could be obtained earlior, or as yoon as the regulation of the bad crossings had beon accomplished and the oight dredges placod in service.

Eight dredges, if available at the beginning of tho second three-year period, would at least maintain a depth of 9 feet from tho commoncement of their operation, and very probably a depth of 13 feet prior to the close of that period.

So lar as it affects 14 -foot navigation, there would be no нpecial advantage in having the entire fleet of eight dredges; at the commoncoment of operations, as the value of this expedient in hastening the production of tho 14 -foot depth lies solely in its use in augmenting the effects of the partial improvement of the stream through correcting the worst places by regulation.

The absolute attainment of a 14 -foot depth should not be expected bofore onehalf the permanent works were in place, but the presence on the fiold of operations of the entire fleet of eight dredges when commencing work would have tho secondary advantage that during the first and second years of construction they could easily maintain a channol of not less than 9 foot over tho ontire district; thoreafter, unttl the fifth or sixth year, a channel depth of 0 to 13 foot would be produced; and aiter that time, a practical 14 -foot channel would exist.

It is thought that the production of the required depth even at the beginning of the seventh year gi ves the necessary channel somewhat in advance of the possibilities of any othor project except such as involves the use, first subject to possible delay in procuring tho requisite plant, of a large number of dredges, and the regulation project has the further advantage that there need be no proviston for the renewal of a large floating plant on account of its deterioration through age or decreased efficiency through accident, and the time when the dredges are to be in service approximates the estimated life of a dredge of the type that would be used.

Now on hand in this district and available for service under a new project are four dredgee, two of them being nearly new, the others about ten years old, so the decrease in number toward the end of the construction period is in accordance with the probable life of a dredge in actual and continuous use, and does not involve the dropping from use of serviceable dredges.

> Estimate of cost of aredging required for fifteen years in conjunction with and until com. pletion of propnsed complete regulation of the Mississippi River betueen St. Louis, Mo., and Cairi, Ill.

First three years, resulting depth 8 to 9 feet:
Operation and maintenance of four dredges, at $\$ 75,000$ each, annual appropriation, $\$ 300,000$.
$\$ 000,000$ (Four dredges now in district and available for use.)
Purchase of four new dredges, at $\$ 250,000$ each, one appropriation, $\$ 1,000,000$.
$1,000,000$
Second three years, resulting depth 9 to 13 feet (regulation works one-fourthto one-third completed at ond of period):
Operation and maintenance of eight dredges, at $\$ 75,000$ each, annualappropriation, $\$ 600,000$. $\$ 1,800,000$
Third three yeara, resulting dopth 1.3 to 1.4 feet (regulation works fully one-half completed at end of poriod):Operation and maintenance of six dredges, at $\$ 75,000$ each, annualappropriation, $\$ 450,000$.Fouth aproniation,Fourth three years, depth 14 foet (regulation works three-fourths com-pleted at ond of period):Operation and maintenance of four dredges, at $\$ 75,000$ each, annualappropriation, $\$ 000,000$900,000
Fifth three years, depth 14 feet (rosulation works completed):
Operation and malntenance of two dredges, at $\$ 75,000$ ench, annual appropriation, $\$ 150,000$. 450,000
Total cost for fifteen yearn' dredging. 6,400,000

AVAIIABIIITTY OP PUNDS,

About $\$ 5,000,000$, available in full as sonn as the improvement is undertaken, would be needed to prevent possible delay to the prociuring of floating and other plant, and to the organization of construction forcess of this sum $\$ 3,700,0000$ would be for construction work, $\$ 1,000,000$ for dredging plant, and $\$ 300,000$ for operation of dredges.

The sum that would thereafter be needed each year to execute the work under this project is about $\$ 3,500,000$, this sum becoming avalable annually until the permanent construction is all in place, when the funds required yearly will be to cover only the expense of maintenance.

Appendix No. 6.

TER GLACK-WATER PROJEOK.

[By Assistant Engineer J. W. Woerinann.]

$$
\text { St. Louts, Mo., January 15, } 1909 .
$$

Coronels: I have the honor to submit herowith my report upon a project for obtaining a 14 -foot channel from St. Louis, Mo., to Cairo, III., by means of locks and dame in the Miseissippi River.
The fifth stipulation in the river'and harbor act of Merch 2, 1007, which provides for the present board, reads as follows: "And the board shall consider further the practicability of providing at all scasons of the year a depth of fourteen feet in such regulated channel by the aid of locks and dams similar to those projected and in use on the Ohio River improvement."

When I began work on this project in September, 1008, the survey had been made and the charts were well advanced toward completion.

THE PROFILE,

A profle had been prepared, based upon a line of continuous channel soundings, taken in December, 1907. Wpon comparing this profile with the transverse soundingw, or ranges, I found that this profile did not always follow the "thalweg," or deepest channel, and authority was obtained from the board for the preparation of a new profile.
The deepest practicable channel was then sketched in upon the charts, as, indicated by the linee of transverse soundings taken during this survey. Taking the Eado Bridge as the origin, the distances were marked upon this line from St. Louis to Cairo. A new profile was platted to a scale of 5,000 feet to the inch, representing a longitudinal section along this line. The total distance from the Eads Bridge to the mouth of the Ohio River by this line is 182.5 miles, and the total fall at a zero stage on the St. Louis gauge is 107.3 feet. This is an averago of 0.69 foot per mile, or approximately 7 inches per mile. This slope is not uniformly distributed however. From the Eads Bridge to Jefferson Barracks, a distance of 10.8 miles, the slope is only 0.20 foot per mile, while from Blackbird lsland to the mouth of the Ohio, River, a distance of 26 miles, the fall is 0.91 toot per mile. Shorter reaches can be selected where the differences ars dill greater.

GENERAL DESORIPTION OF THE PROJEOT,

Upon this profile as a basis a project was blocked out which provides for a system of 10 locks and 10 dams.

Botween St. Louls and Cairo there are about 60 bars or crossinge whero the depth is less than 8 feet at a zero stago, and about 110 where the dopth is less than 14 feet. These vary in elevation even moro radically than the surfaco slopes, and are responsible in a large measure for the variations in the lengthe of the pools and the lifte of the locks. For example, Dam No. 5 is located on a bar which is 8.5 feet higher than the bar just below it, while Dam No. 7 is located on a bar which is 9 feet higber than the one just below it.

In relecting the locations for the dams, however, the hoights of the banks, width and dopth of the river, proximity of tributaries, and other local features were taken into account.

In order that there may be ample discharging capacity over the sills, during extreme floods, no site was selected where the width was less than 3,000 feet at the time of the recent survey.

In my opinion, it is also undesirable to locate a movable dam just below a large tributary, for the reason that local freshets may require more frequent lowering of the wickets, and at the same time may cause deposits on or against the movable portione of the dam. For this reason Dam No. 1 was located above the mouth of the Meramec River, and Dam No. 4 above the mouth of the Kaskaskia River, rather than at the points suggested by the profile.

Dam No. 10 is located above Eliza Point, about 5.9 milen above the mouth of the Ohio River. On account of the steoper slope in this vicinity at low water, the length of the pool above this dam is only 6.8 miles. The other nine pools vary from 12.9 to 26.9 miles in length. The average length of the ton pools is about 18 miles .

The greatest lift also occurs at Dam No. 10 , due to the fact that it is the last in the series, and consequently there is no backwater effect from any dam farthor down. The lift on this lock when the river is at a zero stage on the St. Louis gauge is 15 feet. The lock has been designed for this lift, but it is my opinion that with the addition of 10,000 cubic feet per second from the Ohicago Drainage Canal, the atage will not fall below 1.5 feet during the navigation season, in which case th's maximum lift would be 13.5 feet. The lifts at the other locks vary from 5.2 feet at Lock No. 9 to 11.8 feet at Lock No. 5. The average lift for the ten locks, at a zero stage, is 9.87 feet.

In the spring or early summer, when the natural depthe approach 14 feet, the dams would be raised as required, and as the volume decreased the lift would gradually increase from zero up to the maximum heights given in the table of data relating to the proposed locks.
The project as laid out provides for a small amount of dredging at five bars, as ind l_{-} cated on the profle and in the table just referred to. To eliminate the dredging at these bars would require a system of 11 locks and 11 dams. \cdots An approximate estimate shows that it is much cheaper, both in frrst cost and maintenance, to do a small amount of dredping at these bars than to provide an extra lock and dam.
The location of each lock and dam, length of pool, lift of each lock, and other data in regard to the project are given in the tables relating to locke and dams, and on the accompanying maps and profile.

BAOIFATER,

One of the most difficult questions to determine in connection with this project is the backwater curve above each proposed dam. An exhaustive search has been made of the literature on this subject, but very little actual data have been found. The most complete data I have been able to find relate to the dam at Hameln on the River Weser. Nine different formule which have been found in the various works and papers on hydraulice, have been applied to this stream, and the results compared with the actual elevations above the dam as determined by levels.

Without giving all the details of this comparison, it may be said that Neville's formula gives results which are very much too small. Next in order come the formulm of Belanger and Bresee (see Merriman), with values a little larger. Next come the formule of Rankine and Ruehlmann (see Molitor), with results almost the same, but atill too small. Then we have the Chezy formula with Kutter's coefficients, the Chezy formula with Bazin's coeflicients (see Frizell); and the St. Guilhem formula (see D'Aubuisson). Bazin gives closer results at some cross sections and St. Guilhem at others. Of the 9 formule which were investigated, that of Poiree is the only one which gave results too high.
It does not follow, however, that these formuleo will approximate the truth in the eame order on all other rivers. For example, in the Report of the Chief of Engineera for 1837, part 2, page 1316, it is shown, in the case of the Kentucky River, that at

Low stages the Poiré formula gives elovations which are too high, as in the case of the Weser, but at high stages the same formula gives elevations which are too low.
In applyling soine of these formule much depends upon the investigator's judgment in deciding upon the valuen of the various coefficients which are used, and in the selection of proper cross sections.

In applying these formule to the Mississippi River the discharge has been taken at 47,000 cubic foet per second, being based upon a natural low-water discharge of 37,000 cubic feot per second at St. Iouis, corresponding to a zero stage, with 10,000 cubio feet per second added as the contribution from the Ohicago Drainage Canal.
As bas already beon pointed out, the different stretches vary considerably in character, but from the investigatione which have been made it is believed that the following slopes are conservative values for this project. Proceeding upstream from each dam:

Section,	Slope in 8 millen.	Total slope.	Total distance.
First 6 milos.	Foot. ${ }_{0}$	Feet. 0.2	Miles.
Socond 5 milles.	. 3	. 6	10
Third 5 milas....	. 4	. 9	16
Fourth 6 milles....	. 8	1.4	20
Fildh 5 miles......	. 6	2.0	25

THE IOCEA.
The size of locks adopted by the provious 14 -foot watorway board, for that portion of the waterway from Chicago to St. Iouls, has been adopted by the present board, viz, 80 feot in widlh and 841 feet botween hollow quoins, or a clear length of 800 feet between gates. The length over all, oxclusive of wing walls, is 866 feot.
The designs and catimates prepared by the writer for that portion of the waterway from Chicajo to the Mississippi River haye been followed in the present report, except as to foundations. The locks along the Des Plaines and Illinois rivers are all on rock foundations, while those between St. Louis and Cairo are all on pile foundations.

The borings which were taken during this survey indicate that at the lock sitee, bed rock is at a dopth of about 100 feet below the low-water surface. It is therefore impracticable to carry the piles to bed rock. The locks which are now in use at La Grange and Kampwille on the lllinois River are founded on similar material, viz, silt, sand, and clay, and they have been used as the basis of the present foundation entimates.
The piles used are 20 feet in length, oxcept at the upper end of the lock, where they will average 40 feet in length. The sustaining power of the soil has been taken at 3,000 pounds por square foot and of the piles at 20,000 pounds per pile. Triple Wakefield sheet pilling, 30 feet long, has been provided acrose the ends of each lock an dalong the full length of the river wall.
The floors and walle of the locks are of Portland cement concrete. The floors are designed as inverted arches, with a thicknese of 3 feet under the lock chamber, 8 fee in the vicinity of the gates, and 13 feet at the miter sills. The lowest portion of the invert is f feet below the springing line. By using reinforced concrete instead of plain concrete the floors may be made level and the coost of construction be reduced.
The walls at the upper portion of each lock, and aloo the guide piles in the upper approaches, have heen carried 1.5 to 2.5 feet above the highest water on record, viz, that of 1844. Excopt in the vicinity of St. Louis and Cairo this flood was about 6 feet higner than that of 1903. This plan has not been followed on the Ohio River, but is in conformity with my plans and estimates for the Des Plaines and Illinois rivers. In my opinion this is the better practice, as the walls and guide piles will not become a menace to navigation during high water, and are al ways available as a base of operations for dain manipulations.

The coping of the main portion of each lock is carried up to 24 feet above the sill of the adjacent dam, so that it is available for service whenever the lock is required for navigation.

Longitudinal culverts for filling and emptying the locks are provided in the main walle. The sizes of these culverte vary from 5 by 9 feet to 6 by 10 feet. Smaller transverse openings run from the main culverts to the lock chamber at frequent intervals.

In the following table and in my detailed eatimater, the upper miter sill has been placed 14 feet beliow the creat of the dam, which is the ordinary pool level. I believe
it would be better, however, to place the upper miter sill at the same elevation as the cill of the dam. The cost would not be much different, as the increase in the cost of the upper gates would be counterbalanced approximately by the reduction in the amount of masonry.

The elevation of the lower miter sill has been placed 14 feet below the backwater level below the dam.

Five paim of steel mitering gaten are provided for each lock, viz, one pair of upper guard gates, 18 foet high; one pair of upper lift gatén, as high as the highest portion of the masonry; two pairs of lower lift gates, of the same height as the lock chamber walle, and one pair of lower guard gates, carried to the same helght as the upper guard gates.

The upper guard gates can be uned an upper lift gates, in case of an accident to the regular upper lift gates, but the lower guard gates open downstream, and are to be ueod only when it becomen necessary to pump out the lock for repairs.

The gates are of the single alin type, with horizontal girders, straight lower facen, and curved upper faces. The weights were computed by the formulee derlved by the Board of Engineers on Deep Waterways between the Great Lakee and Atluntic Tide Waters.

The miter sills, contact sills, miter posta, and quoin poots aro of oak. Thin in for the purpose of taking up shock, and aleo for the purpose of securing more water-tight joints. The hollow quoins are of heavy cast iron.
The following table gives the location, lift, and principal elevations in connection with each of the 10 locke in this project. A detailed eetimate for each lock is given in the appendix to this report.

Data relating to proposed locks.

No. of jook.	General location.	Distance from kade Bridgo.	Elevation of upper miter sill	Elevation of lower milter sill.			Top of Walls at upper end.	
1	1 mllo above Merameo Rlver.	Mulles, 18.7	Feet. 882.0 66.0	Feat 875.0 854.8		Irad.$\begin{array}{r} 7.0 \\ 80 \\ 10.2 \end{array}$	Feet. 420.	
2		84.8				41.1 .0		
3	Above Fort Chartret Landing......					403.0		
	2.2 river above mouth	61.	864.0		11.8		807.0	
5	Foot of Liberty island	84.8	843.0829.0					38
6	Hanglng Dog Creok	111.1		817.8 805			11.7	867.
7	8 milles below Cape cirardeall. .	134.1	315.8 804.0		3. 6	10.0	250.0	
-		186.7 160.8	3204.8		7. 5	10.5 8.2	${ }_{83,58}$	
10	Above Ella Polnt. ...	176.6	220.8	271.8		15.0	230.0	
	Month of Ohio River.	18.1		,				
	General location.		Height of walls at upper end aboye ohamber loor.	Helght of walls at lower end aboye ohamber toor.	A rerageelevation of bottor	Original stage corre sponding 8t. Loula		
		Top of wails at lower end.					No. or	
No. ${ }_{\text {Not }}^{\text {Nook. }}$								
book.								
\%		Fect. 302.0 385.0					1	
	1 mille above Meramee River		Fees.0	Fect. 20.0	876.0	Fectio		
	8t. Nioholas Rook Gauge.............		4.0	27.029.2	868.08520	372.2303.1		
	Abovo Fort Chartres Landing....i.i.							
	R\|rer	874.0	81.8	28.8	350, 0	363.7		
5	Foot of Liberty island.................	383.0	81.8	30.8	334.0	341.2		
6	Hangin Dog Cresk	349.0	49.0 49.5	30.7 29.0	3220.0	3827.3		
7	2 mile Head of Bufulo fland................	324.0	43.8	29.5	294.0	304.7		
	Beechridre Oaure........	312.5	44.087.5	24.234.0	276.0	290.8		
10	Above Eliza Polnt.................	308.6			272.0	2856	17	

THE DAME.
As provided in the act of Congrese under which this work in being done, estimaten were prepared for movable dams of the Chanoine wicket type. The movable parts of the dam are the wickets, the horees, and the props. The wickets are usually made of timber, bound with steel, but may be made entirely of steel. They are 3 feet 9 tachee wide, with 3 -inch apaces between them for clearance. The wicketa are aup-
portod just below their centers by the horsee, about which the wickets are free to awing. The horses, which are made of structural steel, are hinged to the foundation at their lower ends and to the wickete and prope at their upper ends. The prope are steel forgings, made very heavy at the lower end. The hurters are iron castings, fastened to the downitream part of the foundation. They have seats which support the prope when up and groovee which guide them in their aecent and deacent. Further details as to their construction and operation may be found in the 1 oports of the Chief of Engineers and in the current engineering ilterature.
On the Ohio River it is the practice to divide the dam ints three or four sections, meparated by masonry plers, the section with the lowest vill is usually placed adjacent to the lock, and is called the "navigable pase," This is the sill which is shown on the accompanying profile, and whioh is referred to in the following table.
The othor sectlons have their sills at higher elevations, and are designated as "weirs." In raising a dam the longest wicketa, which are the moot difficult to handle, are generally raised first, leaving the shorter lengths to be raised as the head on the dam it increased. In lowering a dam the reverse order is followed. Ordinary fluctuationa in stage are controlled by raieing or lowering the proper number of wicketa on the weirs.
The Ohio River practice has been followed to the present project. The elevations of the sille of the navigable pasees are shown on the accompanying profile and in the following table. For the present it his not been considered necessary to determine the proper length and elevation of each weir.
In order to have the number of locks and dams as emall posible it is deeirable to have the lifts as great as possible. The greatest vertical height of wickets 80 far used on the Ohio Rlver is 16.75 feet at Dams No. 2 and No. 3. The vertical height used in each of the ten dams in this project is 18 feet, which was the maximum adopted between Chicago and St. Louis. The 16 foot 9 inch wickets have been operated nuccessfully on the upper Ohlo, and there in no reason to belleve that the limit has been reached. An additional height of 1 foot and 3 inches is considered a reasonable proposition.

The movable portion of each dam is aupported upon a foundation of concrete ahout 40 feet wide and 6 to 12 feet thick. This in turn is supported upon pilee 20 to 30 feet long. Lakkage under the dams is prevented by a row of triple-lap aheet piling, 30 feet in length, along the upstream edge of the concrete. Underacour on the downstream side lo provented by heavy cribwork, Alled with stone, adjacent to the concrete, and a mattrees of standard design beyond the cribwork.

No provision has been made for service bridges from which to operate the dams, an the later experience on the Ohio River hae demonstrated that the dams can be safely and readily operated from service boats built for that purpose.

In order to avoid increasing the food height and flood velocity it is not proposed to carry the abutments and banks above high water, but instead, to allow the flood water to pase out over the banke, the same as it does in its present condition. The neceseary bank protection would be provided above, below, and behind the locks and abutments to prevent a washout from behind.

Of the movable dame on the Ohio River, 6 have been completed and 8 are under construction. At Dam No. 8 the estimated coot per linear loot of dam, including service boat, based upon the contract prices, is \$447. This is not a typical cruse, hopever, as the prices at this dam are higher than at any other dam on the river. At Dam No. 11 the coot per linear foot is just a little above $\$ 400$. At all other dams the cost in lees than $\$ 400$ per linear foot. In estimates heretofore made on the Ohio River $\$ 400$ per linear foot has been commonly used. This covered otfice expenses, cost of superintendence, inspection, etc. In this project, to cover the increased height of.wicketa and cost of mattress, $\$ 150$ per li sear foot has been used an the basis of the dam eatimatem.

The following table given the location, length, lift, backwater height, and principal elevations in connection with each of the 10 dams in this project:

Data relating to proposed movable dams.

- Damm 3,000 feot.
b Dam $=3,500$ feet.

UNIT PRIOEA.

The unit prices which are used in the detailed estimates are similar to those which were used for that portion of the waterway from Chicago to the Miseiselppi River, They are based upon my own experience and upon that of other engineers and contractors for similar work.
Portland cement concrete has been estimated at $\$ 6$ per cubic yard ; structural steel in the lock gates at 6 cents per pound; cast-iron at 5 cents per pound; round piles in place at 40 cents per linear foot; sheet piles in place and oak timber in sills and posts at $\$ 50$ per thousand excayation for the locke at 50 cento per cubic yard; backfilling behind the land walls and in the cofferdams at 25 cents per cubic yard; dredging in the river bed at 15 cents per cubic yard; common lahor at $\$ 2$ per day of eight hours; pump engineers at $\$ 3$ per day of eight hours.

Summary of cost, slackwater project, St. Louis to Cairo.

Lock No. 1, lift, 7 feet \$573, 191
Lock No. 2, lift, 8 feet 683, 723
Lock No. 3, lift, 10.2 feet 636, 196
Lock No. 4, lift, 9.3 feot. 648, 740
Lock No. 5 , lift, 11.8 feet 669, 485
Lock No. 6, lift, 11.7 feet 659, 644
Lock No. 7, lift, 10 feet. 701, 411
Lock No. 8, lift, 10.6 feet 631, 685
Lock No. 9, lift, 5,2 feet \$612,731
Lock No. 10, lift, 16 feet 769,225
Total for ten locks 6, 486, 031
8 dams, at $\$ 1,350,000$ 10, 800, 000
2 dams, at $\$ 1,575,000$ 3,150,000
Bank protection, 50,000 linear feet, at $\$ 35$ 1,750,000
Levees and hurdlen. 300, 000
Dredging in channel, 170,000 cublc yards, at $\$ 0.15$. 25,500
Dredging lock approaches, 160,000 cubic yards, at $\$ 0.15$ 22, 500
Right of way, 10 sites, at $\$ 10,000$ 100,000
Contingencien, 10 per cent 2, 263, 403
Total 24, 897, 434

OPERATION AND MAINTENANOE.

The Board of Engineers which reported on a θ-foot project for the Ohio River, under date of December 15, 1006, eetimated the cost of operation and maintenance of one lock and dam at $\$ 15,000$ per annum. This is considered a liberal estimate and has been adopted in the following summary.
The coat of maintaining a 14 -foot channel betweon the locks is a more difflcult question. The dams which have been built on tho upper Ohto are on a gravel bottom, and the banke are not subject to caving, so they do not afford any data upon this subject. On the lower Ohio, where the character of the bed and banks is more like the Misoissippi, none of the damo have as yet been built.
The Kanawha River is similar to the upper Ohio River, and for that reason affords us no data. On the Big Sandy River the quantities of sand which are washed in from the banks are enormous. The river goes almost dry in the summer time, and at other times is subject to devastating floods. No valuable comparisons can be made between that stream and the Mississippi River.
During ordinary stages, say from 6 to 12 feet on the St. Louls gauge, the velocity of the current from St. Luuis to Cairo will vary from 3 to 0 feet per second, or from 2 to 4 miles per hour, depending upon the stage and the reach under consideration.
When the dams are raised this velocity will be reduced to about one-half mile per hour in the lower portion of the pool and about 1 mile per hour in the upper portion at extreme low water. With a 6 or 7 foot stage, the volocity will be about 1 mile per hour at the lower end of a pool and about 1, miles per hour at the upper ond. This checking of the current will no doubt result in the deposilion of a portion of such material as may be in suspension at the time the water passes into these pools. Judging from the diffeulty which was formerly experionced at the St. Louis waterworks in making this mud settle, I do not believe that this is a very serious question. Furthermore, it must be borne in mind that the dams will all be down for about half of the year, and it is my opinion that during this half of the year, when the velocities are greatest, most of these deposits will be scoured out and carried down the river.
Now, to caving banks I have a proposition to make which I believe is true, and if true it means that this project merits the most careful consideration of this board, viz, with the dams raised caving of the banks will practically cease.
I am drawh to this conclusion from two considerations: First, I do not beliove that the banks will cave with such low velocities as have been mentioned above. Second, I understand that most of the caving occurs during a falling stage-say from 20 feet downward. With this system in operation, the dame would be raised at an 18 or 20 foot stage, and the river would not be permitted to pass through this critical period,
In view of the foregoing considerations I have cestimated the annual coet of dredging under this project at $\$ 1,000$ per mile, although the actual cost may be very much lees.

In order to make the estimate still more liboral I have included an item of $\$ 50,000$ per annum for bank protection, so that the places which may show any serious tendency toward caving may be permanently protected.
During the winter, when there is danger from running ice, the dams would be kept down. At times, on account of this practice, there may be less than a 14 -foot depth in the channel, but there is so little navigation during this season of the year that this is not considered a serious objection.

Estimate of cost of operation and maintenance.

From September 22 to November 18, 1008, I was assisted on this work by Junlor Engineer Geo. H. Wolbrecht, and from December 1, 1008, to date by Surveyor M. O. Emanuel, both of whom rendered falthful and efficient service.

Respectfully submitted.

J. W. Wofrmann
Assistant Enginear.

Col. W. H. Bixbx,
Corps of Enginecrs, U. S. Army, Senior Nember, Board on Examination and Survey of Mississippi River.

Estimate of cost, Lock No. 1, slack-water project.
LIFT 7 FEET.

| |
| ---: | :--- | ---: | ---: | ---: | ---: |

Estimate of cost, Lock No. 2, slack-water project.
LIFT 8 FEET.

Estimate of cost, Lock No. s, slack-water project.
LIFT 10.2 FEET.

	Quantity.	Unlt price.	Cost,
Portiand coment conureto . cuhhto yards. .	48,000	80.00	\$288, 360
Plles In foundation .linear feot. .	118, 8000	. 40	47,400
	224,000	. 05	16,200
Struatiural stoel lin gates. pounds . .	1,369,834	. 08	82, 190
Anohorages and connections. ...			9,883
	123,840	$0{ }^{\circ}$	1,200 6,192
Oextlmbert			
Mitar and 00ntant sills. leet B, M. .	13,000	. 06	660
Miter and quoin posts. do. . . .	13,824	. 06	091
Operating machiliery. Iryme for			80,000
Houses for superintendent and assistants.			8,000
Gulde pllen.			11,200
	81,000	. 80	
Coderdam...	81,000	. 20	80,000
Purnplog. .			11,000
Total......	. \cdot.........	-	636,100

Estimate of cost, Lock No. 4, slack-water project.
LIFT O.8 FEET.

	Quantity.	Unlt price.	Cont.
Portiand coment concroto. oublo yards. .	49,070.	\$0.00	2004, 200
1'lles in foundakion. IInear fret. .	121,300	. 40	48,820
Sheet plles. .eet B. M. .	324,000	. 06	16,200
Struotural steel in gates . pounds. .	1,397,630	. 06	83, 858
Anchorages and connevtions. .			10,088
Valves and vilvo frames. .			1,100
Cast-iron hollow quolns . pounds. .	125,880	06	6,278
Oak timber: Miter and contant alls .feet B. M. . Miter and quoln posts. do.	13,000 14,016	. 06	64 701
Operating machinery. ..			00,000
Houses for superiatendent and asslatants.			8,000
Gulde plles.... .			11,200
	34,000 4,000	. 80	17,000
Bapk Alling .	4,000	. 25	10,750
Conerdam...... Pumplag.		6,000 0,000
Totan...........................	648,7

[^9]
Estimate of cost, Lock No. 5, slack-water project.

LIFT 11.8 FEET.

	Quantity.	Unit price.	Cost.
Portland cement oonorata. oublo yards.			
Porthand cement ouncrete. 0 oliblo yards..	61,790	\$0.00	\$310, 740
Pilos in lonln(latlon. .linnonr reot.	133, 400	- 40	63,300
Shent piles	324,000	. 05	11, 200
Structirril stun In gates. joinnds. .	1,401,1)40	. 08	87, 0908
		10,624
Valves and yalva frimes. .			4,300
Castritron hollow quoln. poinids. .	131,080	. 08	0,670
Onx timbert Mler continot sills. cot B, M. .		. 05	0.50
Mider nind givin josts. ${ }^{\text {a }}$ do. . .	14,488	. 05	734
Operatilig mimilnity . E	62, 000
Holises for suparlutendent and axsistants. .			8,000
Gulde plles. .			11, 200
	11,000	- B0	7,000
Bapk f\|llifg ..do. . . .	62, (0)0	. 26	18, 6×0
Cofferdath...			76, 100
Punplng. .			10,000
'rotal.			069, 485

Estimule of cost, Lock No. 6, slack-water project.
LIFT 11.7 FEET.

	Quanilty.	Unit price.	Cost.
Portiand cement conorate. .onliblo yards. .	80,430	26.00	\$302, 360
Plles In foundation. .llinear ferot. .	133, 400	. 40	83, 360
Bheot plles. deot 13, M. . $^{\text {a }}$	324, 010	. 05	16,200
8trisctitral steel In gutes. pounds. .	1,138,740	. 00	86,325
Anchoragas and conlleotlons.	10,369
Yalyes and val vo franles. .			4,300
Cast-iron hollow qutur . ppinds. . Oak timber:	129,000	. 06	8, 180
Miter and contant sills. lcot 13, M. .	13,000	. 05	640
Miter and guoln prots............ do. . . .	14,400	. 06	720
Operating inmchinery.			82,000
Houses for superinwndent and nasistants.. . .			8,000
Qulde plles....... .			11, 200
Excavatlon. oublo yards. .	14,000	. 80	7,000
Bxok flling. do. . . .	62, 000	. 25	16,600
Cofrardam..			75,000
Pumping. .			10,000
Total. .			650,644

Eblimate of cont, Lock No. 7, slack-water project.
LIFT 10 PEET.

| |
| ---: | :--- | ---: | ---: | ---: | ---: |

Estimate of cost, Lock No. 8, sluck-water project.
LIET 10.6 FEET.

| |
| :--- | :--- |

Estimate of cost, Lock No. 9, slack-water project.

LIFT 5.2 FEET.

	Quantity.	Unit price.	Cost.
Portland coment concrete................................cublo yards. .	42,180	\%0.00	2253,080
Plies in foundation...linear feet.	108,400	. 40	43,360
	324,000 $1,251,244$. 05	${ }_{75,075}^{10,200}$
	1,251,24	. 06	75,075 9,009
Valves and valve frames........p.at. ${ }^{\text {d. }}$.			3,800
	114,380	. 0.0	5,719
	12,000 12,768	. 05	660 638
			45,000
			8,000 11,200
		80	11,200
Back filling. ...d. do..	120,000	25	30,000
Cofferdam.			100,000
Pumping.			11,000
Total.			612, 731

Estimate of cost, Lock No. 10, slack-water project.
LIFT 15 FEET.

	Quantity.	Unit price.	Cont.
Portland coment concrete..................................oubio yards..	58,070	\$6.00	\$352,020
	142, 400	. 40	56, 965
Bheet plles.. feet B. M. .	324,000	. 05	16,200
8tructural steel in gates..pounds..	-1,590, 120	. 08	95,407 11,449
Velves and valve frames...			4,500
Cast-iron hollow quolns. $\mathrm{pounds}. \mathrm{}$.	141,040	.005	7,052
Oak timber: Miter and contact sills \qquad feet B. M			
	15,744	. 05	${ }_{787}^{650}$
Oparating machinery..			55,000
Houses for superintendent and assistants			8,000
Guide plles...			11,200
Excavailon..uble yards..	3,000	. 50	1,500
	110,000	. 25	27, 500
Cofterdam.			110,000
Pumping....			11,000
Total..			760,225

Appendix No. 7.

THE OANAL PROJEOT.
[By Assistant Engineor J. W. Woermann.]
St. Louis, Mo., January 21, 1909.
Colonel: I have the honor to submit herewith my report upon a project for obtaining a 14 -foot waterway from St. Louis, Mo., to Cairo, Ill., by means of a continuous canal, and also by means of an interrupted canal.

The river and harbor act of March 2, 1907, reads, in part, as follows: "The Secrotary of War may appoint a board of five members *** to examine the Mississippi River below St. Louis and report to Congress * * * upon the practicability of constructing and maintaining a navigable channel fourteen feet deep and of suitable width from St. Inuis to the mouth of the river, either by the improvement of said river or by a canal or canals for part of said route."

GENERAL DESCRIPTION OF PROJEOT.

In accordance with this provision I was instructed by the board to prepare estimates for a canal or canals from St. Jouis to Cairo of similar size to the canal sections of the adopted project betreen Chicago and St. Louis, viz, a canal trunk with a bottom width of 160 feet and side slopes of one on two, and locks 80 feet wide and 641 feet long between hollow quoins, or 600 feet long in the clear.

When I began work on this project on August 1, 1908, the survey had been completed and most of the charts were well under way. A study of these charts, together with my personal knowledge of the topography, convinced me that a continuous canal from St. Louis to Cairo was impracticable, on account of its probable cost, as it would involve many miles of canal trunk through bluffs, from 75 to 200 feet high. However, to show its impracticability more conclusively, an approximate estimate of such a canal was prepared, which is given at the close of this report.

I decided, therefore, to lay out a canal across the bottom lands only where the conditions were favorable, and elsewhere to use the natural bed of the river. The project as laid out consists of four stretches of open river navigation, connected by three sections of canal, all of which are laid out on the Illinois side of the river. These have been designated the upper section, middle section, and lower section, respectively.

A movable dam of the Chanoine wicket type has been located in the river near the upper end of each section, for the purpose of affording ample depth in the open river section, and also for the purpose of securing an economical bottom grade for the adjacent section of the canal.

Dam No. 1 is located about 1 mile above the Meramec River, or 18.7 miles below the Eads Bridge. Dam No. 2 is located at the foot of Crains Island, or 79.7 miles, by river, below the Eads Bridge. Dam No. 3 is located at the town of Commerce, or 143.9 miles, by river, below the Eads Bridge.

Thie general location and length of each section of the canal and of each stretch of open river navigation is shown in the following table:

Lengths of component parts of canal project.

Open river from the Eads Bridge to Meramec River. 18.1Miles.Canal from Meramec River to Kaskaskia River:
39.8
Open river from Kaskaskia River to foot of Crains Island 16.1
Canal from foot of Crains Island to head of Devils Island 45.2
Open river from head of Devils Island to Commerce 18.9
Canal from Commerce to Pond Lilly Crossing. 15.5
Open river from outlet of canal to mouth of Ohio River. 7.7
Total 161.3

The total distance by river from the Eads Bridge to the mouth of the Ohio River is 182.5 miles, so that the canal project will effect a saving in distance of 21.2 miles.

A guard lock is provided at the upper end of each section of canal. These are designated as No. 1, No. 4, and No. 6, on the accompanying maps, profile, and estimates. Ordinarily there will be little or no lift at these locks, but they are designed for a lift of 4 feet, so that they may be used up-to a stage which is 4 feet above the normal pool level. The guard gates are designed for a head of 18 feet at the upper end and 14 feet at the lower end, which may occur when a lock is pumped out for repairs.

Locks No. 2 and No. 3 are located near the lower ond of the upper section, with lifts of 15 feet and 22 feet, respectively. Lock No. 5 , with a lift of 32 feet, is located at the lower end of the middle section. Lock No. 7, with a lift of 38 feet, is located at the lower end of the lower section. The total fall from the proposed pool at St. Louis to the mouth of the Ohio River is distributed as follows:

	Fall.	Elevan tion.
Crest of Dam No. 1, above Merameo River.	Feel.	Feet. 396
Uppersectlon:		
Look No. 1 , glard look.	0	
Look No. 2, lirt........	16	
	22 -1	
		38
Crest of Dam No. 2 at Crains Island.		358
Middle section:		
Look No. 4, guard look		
Look No. B, lift. \ldots....	32	
Fall from Lock No. 6 to Dam No. 3		
Crest of Dam No. 8, at Commerce, Mo. .		223
Lower seetion:		
Look No. 6 , guard lock		
Lock No. 7 , lift. \ldots.............	38	
Fall from Look No. 7 to the Ohlo Rivor	6	
Elevation of water surface at the junction of	116	281

OANAL TRUNE

The center line of the canal was laid out on the large charts, where the topography eeemed most favorable, taking into account the elevation and character of the ground stream crossings, highways, and other features which affect the cost, maintenance, and utility of a canal. Where the best location could not be determined by inspection, two routes were laid out, and comparative estimates prepared to decide the question. For the purpose of computing the earthwork the lines were transferred to the field sheets, as the ground elevations could be tabulated more accurately from them than from the large charts.

The location has also been transferred from the large charts to the four sets of photolithographic copies, which accompany this report. The dams and other structures relating to the canal are shown in red, while those relating to the slack-water project are shown in blue. The parallel red lines indicate the width of the canal at the water surface, which is 216 feet. The right of way, which is 800 feet wide, on an average, is not shown.

The location and degree of curvature of each curve on the canal is shown in the following table:

Table of curves on canal project.
[L.-lest; R.-right.]
UPPER SECTION.

From atation (approximate)-	To station (approximate)-	Degree of curvo.	No. of chart.
18.................................		030 L .	3
$\boldsymbol{4}+200$.	$36+800$.	080 R .	
43..		030 L .	
61.		${ }_{0}^{0} 30 \mathrm{LL}$	
$117+700$	$120+800$	030 R .	5
$120 .$.	$131+700$	030 L .	8
146	${ }^{148}$	030 R.	${ }^{6}$
16.		${ }_{0}^{0} 30 \mathrm{~L}$	8

Table of curves on canal project-Continued.

$$
\begin{aligned}
& \text { [L.-left; R.-right.] } \\
& \text { MIDDLE \&ECTION. }
\end{aligned}
$$

From stat lon (npproximata)-	To statlon (approximate)-	Degrees of curve.	No. of chart.
	\checkmark		
	3.	0 30 R.	8
13.	14.	036 R .	8
. 36.	41.	030 R .	8
$809+600$.	$61+400$	030 L .	9
$77+6000$.	$81 .+400$	030 L.	9
$91+700$.	$93+600$)	3 (0) R,	10
$80+8(8)$	44.7.0.	0 30 R.	10
$134+700$	$144+400$	0 18 R.	11
$170+$ ioio.	188.		11
$203+400$	2043.	030 R .	12
210.....	212.	030 R .	12
221.	225.	030 R .	12
229.	234.	0 30 R.	12

LOWER SECTION.

2.	4.	100 L.	14
21.	30.	$0 \quad 00 \mathrm{R}$,	15
$33+560$.	38.	1001.	15
$53+400$.	66.	100 R .	15
$78+500$.	81.	100 R .	17

EMBANKMENTS.

The embankments have been designed with a top width of 16 feet, so that they may be used as highways by the people along the canal, to travel from the many private roads to the proposed highway bridges, which are located only at public roads.

The side slopes are 1 on 2, the same as for the excavated portion of the canal.
A careful study was made of the high-water elevations on file in this office, and the embankment grades established 1.5 feet above the high-water line of 1844. The amount of earth work in the embankments was computed for all stations where the amount of embankment exceeded the amount of excavation.

To prevent wave wash, the inside slopes are riprapped for a width of 9 feet, measured along the slope. This riprap-will usually lie on the excavated slopes, but where the ground is low it will fall on the embankments.

BACEWATER.

The subject of backwater slopes above the proposed dams is covered in my report upon the elack-water project, and need not be repeated here.

LOCXB AND DAMB,

The locks and dams are similar in every respect to those provided for the slackwater project, and for detaila reference may be made to my report upon that project. A detailed estimate for each lock is given in the appendi. to this report. The following table gives the location, lift, and principal elevations in connection with each of the seven locks in this project.

Data relating to proposed locks.

$\begin{aligned} & \text { No. } \\ & \text { of } \\ & \text { lock. } \end{aligned}$	Genaral location.		Distance from Eads Brldge by canal projeot.	Elovation of upper milter 811.	Elevation of lower mitar 81	Laft in reet at low water
$\begin{aligned} & 1 \\ & 2 \\ & 8 \\ & 4 \\ & 4 \\ & 8 \\ & 6 \\ & 7 \end{aligned}$	1 mille above Meramec River. 2 milles abore Sto. Genevleve. 1.3 milles above Kaskaskla River. Foot of Cralns Island. 8 miles above Cape Girardeau. Opposite Commerce. 8 milles above Calro.. Mouth of Ohio River	$\begin{array}{r} 0 \text { to } 1 \\ 176 \text { to } 177 \\ 204 \text { to } 207 \\ 1 \text { to } \\ 227 \text { to } 28 \\ 1 \text { to } 28 \\ 78 \text { to } 70 \end{array}$	Miles. 18.1 51.5 57.2 74.2 117.1 138.3 153.0	Feet. 382 382 367 344 344 311 311	Fect. $\begin{aligned} & 382 \\ & 307 \\ & 345 \\ & 344 \\ & 342 \\ & 311 \\ & 312 \end{aligned}$	Feet. $\begin{gathered} 0 \\ 16 \\ 22 \\ 0 \\ 32 \\ 0 \\ 38 \end{gathered}$
No. loak.	General location.	Top of walls at end.	Top of walsat end.	Helght of walls at upper end above chamber floor.	Helght of walls at lower ond above chamber floor.	No. of chart.
1 2 3 4 4 8 6 7	1 mile above Memmee Rlver. 2 miles above Ste. Cenevieve. 1.3 inlles above Knskaskla River. Foot of Crains Island. 8 miles above Cape Girardeaiu. Opposite Commerce. 8 miles abovie Calro. Mouth of Ohio River.	Feet. 420 399 396 386 301 342 331	Fect. $\begin{aligned} & 402 \\ & 399 \\ & 387 \\ & 364 \\ & 301 \\ & 331 \\ & 331 \end{aligned}$	Feet. 37 31 50 41 48 30 87	Feet. $\begin{aligned} & 18 \\ & 31 \\ & 41 \\ & 19 \\ & 48 \\ & 19 \\ & 57 \end{aligned}$	3 6 6 8 12 14 17

BRIDGES.

A swing bridge with a draw pier to one side of the canal has been adopted as the most economical type for this project. The short span which swings over dry land is counterweighted. The piers and abutments are of concrete, founded on piles.

It was found that 54 highway bridges and 3 railroad bridges were required for the entire project. The locations are shown on the accompanying mape, each series being numbered consecutively.

OULVERTE AND AQUEDUCTA.
In determining the dimensions of the culverts and aqueducts required under this project, much weight was given to the sizes of existing bridges acrose the same water courses. Where such bridges did not exist, the determinations were based upon the size of the channels and upon the areas of the watersheds.

Wherever it is practicable the culverts have been taken under the canal, flushing devices being provided where needed. Where the topography is unfavorable to this arrangement, a culvert is provided under one embankment and the water is taken into the canal.

The following table shows the location, size, character, and cost of the 28 culverts and 1 aqueduct required under this project. None are required on the lower section of the canal.

Table of culverts and aqueducts.
UPPER SECTION.

No.	8tation.	No. of chart.	Size and character. 1	Cost.
10111213	10182880897795101107123133141174		Two 48-inch plpes under east embankment.	85,000
		8	One 48-Inch plpe under east embankment.	3,000
		8	81x 12-foot arefes with flushing device...	13i,000
		4	Two do-nch pipes with flushing device.	19,500 19,500
				19, 500
		8	Three lo-iout arvhes with flushing device	64, 880
		5	Two 10-foot arches with flushing device.	43, 200
		5	Three 12-100t arches y/th flushing device	75, F 000
		8	Three 48-inch plpes wilh flushing device	29,200
		8	Two 12-foot arehes wilh flushing device.	60, 400
		6	One 12-foot arch with flushing device..	21,000
			-	502, 200

MIDDLE SECTION.

14	8	8	No culvert, but new outlet.	\$3,300
15	11	8	One 10-100t arch imder east embankment. .	6,000
16	20	8	Two 12-foot archea under east embankment. .	12, 600
17	28	8	One 12-foot arch tnder east embankment. .	7,000
18	38	8	- ...do................................	7,000
19	45	9	Two 8-100t arches under east embantment .	9,000
20	54	9	Two 48-Inch plpes under west embankment .	5,000
21	77	9	Two 12-foot arches mith fusshing device. .	50,400
22	101	10	One 12-foot arch under west embankment. .	7,000
23	111	10	Two 48-inch pipes under west embankment. .	5,000
24	117	10ddo..	5,000
25	124	10	. . . do. .	5,000
28	130	10	. . do.	5,000
27	140	11do.	8,000
28	164	11	One 10-100t arch with flushing device.......	24,000
(a)	148	11	Eighteen 35-loot spans over 13Ig Muddy River...............................	510,000
				666,200

- Aqueduct.

UNIT PRICES.
The unit prices used in this project are the aame as given in my report on the slackwater project, with the following exception: The price of earth excavation for the locks has been taken at 35 cents per cubic yard instead of 50 cents, as in this project most of the excavation is dry.

We have the following additional items: 25 cents per cubic yard for excavation of canal trunk and ditches; 25 cents per cubic yard for embankment, wherever the embankment is in excess of the excavation; 60 cents per square yard for riprap; and $\$ 200$ per acre for right of way.
The average price for a highway swing bridge has been taken at $\$ 55,000$ and for a single track railroad swing bridge at $\$ 70,000$. These pricee are based on the cost of similar bridges over the Chicago Drainage Canal.

Estimate of cost.

OPPER SECTION OF CANAL.

	Quantity.	Price.	Total.
Excspation:			
Canal trunk. .cuble yards. .	22,500,703	\$0.25	\$5,047,676
Ditches......................... do. . .	368,000	. 25	92,000
Embankments: Excess over excavat lon......................... do....	347,925	. 25	80,981
	414,000	. 60	248, 400
Eighway bridges .	21	55,000. 00	1,155,000
Railroad bridges. .	1	70,000. 00	70,000
Culverts.......	113	Variable.	502,000
			1,350, 000
Look No. 1, guard look.			454, 962
Look No. 2; ilit 15 feet.			606, 164
Look No. 3, lift 22 feet .	3,857	2000	$760,342$
Contingerrces, 10 per cent.			1,171,112
Total.			12,882,237

MIDDLE SECTION OF CANAL.

Excavation: -			
Canal trunk... cublo yards. .	30, 142, 518	\$0. 25	\$7, 835,630
Ditches. do.	421, 333	. 25	105,333
Embankments: Excess over excavation........................ . do.	1,389,629	. 25	347,407
Riprap.. .square yards. .	474,000	- 6.60	284,400
Htghway bridges .	27	55,000.00	1,485,000
Rallroad bridges.	2	70,000.00	140,000
Culverts.	15	Variable.	150,300
Aquedurts. . . .	1	-510,000
Dam No. 2.			1,500,000
Look No. 4, guard lock.			617,614
Look No. 5, 【IIt 32 feet Right of way \qquad	$4,3 \ddot{8} 9$	200.00	$\begin{aligned} & 857,254 \\ & 877,800 \end{aligned}$
Contingencies, 10 per cent. .	,		1,431, 674
Total.		15, 748, 412

LOWER SECTION OF CANAL.

Excavation:			
Canal trunk......................................cuble yards..	9,936,962	20. 25	\$2, 434, 240
Ditches...d.	140, 444	. 25	35, 111
Embankments: Excess over excavation......................do.	61,111	. 25	15; 278
Rlprap...square yards..	158,000	. 60	94, 500
Highway bridges	6	65,000.00	330,000
Dam No. 3 .			1, 6000000
Lock No. 6, guard lock			48, 110
	1,488	200.00	$1,014,345$ 297,600
	1,488	20.00	625, 553
Total.			6,881,087

GRAND SUMMARY.
Upper section, 39.8 miles long 312,882, 257Middle section, 45.2 miles longGrand total, 100.8 miles long35, 611,76
OPERATION AND MAINTENANCZ.
The cost of operation and maintenance for one lock is estimated as follows:
One superintendent, at $\$ 100$ per month. $\$ 100$
Six lock tenders, at $\$ 50$ per month 300
Labor for one month 400
Labor for one year. 4,800
Suppliee and repairs. 3, 200
Total for one lock for one year. 8,000
The cost of operation and maintenance for one lock and an adjacent dam has been taken at $\$ 15,000$ per annum, the same as in the slackwater project.
The cost of operation and maintenance for each bridge is estimated as follows:
One bridge tender (mechanic) at $\$ 1(10$ per month.................. $\$ 100$
Two bridge tenders at, $\$ 50$ per month. 100
Labor for one month. 200
Labor for one year. 2,400
Supplies and repairs.................. 1 , 600
Total for one bridge for one year..................... 4, 000
The cost of maintaining a 14 -foot channel in the 61 miles of open river which constitute a part of this project has been taken at $\$ 1,000$ per mile, the same as in my report on the slackwater project.
The cost of maintaining the canal trunk has been taken at $\$ 200$ per mile. This cost is not uniformly distributed, but is principally for dredging at the points where streams are taken into the canal.
In order to make the estimate more liberal I have included an item of $\$ 50,000$ per annum for bank protection, the same amount as in the slackwater project, so that the banks may be permanently protected, wherever the caving threatens to do any serious damage.

Estimate of cost of operation and maintenance for canal in three sections.

Maintaining canal trunk, 100 miles, at $\$ 200 . \ldots .$. . 20,000
Bank protection.. 50,000
Total.. 438,000

continuous canal.

The following estimate for a continuous canal from Madison, Ill. (the terminus of the canal recommended by the Mississippi River Commission in 1905), to the mouth of the Ohio River was prepared by estimating the cost of constructing four sections of canal to replace the four stretches of open river navigation in the preferred project and adding these to the estimates for the three sections of canal above described.
The excavation for each section was computed by taking the average of a number of typical elevations along each section. The estimates of embankment and of highway bridges and culverts are based largely upon the results obtained in my detailed study of the canal in three sections. The number of railroad bridges was determined from the mape on file in this office. No dams will be required in this project, but a very expensive and unusual structure is required at the Kaskaskia River, viz, an aqueduct with a draw span. This is necessary because the Kaskaskia is a navigable river. The only altermative is a lock on each side of the river, so that boats may lock into the Kaskaskia River and out again, and a siphon under the Kaskaskia to carry the water supply for the canal. The costs of the two plans would not differ materially.
The aqueducts over the other large streams do not offer any special difficulties.
Eatimate of coat of a canal from Madison, Ill., to the Meramec River, 22.8 miles.
Excavation:
Canal trunk, 22.8 miles, at $\$ 160,000$ \$3, 648, 000
Ditches, 22.8 miles, at $\$ 2,300$. 52,000
Embankments: Excess over excavation 77,000
Riprap, 22.8 milee, at $\$ 6 ; 200$ 141,000
Highway bridgee, 15 , at $\$ 55,000$ 825,000
Railroed bridgee:
One three-track, at $\$ 180,000$ 180,000
Thiree double track, at $\$ 125,000$ 375,000
8ix ainglo-track, at $\$ 70,000$ 420,000
Culverts $\$ 520,000$
Right of way 450, 000
Contingencies, 10 per cent. 668, 800
Total 7, 356, 000
Estimate of cost of a canal from Kaskaskia River to foot of Crains Island, 16 miles.
Excavation:
Canal trunk-
1.5 miles, at $\$ 2,670,000$ \$4, 005, 000
8 miles, at $\$ 4,576,000$ 1, 566,000
Ditches, 16 miles, at $\$ 2,300$ 37, 000
Embankments: Excess over excavation, 8.7 miles 40, 000
Riprap, 16 milee, at $\$ 6,200$ 99, 000
Highway bridges:
Four (300 feet), at $\$ 55,000$ 220,000
Six (900 feet), at $\$ 150,000$ 210, 000
Railroad bridges, $3, \$ 70,000 \ldots \ldots \ldots$.............................. 1,800,000
Aqueduct over Marys River 225,000
Culverts 200,000
Right of way: 570,000
6.5 miles, at $\$ 20,000$ 130,000
Contingencies, 10 per cent 4, 604,000
Total 51, 271, 000
Estimate of cost of a canal from Devils Island to Commerce, 13.5 miles.
Excavation:
Canal trunk-
6.8 miles, at $\$ 1,071,000$ \$7, 283, 000
6.5 miles, at $\$ 70,000$ 455, 000
Ditches, 13.3 miles, at $\$ 2,300$ 31, 000
Embankments: Excess over excavation, 6.5 miles, at $\$ 50,000$ 325, 000
Riprap, 13.3 miles, at $\$ 6,200$ 82, 000
Highway bridges:
Four (300 feet), at $\$ 55,000$ 220, 000
Four (450 feet), at $\$ 80,000$ 320, 000
Railroad bridges, 2, $\$ 70,000$ 140,000
Culverts and aqueducts 500,000
Right of way:
6.8 miles, at $\$ 40,000$ 272, 000
6.5 miles, at $\$ 20,000$ 130, 000
Contingencies, 10 per cent 976,000
Total 10, 734, 000
Estimate of cost of a canal from Pond Lily to mouth of Ohio River, 6.5 miles.
Encavation:
Canal trunk, 6.5 miles, at $\$ 70,000$ \$455, 000
Ditches, 6.5 miles, at $\$ 2,300$ 15, 000
Embankments: Excees over excavation, 6.5 miles, at $\$ 50,000$ 325, 000
Riprap, 6.5 miles, at $\$ 6,200$ 40, 000
Highway bridges, 4, at $\$ 55,000$ 220, 000
Railroad bridges, 1, at \$70,000 70,000
Culverts 200,000
Right of way, 6.5 miles, at $\$ 40,000$ 260,000
Contingencies, 10 per cent 158, 000
Total

GRAND GUMMARY.
Estimate of cost of a continuous canal from Madison, Ill., to mouth of Ohio River.

- Without Dam No. 1, deduct estimated cost +10 per cent for contingencles,

Without Dam No, 2, deduct estimated cost + 10 per cent for contingencles.

- Without Dam No. 3, deduot estimated cost + 10 per cent for contíngencies.

ALTERNATE PROJEOT FOR A CONTINUOUS OANAL.

An approximate estimate has also been prepared for a canal which would cross over to the Missouri side of the river above the Kaskaskia River and then back again into Illinois at the foot of Liberty Island. This would avoid the high bluffs which follow the Illinois shore between these points and also eliminate the aqueducts over the Kaskaskia River and Marys River.
This project requires a lock on each side of the river at both places where the Mississippi is crossed, or a net addition of two locks to the continuous canal project on the Illinois side.
The estimated cost of a canal on the Missouri side from the Kaskaskia River to the foot of Liberty Island is as follows:
Cost of canal trunk, 16 miles, at $\$ 423,000 \ldots \ldots .$.
Cost of two additional locks on Missouri side.. 1, 800,000
Additional cost on account of increased lift of two locks on Illinois side.. $\quad 600,000$
Total... 9, 168, 000
The extimated cost of the canal on the Illinois side between the same two points is $\$ 42,179,000$, making a difference of $\$ 33,011,000$ in favor of the Missouri side. This difference is reduced, however, by the increased cost of the canal trunk from Liberty Island to Devils Island. On account of the loss of grade which results from locking into the river the bottom grade of the canal is lowered 15 feet from Liberty Island to Devils Island and the cost of this section increased by $\$ 7,722,000$. The higher bottom grade can be secured in this alternate project only by means of a dam in the river, as in the preferred canal project.
Deducting this amount from $\$ 33,011,000$ gives us $\$ 25,289,000$ as the net saving in favor of crossing over into Missouri. Deducting this from $\$ 101,831,000$ gives us $\$ 76,542,000$ as the estimate of cost for the alternate project.

OPERATION AND MAINTENGIVOE O.F CONTINUOUB CANAIS.

The following estimates of cost of operation and maintenance require no additional explanation, except perhaps as to the ilem, bank yrotection, $\$ 50,000$. This has been included in each eatimate with the idea that at imes the caving of the bank may threaten the canal and require protection for that reason if for no other.

Estimate of cost of operation and maintenance for a continuous canal on the Illinois side of river.

7 locks, at $\$ 8,000$.	\$56,000
110 bridges, at $\$ 4,000$	440,000
Maintaining canal (100 miles), at $\$ 200$	20, 000
Maintaining canal (60 miles), at $\$ 500$	30,000
Bank protection	50,000
Total.	596, 000

Estimate of cost of operation and maintenance for alternate project for continuous canal.
9 locks, at $\$ 8,000$. \$72,000
110 bridges, at $\$ 4,000$ 440, 000
Maintaining canal (153 miles), at $\$ 200$ 30, 600
Maintaining canal (7 miles), at $\$ 500$ 3, 500
Dredging at river crossing. 10,000
Bank protection 50, 000
Total. 606, 100
Respectfully submitted.
J. W. Woermann, Assistant Engineer.
Col. W. H. Bixiy,
Corps of Engincers, U. S. Army,
Senior Member Board on Excamination and Survel of Mississippi River.
Estimate of cost, Lock No. 1, canal project.

aUARD LOOK.

Estimate of cost, Lock No. 2, canal project.

LIF'S 15 FEET.

	Quantlty.	Unit prico.	Cost.
Portland cement concrete.	42,900	\$6.00	\$297, 400
Plles In foundation.....	1,024,560	. 06	44, 880 61,474
Btructural steel ln gates.	1,024,00	. 0	7,380
Vabes and valve frames.			4,500
Castiron hollow quoins.	101,480	. 05	5,074
Oake timber: Mitor and contact sills.	13,000		
Miter and quoln posts.	11,328	.05	
Oparating machinery......			65,000
Houses for superintendent			
Gulde piles...............			-2,240
Excavation.	${ }_{72,544}^{148,150}$. 25	61, 812
Back fllling.	72, 690	. 25	18,148 5,000
Pumplag...			4,000
Total.			866, 164

Estimate of cost, Lock No. s, canal project.

LIFT 22 FEET.

	Quantity.	Unit price.	Cost.
Portland coment conernto. cuble yards. .	62,320	\$6.00	\$373, 820
Pifes in foundation. eet. .	$\cdots 160,400$. 40	66, 860
Struutiral steel lin gates . pounds. .	1,478,400	. 08	88,704
Anchorafes and connections..			10, 044
Valves and yalve frames. .			5,200
	147, (f)	. 05	7,253
Oak timber: Miter and contset sills. feet B. M. .			
	13,00 10,416	. 05	660 821
Operatling machinery..			62,000
Houses for superintendent and assistants			8,000
Guide plles. .			6,320
Excavatlon. ... cubic yards..	244,440	$\bigcirc 3.5$	85, 564
Back filling . di. do....	142,080	. 25	35, 520
Conterdam.			12,000
Pumpling. .. .			6,000
Total.			700,342

Estimate of cost, Lock No. 4, canal project. GUARD LOCK.

	Quantity.	Unft price.	Coat.
Portland cement, concrete. cuble yards. .	35,850	\$8.00	\$213,900
Ples in follndations. feet. .	106,200	. 40	42, 480
Structural steel In gates . pounds. .	1,141,290	. 08	68, 477
Anchorages and connections			8,217
Valves and palve frames. .			2, 134
Cast-Iron hollow quoins . pounds. .	103,200	. 06	5,160
Oak timber: Miter and contact sills. feet B. M.	13,000	. 06	660
Miter and quoin posts. do. . .	11,520	. 06	576
Operatlng machinery..			40,000
Houses for superintondent and assistants.			8,000
Qulde plles			7,420
Fxcavatlon. .cuble yards. .	219,180	. 35	76,708
Bank filling . ${ }^{\text {do. . . }}$	125, 590	. 25	31,398
Cotíerdam.			8,000
Pumping.			4,000
, Totel.			617,614

Estimate of cost, Lock No. 5, canal project.
LIPT 32 FEET.

:	Quantity.	Unit price.	Cost.
- Portland dement concreto. .cubio yerds. .	72,500	\$8.00	8435,000
Plles in foundation. feet. .	193,900	. 40	77,500
Structural steel in gates... pounds. .	1, 458, 460	. 06	87,507
Anchorages and conneetions.			10,500
Valves and palve frames..			6,900
Cast-iron hollow quoins . pounds. .	132, 440	. 06	6,622
Oak timber: Miter and contact sills. \qquad Miter and quoin posts.	$\begin{aligned} & 13,000 \\ & 14,784 \end{aligned}$.05 .05	650 738
Operating machinery 0	72,000
Houses for superintendent and assistants.			8,000
Gulde plles.			8, 320
Excavition .cuble yards. .	250, 110	. 35	87, 588
Brot alling do....	163, 670	. 25	40,918
Cotiordem....			12,000
Phmping. .			6,000
Total.	857, 284

Estimats of cost, Lock No. 6, canal project.
GUARD LOOE.

	Quantity.	Unit price.	Cost.
Portland cement concreto. .cublo yards. .	32,060	86.00	\$192,366
Plles In foundation.. feet. .	95,400	. 40	38, 160
Striotural steel lil gates. ... pounds. .	1,008,080	. 08	60, 485
Anohorages and connections...			7,258
Valves and valve fratnes. .			2,034
Cast-lron hollow quolns. pounds. .	93, 740	. 08	4,687
Oak timber: Miler and contact sills. feet B. M. .			
	13,000 10,704	.05 .05	650 638
Operating maohinery .			40,000
Houses for superintendont and assistants. .			8,000
Guide plles. ...			7, 420
Excavatlon. cublo Fards. .	241, 520	. 85	84, 532
Back filling . do....	101, 520	. 25	25,380
Cofferdain.........			8,000
Pumpling. ..			4,000
Total. .			484,110

Estimate of cost, Lock No. 7, canal project.
LIFT 38 EEET.

	Unit price.	Cost.
Portland coment conarete	86.00	\$584,400
Plles in foundation.	. 40	110,720
8tructural stoel in gates.	. 08	99, 393
Valves and valve Irames.		11,927
Cast-iron hollow quolns.	.08	7,982
Oak timber;		
Mitar and contact sills. Miter and quoin posts.	. 0	${ }_{835}^{650}$
Operating machinery......	.	78,000
Houses for superintendent		8,000
Quido plles..		8,320
Excavation.		124, 446
Back filling	. 25	56, 2222
Pumping..		12,000 6,000
Total.		1,014,395

Appendix No. 8.

EEPORT ON THE RESERVOTR POBSIBILITIEB OF THE GOUROES OF THE MIEAIASIPRI, MNNEBOTA, ET, OROIX, OHIPPEWA, WISCONSIN, AND OTHER TAIBUTARIES OF THE UPPER MIGAISBIPPI RIVER, WITH REFERENOE TO THE IMPROVEMENT OI NAVIGATION OF TEOEE TRIBUTARIES AND OF THE MISBIBEIPRI ITHETP.

[Extrect from Report of Assistant Enginear O. W. Durham, U. B. Enginear Omce, Rook Ialand, mi]

The writer was able to procure all of the reports of the various district engineer officers connected with reeervoir exploration and operation and of their assistants from 1869 to date, as also many additional documents and maps, all of which are supplemented by his own knowledge of the improvement of the Missiesippi River gained by thirty-seven years' experience in the work, and by other information found in the United Statee engineer office at Rock Island.

The writer's main endeavor will be to show:
First. The greatest practicable extent to which the reservoir systems may be carried with a view to obtaining the greatest posesible discharge during periods of summer and tall low-water in the Missisippi River, and ascertaining the probable quantity of auch discharge.

Second. The effect of the proposed reeervoirs upon the improvement of navigation of the Mierisaippi River at and below St. Paul.

No attempt will be made to give the probable cost of building and operating these reservoirs, nor to reconcile the various conflicting interests which may arise from their construction. It is the writer's belief, however, that these reservoir systems carried out to their fullest extent can be made to subserve both the interests of navigation and of water power, besides acting as a potent restraint on floods. Under such circumstances it might be to the advantage of water-power interests to come in and relieve the Government of an equitable part of the cost. It is believed that a very great part of the flowage damages, which have been the most expensive feature of reservoir construction, could be avoided by drawing down the water in the lakes themselves, thereby taking more àdvantage of their natural capacity than has heretofore been done, which result can in most cases be attained by locating the aprone of the damsat a much lower elovation and then dredging proper channels to the gates and sluices of the dam both above and below. The reservoir capacity could also be further increased by dredging in the basins, which could be very cheaply done with a suction dredge, and possibly a berm or levee could be built at the same time around the lakes, and adjacent lands could be raised, with manifestly excellent results.

Prior to the surveys made by Major Allen, in 1879, 1880, and 1881, which have given us the greater part of our information in regard to reservoir sites, preliminary surveys and examinations had been made by General Warren, in 1869, and Colonel Farquhar, in 1874.

The main object of all these surveys was to ascertain the extent to which the impounded water could be applied to the improvement of the navigation of each stream, and ultimately to that of the main river. But the reservoir system so far as built by the Government is intended primarily for the benefit of the navigation of the Mississippi River, and incidentally to mitigate its tloods.
The object of the reservoirs already constructed at the headwaters of the Mississippi River is to collect the surplus water, principally from the precipitation of winter, spring, and early summer, to be systematically released so as to benefit navigation upon the Mississippi River below the reservoir dams. In 1905 the district officer says:
"The expenditure has resulted in benefit during the low-water season to the navigable portions of the Mississippi River from Cass Lake to Lake Pepin and below, and incidentally to the mitigation of the floods in the river at St. Paul."

The examinations and surveys that have been made and the additional claims presented in this report, perhaps on somewhat insufficient grounds, do not represent the total possibilities; in fact it is manifest that far greater storage facilities could be shown to be available.

The district officer further says, in 1907:
"The original project (for the reservoirs at the headwaters of the Mississippi River) calls for the construection of 41 reservoirs. *** The efficiency of the reservoir system could also be greatly increased at small expense by dredging the channels above the dams and those connecting the various lakes that constitute the reservoirs. The aprons of the dams are now several feet below the level to which the water can be drawn down through the existing contracted channels."

The results as to precipitation, run-off, discharge, and velocity of streams, etc., given in the following tables and pages of this report, were obtained by constant study and effort during the past thirty years, and are believed to be accurate. The resulto only are given, without any attempt to explain the methods adopted.

There follows a table showing the areas of the drainage basins or wateraheds of the various tributaries of the Mississippi River above the mouth of the Missouri. The figures in this table were mostly taken from General Warren's report on bridging the upper Mississippi River, but they were revised by the writer many years ago and mome unimportant changes were made.
H. Doc. 50, 61-1——*

Drainage basins or watersheds of the upper Mississippi River Valley.

Deslgnation.	Square miles.	Square feet.
Mississippl Rlver above Junction with the Minnesota.	21,000	602, 173, 440, 000
Minnesota RIver..	12,119	337, 858, 329, 600
Vermbion Rivor	237	6, 007, 180, 800
8t. Crolx Rlyer.	7,518	210, 1883, 731, 200
Cannon IRIver..	1, 1600	47, 114, 400,000
Trimbelle (95), Isabolle (73), and Iush (183) river	351	9,785, 318,400
Chlppewa Rlver.	9, 602	$207,688,300,800$
	1, (i) 4	$44,716,953,000$
creeks	1,128	$31,446,835,200$ $10,514,880,000$
	1700 3,343	$10,514,880,000$ $93,197,401,200$
	3,343 1,185	$93,197,401,200$ $46,975,104,000$
Bad Axe RIver (180) and two creoks (200)..	-389	10,844, 697,600
Upper lowa River .	939	$20,177,817,600$
Yellow Hiver (270) and several oreeks (382).... .	452	$18,176,716,800$
Wiscousln Eiver. .	11,850	330, 359, 040,000
	1, 089	44, 298, 777, 600
Galena Rlver (185), Grant River (2s9), Platte River (3003), and saveral creeks (357).	1,137	31,697, 740,800
Maquoketa RIver.	1,803	81, 937, 459,200
Apple Rlver (245), Rush Creek (85), and Plum River (280)......................	1610 2,400	$17,005,824,000$ $69,417,216,000$
Wapslpinlcon River. .	2,490 10,690	$\begin{array}{r} 69,117,216,000 \\ 298.020 .096 .000 \end{array}$
	10,690	$298,020,090,000$
Iowa Rlver	12,250	$\begin{array}{r} 341,510,400,000 \\ 51,093,210,000 \end{array}$
Edwards Rlver and oreeks (638), Henderson River and oreoks (1227).........	$\begin{array}{r}1,865 \\ 334 \\ \hline\end{array}$	$51,093,210,000$ $9,311,385,000$
Flint and two other creeks. .	+ 4348	$0,311,385,000$ $120,400,444,800$
Skunk liver ${ }_{\text {Des Molnes }}$ IV...	14,052	
	14,055	
	1,377 3,080	$38,388,551,800$
	3,080	$\begin{aligned} & 86,032,742,400 \\ & 78,414,691,400 \end{aligned}$
Culvre R\|ver (1180) and soven creoks (182)	1, 6662	46,333, 000,800
Illinols River. .	27,445	765, $180,256,000$
Plasa Creek and Wood River	245	6,830, 208, 000
Total	164, 138	4, 575, 904, 819,200

The following table gives the areas of watershed; the mean annual run-off, which is usually taken as one-fourth of the rainfall; the known storgge capacity of the reservoirs already constructed and in operation (the first five on t! witst, and the estimated capacity of several sites, some of which have been surve. ani and others suggested; all of which are tributary to the upper Mississippi above the Falls of St. Anthony, excepting Big Stone Lake and Lake Traverse, which are in the Minnesota Basin. The discharges in second-feet for ninety days are also given.

Reservoir sites at headwaters of the Mississippi and Minnesota rivers.

Location.	Drainage area.	Reservolr eapacity.	Run-off.	DIsoharge for ninety days.
Lake Winniblgoshish	Square feet. $36,325,655,200$	Cuble feet. 43, 892, 000,000	Cuble reet. $10,709,765,392$	Second-feet. 2,149
Leech Lake.	26, 763, 204, 000	33, 094, 300,000	12, 311, 101, 440	1,683
Pokegama	17, 424, 000,000	$5,200,000,000$	8,016,040,000	${ }^{678}$
Sandy Lake	11, $02,285,600$	3, ${ }^{3} 16720000000$	8,937,818,624	892
Pine River.	12,074, 340,800	6,770, 828, 800	8, $449,942,760$	742
Mud Lake..	4, 460, 544,000	2, 885, 414,400	3,122, 380, 800	371
Gull Lake.	$7,582,924,800$	12,000,000,000	11, 898, 128,500	1,530
Mille Lacs.	$12,405,888,000$ $94,228,992,000$	$9,000,000,000$ $6,753,000,000$	8, $684,121,100$ $91,392,822,876$	1,115
Crow Wing river Long Prairle Riv	$94,228,992,000$ $0,412,032,000$	$6,763,000,000$ $3,300,000,000$	91, ${ }^{\text {a }} 185,977,461$	410
Total for Mississippl River.... Blg Stone Lake and Lake Traverse..	$\begin{array}{r} 244,162,026,800 \\ 81,293,414,400 \end{array}$	$\begin{array}{r} 132,946,343,200 \\ 33,000,000,000 \end{array}$	$\begin{array}{r} 175,952,131,629 \\ 33,000,000,000 \end{array}$	10,742 4,243
Grand total	325, 455, 411, 200	165, 946, 343, 200	208, 952, 131, 629	14,985

The combined estimated discharge of all these reservoirs, built and proposed, could doubtless be brought up to the 14,985 cubic feet per second for ninety days as given in the table. It will be noted that the entire watershed of the two main streams is $940,031,760,000$ square feet, while that of the selected reservoir sites amounts to but $325,455,441,200$ square feet, about 35 per cent; and, further, that of the total calculated run-off of $208,952,131,029$ cubic feet, only $165,940,343,200$ cubic feet, or about 80 per cent, is available for the purposes mentioned in this report. From the well-known character of the country at the headwaters of these two streams, it is believed that a much greater area of storage ground could be made available than the table indicates.

The following table gives information similar to the former one, but none of the reservoirs have been built. The information was chicfly obtained from surveys made in 1879, 1880, and 1881, and it is believed that further examination would disclose additional favorahle sites for resorvoirs. In fact, it is noted that while the entire watershed of the St. Croix is $210,083,731,200$ square feet, that of the selected reservoir sites only amounts to $109,052,400,600$ square feet, or about 52 per cent, and that the run-off is more than double the capacity of the reservoirs.

Reservoir sites at headwaters of the St. Croix River.

Location.	Dralnage area.	Reservolt capaclty.	Run-off.	Diseharge for ninety days.
Mind Lake	Square fect. $760,050,000$	cubic fret. $300,377,420$	Cuble feet. 530, 059, 200	Second-feet.
rice Lake	3,749, 344,800	2, 474,944, 500	2,624, 751,360	318
Yellow Rive	4, 440,604, 800	3,402,712,000	3, 112, 623,360	437
Mouth of rotognio	12, ${ }^{1}, 010,220,800$	1,082, 033,820	$8,618,487,680$ $4,137,154,560$	397
Upper 'Totogatio	1,083, 722,400	1,388, 005,080	1,308, 005,680	178
Glimore Lake.	7,310, 149,600	2,881,095,000	$6,051,304,720$	370
Mouth of 'Totogatic (2)	1,044, 825, 000	1,541,016,900	1, 131, 377, 920	145
Eau Clalre lakes	1,970,300,400	4,901,045,400	1,385, 550, 480	124
Upper St. Crolx	6, 105, 369, 600	4, (698, 26i9, 800	4,273, 758,720	604
Clam Laker St. Croix	7,903, 526,400	4, $670,788,500$	5, $832,468,480$	602
Iower St. Crolx	28, 714, 752, 000	2,709, 500,000	20, 100, 320, 400	348
Chengwatana.	$3,233,894,400$ $24,142,694,400$	$1,046,440,000$ $3,703,238,000$	$2,263,720,050$ $16,899,886,080$	${ }_{476}^{13}$
Total for the St. Croix IRIver...	109,952, 409, 600	34, 334, 468,870	76, 846, 686, 720	4,361

There follows similar information in regard to the Cannon River, which has a drainage area of 1,690 square miles and a mean annual discharge of $31,350,000,000$ cubic feet, about 1,000 cubic feet per second during the entire year. This stream enters the Mississippi 4 miles above Redwing.

Reservoir siles at headwaters of the Cannon River.

Location.	Dralnage area.	Reservolr capaclty.	Run-off.	Dlscharge for ninety days.
Above Northneld. Horseshoe and Mud lakes.	Square fret. 7,002, 210,000 3,040, 130,000	$\begin{aligned} & \text { Cubic fect. } \\ & 5,000,000,000 \\ & 2,500,000,000 \end{aligned}$	Cubic feet. 5, 000, 000,000 2,500,000,000	Second-feet. $\begin{aligned} & 643 \\ & 322 \end{aligned}$
Total for Cannon River.	11,848, 340,000	7,500,000,000	7,500,000,000	965

All of the figures in the case of the Cannon River are estimated and are not the result of accurate surveys.
The next table covers the reservoir sites of the Chippewa River as obtained from the surveys of $1879-1881$, of which river the total watershed is $267,688,396,800$ square feet, and that of the selected reservoir sites, $153,689,100,800$ square feet, or about 58 per cent. The run-off is about $5 \frac{1}{2}$ times the capacity of the reservoirs, indicating that their capacity could probably be trebled without difficulty.

Reservoir sites at headwaters of the Chippewa River.

Location.	Drainage area.	Reservolr capaclty.	Run-off.	Discharge for ultiety days.
	Square feet.	Cubto feet.	Oubto feet.	Second-feet.
Bear Lake.	$6,810,208,800$	$1,113,148,850$	5, 077, 051,010	$\begin{array}{r} 143 \\ 99 \end{array}$
Little Chlef	$1,605,705,840$ $5,874,341,120$	$771,332,000$ $2,021,783,402$	$1,337,027,035$ $4,970,620,163$	${ }_{980}^{99}$
Pakwawang Lake.	7, 170, 324, 480	6,193, 032, 698	6, $972,880,292$	706
Courts Orollles Lak	3, 178, 137,000	1,980,330, 000	2, $347,388,021$	256
Paint Creok.	109, 927,319, 040	505, 330, 720	91, 569, 450,700	65
Butternut Lak	1, 115, 130,000	685, 443, 100	828, 908, 288	75
Rest Lake.	5, $000,120,800$	1,840,000, 000	4, 801, 100, 204	237
Bear Creek.	$4,307,212,800$	5, 400, 507, 152	3,107,280,000	695
Round Lake	1,750, 330,200	1,303, 030, 410	1,382, 304, 000	168
Squaw l,ake	1, 087, 257, 600	731, 808, 000	864, 230, 400	94
Park Lake.	4, 850, 847, 000	620,782, 720	4, 026, 198, 428	80
Total Xor the Chippowa River..	153, 089, 100, 800	23, 079, 210, 273	127, 387, 953,051	2,908

RESERVOIRS AT IIFADWATERS OF THE ZUMBRO RIVER.
-This stream has not been accurately surveyed, but the following information has been gleaned from county maps and from reconnoissances:
The drainage area is 1,604 square miles, or $44,716,953,600$ square feet, which alfords an annual run-off of $37,264,128,000$ cubic feet, or 1,184 cubic feet per second. Reservoirs of about the capacity of those on the Cannon River will add about 1,000 secondfeet for ninety days to the Mississippi River, into which it enters by two mouths, one a miles and the other 6 miles below the mouth of the Chippewa.

RESERVOIRS AT HEADWATERS OF THE BIACK RIVER.

This stream, like the Zumbro, has not been accurately surveyed.
The drainage area is 2,880 square miles, or $81,389,702,000$ square feet, which afforde an annual run-off of $67,824,826,666$ cubic feet, or 2,150 cubic feet per second.
Reservoirs of a capacity sufficient to afford 1,500 second-feet for ninety days can readily be built on suitable sites.

RESERVOIRS AT HEADWATERS OF' THE ROOT RIVER.

This stream, which enters the Mississippi about 5 miles below the Black, has not been accurately surveyed. Its drainege area is 1,685 square miles, or $40,075,104,000$ square feet, which affords an annual run-off of $39,145,920,000$ cubic feet, or 1,240 cubic feet per second.

Reservoirs of a capacity sufficient to afford 1,000 cubic feet per second for ninety days can be built on suitable sites.

RESERVOIRS AT HEADWATERS OF THE UPPER IOWA RIVER.

This stream enters the Mississippi about 9 miles below Genoa. Its drainage area is 939 square miles, or $26,177,817,600$ square feet, which affords an annual run-off of about $21,815,000,000$ cubic feet, or 692 cubic feet per second. A reservoir affording 500 cubic feet per second for ninety days can be built.
The Wisconsin River was surveyed in 1879-1880 and 1881, and reservoir sites were carefully solected. The entire watershed of this stream is 11,850 square miles, or $330,359,040,000$ square feet, and of the proposed reservoirs, $30,322,483,000$, or about 12 per cent, and the run-off $31,752,800,640$ cubic feet, which is about $1 \frac{\pi}{3}$ times the capacity of the reservoirs. It is thought that the reservoir capacity and the ninety-day diecharge of 2,499 second-feet could be much increased.

Rescrvoirs at headwaters of the Wisconsin River.

RESERVOIR AT HEADYATERS OF 'WHE TURKEY HIVER.
No accurate surveys of this stream have been made. Information obtained from county and post-offico maps show a drainage area of 1,580 square miles, or 44,298,777,600 square feet, which indicate a run-off of $36,900,000,000$ cubic feet, or about 1,170 second-feet per annum. A reservoir affording a ninety-day discharge of 1,000 secondfeet can be built on this river, which empties into the Mississippi opposite Cassville, Wis.

RESERVOIR AT HEADWATERS OF THE MAQUOKETA RIVER.

This stream enters the Mississiippi about 8 miles below Bellevue, Iowa. It has a watershed of 1,863 square miles, or $51,937,459,200$ square feet, with a run-off of $43,281,216,000$ cubic feet, or 1,372 second-feet per annum. Reservoirs of a capacity of 1,000 second-feet for ninety days can be built on this stream.

RESERVOIRE AT HEADWATERS OF THE WAPBIPINICON IIIVER.

This stream comes into the Mississippi 4 miles above Cordova. It has a drainage area of 2,490 square miles, or $69,417,216,000$ square feet, which affords a run-off of $57,847,680,000$ cubic feet, or 1,834 second-feet per annum. Reservoirs of a discharge capacity of 1,500 second-feet for ninety days can be built on this river.
A survey of the Rock River was made in 1881 and reservoir sites selected, as shown in the following table. This stream, which enters the Mississippi just below the city of Rock Island, has a drainage area of 10,690 square miles, or $298,020,090,000$ square feet, while the watersheds of the proposed reservoirs embrace 102, 487,830,400 square feet, or about 35 per cent. The capacity of the reservoirs, which will discharge 6,221 second-feet for ninety days, is about four-fifths of the run-off.

Reservoirs at headwaters of the Rock River.

Location.	Drainago area.	Reservoir capacity.	Run-off.	Itscharge for ninety days.
Lake Horlcon.	Square fect. $13,688,294,000$	Cubic feet. $8,000,000,000$	Cubic fect. $8,000,000,000$	Sccond-fect. 1,027
Beaver Dam Lake	261, 360, 000			
Lake Koshkonong	70, $811,1361,000$	30,000,000,000	40, 000, 000, 000	3,858
Lake Mendota.	16, 727, 040,000	10,000, 000,000	10, 000, 000, 000	1,286
Total for Rock River	102, 487, 830, 000	48,000,000,000	58,000, 000, 000	6,221

RESERVOIRS AT HEADWATERS OF THE IOWA RIVER.

This is one of the large tributarics, although not considered a navigable stream. It enters the Mississippi nearly opposite New Boston, and has adrainage area of 12,250 square miles, or $341,510,000,000$ square fect, affording an annual run-off of 284,591,666,667 cubic feet, or about 9,024 cubic feet per second. While no accurate surveys of this stream are available, enough is known of its headwaters to warrant the statement that reservoirs can be built and operated without difliculty, capable of contributing 7,000 second-feet for ninety days.

RESERVOLRS AT HEADWATERS OF THE SKUNK RIVER.

The Skunk River enters the Mississippi about 8 miles below Burlington, and has a watershed of 4,332 square miles, or $120,490,444,800$ square feet, indicating an annual run-off of $100,408,704,000$ cubic feet, or 3,184 cubic feet per second. This stream will afford, it is believed, sites for reservoirs capable of discharging 2,500 second-feet for ninety days.

RESERVOIRS AT HEADWATERS OF THE DES MOINES RIVER.

Next to the Illinois, this is the largest tributary of the upper Mississippi, which enters the main stream about 3 miles below Keokik; it has a drainage area of 14,955 square miles, or $416,921,472,000$ square feet, alfording an annial run-off of $347,434,-$ 560,000 cubic feet, or 11,017 second-feet. Nothing very definite is known of the reservoir conditions on this stream, but it is belfeved a ninety-day discharge of 7,500 second-feet can be secured.

RESERVOIRS AT HEADWATERS OF FABIUS, NORTH, AND GOUTH RIVERS,

These streams coming into the Mississippl, near together, a few miles below Quincy, have a combined drainage area of 3,086 square miles, or $80,032,742,400$ square feet, which indicates an annual run-off of $71,693,952,000$ eubic feet, or 2,273 second-feet. Small reservoirs on each of these streams will furnish combined about 1,500 second. feet for ninety days.

RESERVOIRS AT HFADWATERS OF GALT RIVER.

This tributary enters the Mississippi just above Louisiana, Mo.; it has a drainage area of 2,741 square miles, or $76,414,694,400$ square feet, indicating an annual run-off of $63,678,912,000$ cubic feet, or about 2,019 second-feet. A reservoir on this river should contribute 1,500 second-feet for ninety days.

THE ILLINOIS RIVER.
This is the largest tributary of the upper Mississippi River; it has a drainage area of 27,645 square miles, or $765,080,256,000$ square feet, which affords a run-off of $638,066,880,000$ cubic feet, or about 20,233 second-feet per anmum.
This stream does not, apparently, offer any suitable reservoir sites, but the Chicago drainage canal furnishes from Lake Michigan about 10,000 second-feet, which it is understood will be increased to 14,000.

Summary of reservoir increments, upper Mississippi River.

Appendix 9.

REPORT ON EXPERIMENTAL 14-FOOT DREDGING OARRIED ON IN MISSISSIPPI RIVER below the mouth of the ohio river, by tee mississippi river commission dURING 1908, AND ESTIMATE OF COST OF OBTAINING AND MAINTAINING A NA VIGABLE ohannel 14 feet deef, by dredging alone in that stretoin of the river.
[By Capt. G. R, Lukesh, Corps of Engineers, recorder of the Board.]
Colonel: I have the honor to submit the following report on experimental 14 -foot dredging carried on in the Mississippi River below the mouth of the Ohio River by the Mississippi River Commission during the year 1908, followed by an estimate of the cost of obtaining and maintaining continuously in that stretch of river by dredging, a 14-foot channel of suitable width.
Dredging of an experimental nature to a depth of 14 feet and width of channel of 250 feet was carried on during 1907 at three localities, Corona (204) a, Island 35 (193), and Linda (82). Prior to the low-water season of 1908, it was found to be the intention of the Mississippi River Commission to continue the experiments during that season, but to a width of 500 feet, the localities where the work should be done to be selected by the board on examination and survey. At its meeting of June 26, 1908, the board left the selection of localities to the senior member, but recommended that the same localities as had been selected for the provious year be considered.
As in the previous year, the desirability of selecting bars of diverse character with a view to obtaining variety of experience was borne in mind. Two of the points ultimately selected were crossings where 14 -foot dredging was done last year--Corona, a crossing furnishing especial difficulties to dredging, and Linda, offering comparatively very few; for the third locality a crossing of intermediate character was sought, and Pecan Point (196) was selected instead of Island 35, a scene of last season's 14 -foot dredging, but which had been abandoned by the river in the interval between the two seasons.
The experimental 14 -foot dredging operations, as well as those of the regular 9 -foot dredging carried on during both these years by the Mississippi River Commission, were under my charge, and my conclusions as to the feasibility of dredging a 14 -foot channel below Cairo throughout all stages of river and the cost of the necessary plant and labor are largely based upon studies and observations made by me in that capacity.
Only one dredge of the Mississippi River Commission, the Beta, whose suction pipe was specially lengthened for the purpose, is sufficiently well prepared to cope with the depths that 14 -foot dredging involves. The depths below water surface to which the dredges can dig are:

	Feet.		Feet.
Beta.	26	Iota.	20
Gamma.	20	Kappa.	20
Delta.	20	Flad...	20
Epsilon.	18	Harrod.	20
Zeta...	18		

The beginning of the season found the Beta out of commission. It had been found necessary after the season of 1007 to install new pump runners, and they were ordered at an early date, but the contractor was several months overdue on delivery. The dredges Marrod and Lota, which had been loaned for work under the first and second districts, returned late in July, and the Gamma returned August 30 from work in Arkansas River under United States engineer office, Little Rock, all in more or. less need of repair. The Kappa was sent to Keokuk for dry docking in July, returning in August; the use of the dry dock could not be obtained at an earlier date. The Flid was out of commission the entire season through nonreceipt of materials for rebuilding.
The beginning of the season accordingly found the dredging plant not prepared to undertake the experimental dredging under the best auspices. But, with the exception of the Flad, all the dredges were available the greater part of the season, and sufficient dredging was done to make the work of value to the board.
The water stages during the low season of 1907 were somewhat above the average, and the results of the experimental dredging in that year lack the conclusiveness of those of this past season, when vary low water of considerable duration prevailed.
Tables are appended showing in considerable detail the dredging operations at the three selected localities, and to amplify the tables there are given below histories of conditions and operations at these points, with maps also appended.
a Number in parentheses indicates distance in miles of locality below Cairo according to the Mississippi River Commission official table of distances.

Corona Crossing (204 miles below Cairo).-During the years 1905, 1006, and 1007. the tendency of the channel in this crossing was to cross the river at an angle of about 45 degrees from Massey's field on the left bank to a point a little below Corona Landing on the right bank.

The season's first survey, that of July 30, 1908, showed a radical change. The channel no longer sought the right bank at so great an angle, but had shifted to the middle of the river, following the shape of the loft-hand bar, and reaching the lower pool at a point only just above the Happy Valley light, about 3 miles below Corona landing. The bar above Corona Landing had extended down, but had left a welldefined, narrow, deep pool between it and the right bank. This survey showed that there was a channel 500 feet wide, with a least depth of 10 feet... The river was then falling at a uniform rate of about 0.3 foot por day.

The channel had a total length of about 21 miles, with a deflection of about 35 degrees in the middle, both sections being almost straight. However, at a point about 1,500 feet below the turn there were some small lumps on the left bank side, on which there was but 15 feet, and it was thought well to remove them without attempting to improve the main channel. The dredge E'psilon did the work on August 7 and 8 in four hours' actual work dredging.

With the fall of the river the current showed a disposition to spread out and direct its main force more or less to a point on the right bank, about $1 \ddagger$ miles below Corona Landing, just below Harrison's store. The bank began to cave at this point and below, the caving increasing in intensity as the water fell. The natural result was that the channel above described began to fill at its lower cnd, and the dredge Harrod, which had arrived to take the place of the Epsilon, was placed in position at a point about 3,000 feet below where the Epsilon had operated, to remove this shoaling. The work of the dredge was not effective, as the current constantly extended the upper bar downstream and filled up the dredged channel faster than the dredge could remove the material. The shoulder of the left shore bar was also constantly encroaching on the channel at or near this point.
The Harrod was then dropped to a point below the downstream end of the upper bar in an attempt to stay its further progress downstream by making a deep and effective cut across it. A number of minor breakdowns allowed a period of actual dredging here of but ninety hours out of a total of three hundred and eighty-four hours-September 11 to 26 -and a channel of only 8 feet depth could be maintained. During this period the river broke through the upper bar very close to the channel of 1905, 1906, and 1907, and the Harrod was placed at this point September 27 to keep it open and reduce its very sharp curvature at the lower end:

It was, however, apparent by this time that the final low water channel would have its lower end just below Harrison's store landing. The Hurrod could not be placed there, however, as there was not yet enough water over the middle bar to allow her to mount the reef to place the head piles. On October 26 she did get into position 1,500 feet below Harrison's store landing and on November 3 had secured a 14 -foot channel, 600 feet wide through the middle bar.
The Beta replaced the Harrod on November 16 and improved the 14 -foot channel to a width of 650 feet and over a width of 250 feet secured an actual depth of 17.5 feet. This channel persisted during the remainder of the year, and even improved, without further dredging, the river rising gradually about 4 feet with a subsequent fall of about 3 feet.
The results of the season's work at Corona are by no means as discouraging as they may at first sight appear. This crossing presented probably as adverse conditions as any that may be met anywhere in 14 -foot dredging below Cairo; the season's 9 -foot dredging developed few other localities of a character approaching in difficulty that of Corona. The results emphasize the necessity of early and frequent surveys at crossings in order that the natural channel making tendencies of the river may be learned in good season before actual dredging is needed. They emphasize, too, the importance of having plant available for immediate action when navigation is threatened. But the principal point which a crossing of this exceptional character brings out is that a local system of channel regulation-revetments and contraction worksby preventing :hiiting of the channel, offers a valuable auxiliary to dredging, and is even necessary at crossings of the Corona type to guarantee an uninterrupted channei of the required dimensions without undesirably acute changes of direction.
Pecuis Point (196 miles below Cairo).-During the low water season of 1907 the principal channel left the upper pool some distance above Pecan Point, crossed to Island 36 and returned again to the right bank, a minor channel following the right bank. This year conditions were reversed, the principal channel following along the right bonk.

House Doc. Ho. 50 ; 6/st Cong., Ist Sess.

During 1907 the shoal between the major and minor channels was well defined and lay about 1 mile above Pecan Point Landing. By the low water season of 1008 it had made down almost to that point. Later another bar formed between it and the right bank, dividing the right bank channel into two, the better one nearest the right shore.
During 1907 dredging was required on the crossing from the right bank to Island 35, and here 14 -foot experimental work was carried on. This year the channel over that crossing gave way to the better one along the right bank and the experimental dredging took place there across a shoal rather than on a "crossing." The work required was essentially connecting two right bank pools by a cut through a bar. This was done with the dredge Zeta during the three periods--October 3-9, October 16-24, and November 24-27.
During the first period the mere placing of the dredge was sufficient to deflect the current toward the right bank and close the narrow gut above but leaving an available channel of at least 9.0 feet, 250 feet wide.

The second period of dredging produced a 14 -foot channel nearly 500 feet wide, but as the force of the current was atill too widely scattered over the area the channel narrowed to 375 feet and the dredge was again placed in position.

At the end of this last period a 500 foot wide chamnel of 14 -foot least depth was obtained and this channel constantly improved of itself during the rest of the season without further work on it, the river rising in the meantime about 4 feet by December 16 and then falling again about 3 feet by the end of the year.
The conditions at Pecan Point represent about the average conditions met in dredging below Cairo. The results at that point show that a channel of the desired dimensions may be preserved throughout the season across such bars with a reasonable amount of dredging; but they show, also, the necessity of early dredging, with its necessary prior study of channel tendencies, and show, too, that even after a channel of the required dimensions has been obtained the services of a dredge must be a vailable for work from time to time to counteract narrowing or shoaling through deposit of silt or lowering of the water surface.
Linda Crossing (88 miles below Cairo).-The prominent characteristic of this crossing during the low-water season of 1908 was the tendency of the current to spread itself over a wide area. Notwithstanding the excessive width of channel at this point the dredging here was a simple and easy proposition, the channel showing little tendency to change its position. Deterioration showed principally in narrowing and shoaling and the channel submitted readily to improvement by dredging.
On October 17, 1908, the upper pool, with 14 feet least depth, extended to a point 3,000 feet below Danjels's lower light on the left bank; between this upper pool and the lower pool, also of 14 feet least depth, there was a shoal of 2,400 feet length with a least depth of 9 feet. The 10 -foot contours of the upper and lower pools overlapped elightly, but did not join, the shoal place in the channel being only about 100 feet in length.

During the early part of the season this crossing was included in only the project for a 9 -foot channel, 250 feet wide, and a charnel of those dimensions was successfully maintained. Linda was then selected as the third point for 14 -foot dredging, and on October 28 dredging to obtain and maintain the channel of 14 feet least depth and 500 feet width was commenced by the dredge Della and completed on November 1, at which time there was a 14 -foot channel of 1,100 feet loast width and a 14.5 -foot channel of a least width of 500 feet, after but seventy-nine hours' actual dredging.

At the end of this period the river was rising and the dredge was temporarily withdrawn. During this rise the dredge channel became partially filled, reducling the 14 foot channel to a width of 200 feet. From November 15 to November 23 the dredge Delta again operated and restored the channel to the required width and depth. Up to December 31 this channel was in good shape, but had shifted slightly toward the leit bank, but needed no further work upon it.

The operations at Linda serve to show the slight amount of inltial dredging and subsequent attention required at crossings where the natural channel remains in practically one position; the conditions at Linda and Corona are quite the opposite in this respect. The small amount of dredging needed to secure and retain the required channel at the former point confirms the conclusion drawn from conditions at Coronathat fixation of the channel would lessen the amount of dredging required during a season, and that artificial means, like contraction and training works, should be resorted to where the natural conditions do not limit the movement of the channel.
It should be added that during 1907 simultaneous gauge readings were taken in the upper and lower pools at Corona. What effect the increased cuts through the bar produced on the pool levels were quite inappreciable, warranting little fear that a 14 -foot channel would uncover to any extent new bars in the river or decrease the depth on others.

CONOLUEIONE.

From a study of the results of 14 -foot dredging during 1907, with its moderate stages and during 1908, with its extreme low stages, and a study of the 9 -foot dredging of the past three seasons during personal observation, and of the records of earlier years, I draw the following conclusions:

1. Given a corresponding increase in dredging plant, the maintenance of a 14 -font channel, 500 feet wide from Cairo to Red River (the strotch where dredging is required), is quite as feasible as that of the 9 -font channel, 250 feet wide, which has been maintained for several years, the difficulties encountered in the former case differing from those in the latter in degree only, and not in kind, and are due to the greater depth and width of channel to be dug, and the greater number of crossings and bars that will require attention,
2. At certain unfavorable localities, where natural widths give the dredge especially deep and long cuts to make and shifting currents diminish the effective work of the dredge through obliteration of dredged cuts, contraction and training works should be made auxiliaries to dredging.
3. A channel of required dimensions once obtained will not necessarily maintain itself even if the stage of river goes no lower. This fact requires that a dredge must always be within convenient reach, all through the season, of every bar or crossing where dredging has been done or may yet be required.
4. Continuous inspection of the entire river should begin as soon as the low-water season approaches, to develop crossings and bars where navigation might later be obstructed or threatened. And quite as necessary a part of the dredging operations are early and frequent surveys of such suspected localities in order that the local conditions and tendencies at such points may be studied from comparative maps. And these surveys should continue throughout the season.
5. There will'always, even with ample plant, be occasions when a channel of the required dimensions may fail temporarily, through one or more of various causesunforeseen river conditions, breakdown of plant, errors of judgment in selecting locations for dredge cuts, etc. But these can be guarded against to such extent that they will cause comparatively slight interruption to traffic. With ample plant of large capacity for the first line and for reserves, with dredge rendezvous sufficient in number and properly located, and with suitable facilities for repairs on the dredges and at the depots, no serious total interruption will occur.

That a depth of 14 feet may occasionally occur over less than 500 feet at crossings it is reasonable to suppose; in fact experience this year has shown such to be the case; but in such cases, proper buoying of the channel will limit interference with navigation to breaking up tows for the passage of the narrow channels-an interference of less importance than that encountered in locking tows through the locks of a canal.

ESTIMATE OF COAT.

The cost of a 14 -foot channel of suitable width from Cairo to the Gulf, throughout all stages of the river, would be composed of the initial cost of the dredging units and auxiliary plant, and the annual cost of their operation and maintenance, including administration. The number of dredge units required depends upon the capacity and type of the unit selected, the probable number, character, and distribution of the bars to bo dredged, the length of river to be covered, the adopted width of channel, and the length of the dredging season. The amount and character of the auxiliary plant is governed partly by the number of dyedge units, and partly by the dredging organization adopted, and this latter in turn depende principally upon the length of river to be covered.

Capacity and type of dredges.-In 1895 the Mississippi River Commission began in an experimental way to secure and maintain below Cairo a navigable chaunel by means of hydraulic dredging, working for a channel 9 feet deep and 250 feet wide. Since that date the plant of the commission has been steadily increased in amount and efficiency. The feasibility of maintaining a channel of the desired dimensions was early established, and in that regard the project has lost its experimental nature. But the plant used has continued in a state of development and it is reasonable to expect that further improvement in the plant will be made. Whether or not such occurs, and if it does, by the adoption of a larger and more powerful dredge unit than the lateest Mississippi River Commission dredge, the B. M. Harrod, or by gain in efficiency in a dredge of that or smaller capacity, it is on the Harrod, the most improved of all the Mississippi River dredges, that an estimate of the number of units that will be required for a 14 -foot project cani at this time best be based. Should later improvements be made they will operate to reduce the cost of the plant or operdtion, or both, and an eatimate based on the Harrod will cover the coat in eithar case.

Length of river to be covered by dredging operations.-(River distances given are from the official table of the Mississippi River Commission, and are mid-stream, not channel distances.) During the low-water seasons of 1907 and 1908 a record was kept of all bars and crossings where channel depths of less than 14 fect developed. During 1907 such bars were found at irregular intervals from Point P'leasant (80 miles below (Cairo) to Torras, just below the mouth of Old (Red) River (765 miles below Cairo). During 1908 such bars were found lying between Medleys (mile 29) and Torras. No 9 -foot dredging operations have ever been required above Medleys and few, if any, 14 -foot bars may be expected to develop in that stretch. Below Torras ample depths for navigation alwaye exist, even at lowest stages. This gives a length of river to be operated over-Cairo to Torras-of about 790 miles, channel distance.
This length of river affects both the number of dredges required and the organization. The former feature will be discussed later. As to organization, it has been the experience of the Mississippi River Commission that when dredging was required only between Cairo and Memphis, some 230 miles, a single superintendent could, traveling during daylight hours only, cover the stretch sufficiently often to enable him properly to supervise the work of the individual dredges and correlate the work of all under his charge. When, however, as in 1908, dredging operations extended over a greater stretch, the operation of a single system was unsatisfactory, and for a 14-foot project, with its greater plant and more numerous bars, the need of additional supervision will be greater. A river length of about 250 miles is believed to constitute a proper district, which would give three for the entire stretch below Cairo.

The entire stretch should be under a single superintendenf for general supervision of dredging operation and for proper regulation of the distribution of plant between districts. Each district should be under an assistant superintendent of dredging. One district should be provided with a depot completely equipped with shops and plant, including marine ways or dry dock, suitable for all large repairs, alterations, and renewals required for the entire dredge and auxiliary fleet, with coal-storage plant, warehouses, and general headquarters. Each of the other districts should have a subdepot with shops and equipment for ordinary repairs, etc., that can not be made aboard the dredges themselves; also a coal-storage plant. A depot in each district is necessary also to provide rendezvous for dredges within easy reach of all points in the dredging territory, economy and case of administration and repair requiring that dredges when not needed in the field be assembled at headquarters and be out of commission as long as river conditions permit.
This organization calls for the following plant and equipment, and it is accordingly included in the estimate: One inspection boat for superintendent of dredging, one general supply boat, three inspection boats (one for each district), three towboats for moving fuel barges and disabled craft, one main depot, two subdepots.
The remainder of the auxiliary plant-survey boats and fuel barges-is dependent in amount on the number of dredges.

Probable number, distribution, and character of bars to be dredged.-During 1908 the river stages during the low-water season were very favorable for ascertaining the number of crossings where dredging operations would be required to maintain a 14 foot channel. The lowest stage reached at Cairo was +4.31 feet, four-tenths foot below the average of the lowest waters since 1871. At Memphis the lowest was +3.50 , as compared with +1.90 , the average of lowest stages since 1871 . The oscillations in stage during the season were considerable, and as many bars were developed as may reasonably be expected during any one year. The appended table shows the location of the bars having at some time or other, during 1907 and 1908, least channel depths of less than 14 feet. The total number in 1908 (88) may be taken as a reasonable maximum to be allowed for in an estimate, but to provide for the very exceptional occasions when more bars may develop in a season, a smatl reserve supply of dredges should be allowed for.
The bars developed in 1908 extended, as stated, over about 790 miles, channel distance, of river, and they showed the following depth of cut required for a 14 -foot channuel:

It is well known that bars shift in location from season to season and that they change in importance as obstacles to navigation, a bar offering obstruction to navigation one season often improving through natural causes so as to offer none the following season, sometimes during the same season, and the converse. But, while the location of 14 -foot bars in 1908 do not accordingly necessarily represent the exact scenes of future dredging, yet the distribution for that year is a fair basis for an estimate of plant, leaving the actual distribution of the plant in any scason to the river conditions then obtaining.

The character of the material requiring removal for a 14 -foot channel may be expected to be the same as that heretofore encountered in 9 -foot dredging-mainly soft, easily handled material such as mud and sand, with occasional clay, gravel, bowlders, and logs. Dredging at the greater depths will likely encounter a greater proportion of more solidly bedded material through reaching deposits longer undisturbed. This fact, and the difficulty at times experienced even in 9 -foot dredging suggests a change from the Harrod type in part of the dredges of this project, by the substitution of a mechanical agitator, or cutter-head, for the water-jets to loosen and break up such bar-forming material as successululy resists the present water-jet agitation.
Suitable width of channel.--This estimate is based on a channel width of 500 feet. A greater width, with 14 -foot depth prevails naturally along more than 90 per cent of the stretch of river between Cairo and Red River, and throughout the stretch below the latter point. It is only at the "crossings" where the channel will need artificial widening, and these points will probably average in number not over 50 , scaltered along some 800 miles of channel. Such a channel, with the channel crossings properly buoyed, and this should be made a part of the project, and with a proper system of lights, should suffice for all craft that will use a 14 -foot waterway. With proper buoying, a channel of even less width-as may occasionally occur for limited periods at some of the crossings-should meet all reasonable demands.

Length of dredging season.-This element is of importance in two respects. It affects the cost of operation of the dredges and the number of reserve units. The dredging season will extend over an average of five months a year, August to December, inclu-sive-occasionally the season may begin earlier, in July, and some years it may extend into January. Exceptional stage declines in other months may call for a limited amount of dredging at one or more localities-a minor item in the cost of operation. While the average season will be from August to December, yet the periods of actual dredging will be much smaller, varying from year to year and depending in length on river conditions; however, the dredyes must remain in commission fully manned throughout the season to be available for service on short notice. In the estimate allowance is made for a maximum of six months of service for each dredge, and an additional month's service for one-third of the total number.

Since the shortness of the dredging season leaves the dredges in a stage of practically uninterrupted idleness for several months, ample opportunity is afforded for all repairs, etc., required to keep the plant in serviceable condition, without requiring the withdrawal of dredges needed in service. No need exists therefore to provide for any reserve units to be used as substitutes for dredges undergoing usual repairs. A reserve to provide substitutes for dredges disabled in the field is allowed for in the estimate.
$N u n b e r$ of dredge units required.- Could the maximum rate of dredging required to maintain a channel of the required dimensions be determined, the necessary number of dredge units would at once be fixed by the capacity of the adopted unit. But the maximum rate can not be determined for two important reasons:

1. No fixed relation exists between the amount of material a dredge actually handlee, and the volume of cut produced, due to the variable and indeterminable effects of natural currents on the shifting bottom of the river in assisting and retarding the work of the dredge through scouring and shoaling.
2. Even were there a definite and known relation between amount of material moved and channel results obtained, it is impossible to ascertain the maximum rate of development of the obstructing bars and the consequent necessary rate of removal. Only by discontinuing present dredging operations and allowing bars to form naturally through a considerable and speedy decline of river to very low stage, and by making simultaneous surveys on all bars in the district, could the maximum total rate of development of the bars be determined with a satisfactory degree of accuracy.
In the absence of data affording a reasonable clue to the required maximum rate of dredging and the consequent impossibility of determining the number of dredge units necessary by a consideration of that element and the capacity of the dredge unit, the only safe guide to a reliable determination of the number of dredge units needed is a study of the factors referred to and discussed above, probable maximum number, character and distribution of bars obstructing the 14-foot channel; relative importance of the bars, as obstructions, and of this the depth of cut required is as
good a measure as any; the desired width of channel, and the length of river to be covered; and following this, an assignment of dredges of the adopted type, the Harrod, to reaches of river each of which presents a fair task in the way of dredging requirements, as determined by past experience in Mississippi River dredging.

In making such an assignment of dredges the following rules have been followed, which, it is believed, are justified by the results of the experimental 14 -foot dredging carried on in 1907 and 1908, and by the past experience of the Mississippi River Commission in the Mississippi River dredging operations.

1. Irrespective of the probable number of bars to be dredged, the river should be guarded by dredges at the rate of one dredge to each 75 miles of river.
2. Each bar forming within a dredge territory reduces the allowable radius of activity of the dredge, in proportion to the importance of the bar as indicated by the depth of cut required, as follows:

A bar requiring a cut of one-half to 2 feet reduces the proper dredge territory by 5 miles; one requiring $2 \frac{1}{2}$ to 4 feet cut, by 10 miles; one requiring $4 \frac{1}{2}$ to 6 feet cut, by 15 miles; and one requiring more than 6 feet cut, by 20 miles.
3. A reserve of about one dredge to every ten should be provided to assist in emergencies and to act as substitutes for disabled dredges.

Applying these rules to the conditions of 1908, the year on which this estimate is based as affording the most reliable and complete data, we would have:

Miles.

Total river length to be covered... 790
20 bars requiring cut of one-half to 2 feet, equivalent to............................... 100
16 barg requiring cut of $2 \frac{1}{2}$ to 4 feet, equivalent to....................................... 160
47 bars requiring cut of $4 \frac{1}{2}$ to 6 feet, equivalent to....................................... 705
5 bars requiring cut of over 6 feet, equivalent to... 100
a total of 1,855 miles, calling for 25 dredges and a reserve of 3 , a total of 28 .
The average task of each of the 25 dredges would be the protection of about 32 miles of river, and the dredging of four-fifths of a bar of less than 2 feet cut, three-fifthe of one requiring $2 \frac{1}{2}$ to 4 feet cut, 2 bars requiring $4 \frac{1}{2}$ to 6 feet cut, and one-fifth of a bar requiring cut of 6 feet or more. In a year of average stages the task per dredge would be about one-half as great, and, as a rule, the development of the bars and the consequent demands for dredging are spread over several weeks.

The above assignment is, of course, wholly for the purpose of determining the amount of adequate plant. The actual distribution and number of dredges in the field in any season would be a matter wholly dependent on the distribution, number, and rate of occurrence of the obstructing bars.

Survey boats.-To provide ample data for study of channel tendencies and conditions frequent surveys become a very necessary part of dredging operations. Not more than 3 dredges should be dependent upon a single survey party, and a total of 10 is considered advisable for the proposed dredging plant, 8 pertaining to the regular plant, 1 to the reserve dredges, and 1 in general reserve for emergencies and to be substituted for disabled plant.

Fuel barges and storage plant.-At least 2 fuel barges per dredge are required for the proper storage, movement, and distribution of coal in the field, and adding a reserve of 4 gives, a total required of 60 . Using 500 -ton barges, 750,000 bushels of coal will be accommodated, about one-third of the probable maximum requirement of a single season and probably two-thirds the average year's requirement. The balance for a maximum year should be kept on hand, stored ashore or afloat. A storage plant for each district is included in the estimate.
The estimate of cost of the entire dredging plant for the stretch below Cairo follows, and is based on a current cost of plant and operation in Mississippi River dredging under the Mississippi River Commission and the St. Louis engineer office. The cost of operation and maintenance of the dredges includes like cost in the cases of the auxiliary plant.

Initial cost.
28 dredges, Harrod type, at $\$ 250,000 \ldots \ldots .$.

1 main depot (with complete equipment, including marine ways and coal storage plant)
2 subdepots (with equipment for ordinary repairs, and coal storage plant),
at $\$ 150,000$.

60 coal barges, 500 ton, at $\$ 6,000 \ldots$ Instruments, oftice equipment, etc	$\begin{array}{r} \$ 360,000 \\ 50,000 \end{array}$
Contingencies, about 6 per cent	$\begin{array}{r} 8,485,000 \\ 515,000 \end{array}$
Total.	9,000,000
Annual operation and mainlenance cost.	
28 dredges in field six months, at $\$ 10,000$.	\$1,680, 000
9 dredges in field one month, at $\$ 10,000$.	90, 000
28 dredures, repairs, three monthe, at $\$ 2,000$	168, 000
19 dredges, in ordinary, three months, at \$500	28,500
9 dredges, in ordinary, two months, at $\$ 500$.	9,000
	1, 975, 500
Contingencies, about 6 per cent.	124,500
Total.	2,100,000

The Mississippi River Cmmission now has a dredging plant, especially suited for 9 -foot channel dredging, but which would be of considerable value in 14 -foot work. Its present value, in round numbers, may be placed at $\$ 1,000,000$. There is also to be constructed and already provided for one marine ways capable for docking the largest plant of the commission, and one large inspection boat. In addition, the commission has one dredge depot with fair equipment of shops and tools. Probably about one and one-quarter million dollars' worth of plant would be on hand should a project for a 14 -foot channel by dredging be adopted.
To acguire the complete plant needed for a 14 -foot channel project, a period of ten years must be allowed, in view of the sparcity of available shipyards. However, with the existing dredges, and through moderate stages of river, especially after new plant begins to be completed, a 14 -foot channel could be expected within a much shorter space of time, say five years, interrupted only during extreme low stages, and for but limited periods.

FIRST BUPPLEMENTAL ESTIMATE.

The greatest menaces to navigation are crossings where natural causes and the lack of artificial restraints cause and permit the channel to shift laterally through a considerable range, or permit several minor shallow channels to form in lieu of one principal one. Contraction works at any crossing will benefit navigation and decrease the amount of dredging required, but at crossings of the kind described above contraction and training works are an essential auxiliary to dredging plant to hasten the reopening of a bad bar and to relieve the latter of those tasks that are at times so great that temporary interruptions of navigation may occur in spite of all efforts.

Such crossings have been found in connection with 9 -foot channel dredging, and may be expected in greater number in 14 -foot dredging operations. Their locations as to the former are quite well known, but how many will be found in 14 -foot dredging and where they will be is now a matter of conjecture. Nevertheless allowance should be made for them as a part of the estimate of cost of the waterway. Examinations of the crossings of the low-water season of 1908 indicate some twenty localities where contraction works would have been desirable auxiliaries to a dredging plant, but of these perhaps but ten or twelve would have been necessary to. give reasonable assurance of an uninterrupted channel of the requisite dimensions, assuming dredging plant contemplated in the preceding estimate to have been available.

As the stage of water reached in 1008 was yery low, this number of localities is as fair a basis for estimate of cost as is now available. Assuming this number, and an average length of river of 1 mile to be treated at each, with, in general, bank revetment along the one bank and contraction works along the other, at an average cost of about $\$ 400,000$, the total cost would be about $\$ 5,000,000$, which should be immediately available for use until all localities requiring treatment have developed, and at a rate of not less than $\$ 1,000,000$ per year. The subsequent cost of maintenance at a rate of 5 per cent ($\$ 250,000$) annually should be provided for.

GRCOND GUPPLEMENTAL FETIMATE.

Without fixation of the banks of the Miseissippi River below Cairo, and the consequent prevention of the constant addition of bar-forming material from caving banks, the greatest enemy of navigable channels in that alluvial stream, the cost of main-
taining a 14 -foot channel by dredging alone must needs continue without lessening as long as the project remains in force. But with systematic fixation of the banke, though considerable time may be required for its completion, the necessary dredging will decrease in amount and will ultimately become of minor importance. A complete project for the river below Cairo should, it is believed, include adequate dredging plant to provide, with the aid of contraction works at selected crossings, a channel of the requisite dimensions, and as an adjunct a systematic fixation of the banks wherever needed throughout the stretch, beginning at the worst places. Such a treatment of the banks will unquestionably pay for itself in the reduction of thecost of channel dredging and the security given the levee system, not to mention the benefit conferred on owners of riparian land through their protection from loss through erosion.

The natural channel depths below Red River Landing are ample, and no bank protection below that point is needed in the interests of navigation.
During the low-water season of 1907 measurements were rade of the caving on both sides of the river between Cairo and Red River, and the result shows the total length of banks then actively caving to have been 749 miles over a channel length of about 790 miles.
The following table gives the length of bank caving fast, moderately, and slowly at high and low stages:

To protect this total length with standard revetment covering the bank from the lowest limit of scour to high-water line, at an average cost of $\$ 30$ per linear foot, would amount to some $\$ 120,000,000$. But it will be seen from the above table that but little over 50 per cent of the total is rapidly caving at any stage; and but little over 25 per cent is caving fast at both high and low stages; less than 7 per cent is caving moderately or slowly at all stages, and for about the same amount the rate is not given; about 30 per cent shows none but slow caving and of this the greater part by far shows no caving at some stages.
Allowing for revetment of the banks showing rapid caving at one or more stages, about 57 per cent, and those having moderate caving, about 7 per cent, and making allowance for the part where rate is unknown, about 7 per cent, the total length to be revetted would be about $2,780,000$ linear feet, and at $\$ 30$ per foot the revetment would cost $\$ 83,400,000$.
The locations of the caving banks are constantly subject to change, as are also their lengths and the rate, and by the time a bank protection system in the interests of navigation could be well under way new caving banks will develop; others now caving will have ceased to cave, and some now caving at so slow a rate as not to be detrimental to navigation will be caving so seriously as to require attention.
An estimate of the cost of a satisfactory protection of the caving banks must, to be comprehensive, include a sum sufficient to revet the length of bank now caving, an annual sum for maintenance of protection works when in place, and an annual sum for such extensions as the future developments may show to be necessary. The nature of the data on which such an estimate must be based does not allow close figures, but the following is submitted in the belief that it is justified by the data at hand:
For protection of banks $\$ 90,000,000$, to be expended at a rate of not less than $\$ 5,000,000$ per year. At this rate the project would require eighteen years for comple-
tion, and the annual cost of maintenance at 5 per cent would increase from $\$ 250,000$ after the first year to $\$ 4,500,000$ at the end of the period. An additional $\$ 500,000$ per annum would provide for extensions of the system to include points of incipient caving.

Résumé.
Dredging project (time required, ten years):
Initial cost... . $\$ 8,900,000$
Annual cost... $2,060,000$
Contraction works (time required, five years):
Initial cost.. 5, 000,000
Annual cost.. 250,000
Bank protection (time required, eighteen years):
Initial cost.
$90,000,000$
Annual cost.. 5, 000, 000
Very respectfully,

> G. R. LUKEsh, Captain, Corps of Engineers, U. S. Army, Recorder of the Board.

Col. W. H. Bixby,
Corps of Eingineera.

Authoritative least depths on bars between the mouths of the Ohio and Red rivers during the low-water seasons of 1907 and 1908.
[Complled for use by the Board on Examination and Survey of Mississippi River, In determining the number of bars that would, during those seasons, hare required dredging for [Survey-From map of bar survey of even date. S. T. - From reports of soundings taken durlag channeel.] inspection by superintendent of dredging. Com'n.-From reccrd of

	Name of bar or crossing.	1507.			1808.			Near st gauge.	Authority.		Serial number of bar.	
tance Cairo.		$\begin{gathered} \text { Leeast } \\ \text { deph ob- } \\ \text { served. } \end{gathered}$	Date.	$\begin{gathered} \text { Stage of } \\ \text { ri yer } \\ \text { nearest } \\ \text { gruge. } \end{gathered}$	Least depth observed.	Date.	Staga of river neares gauge		1907.	190 s.	1907.	1908.
siles.	Modle	Feet.		Fect.	Feet.	Sept. 20	Feet. 8.	Columbus, Ky.				
34	dead ur Island C				13.5	Oct. 5	6.0			S. T.		$\frac{1}{2}$
55	Lesters.				9.5	..do.....	4.	- 0 w Midria.		S. T		3
${ }_{6}^{6}$	Slough Lamding... llead of tidand				9.0	- do.....	4.7do....		ST		4
6	Foot of Litamd 10.				1s.0	Sopt 20	5.8do.		S.		5
65	1.a Forke (upper).				9.5	Sept. 29	5.7	…d. ${ }^{\text {do }}$		ST		6
$6{ }^{\text {c }}$	La Furge (lower).				13.5	-	5.7do		ST		7
70	Morrisiols	14.5	Aug. 19	16.5	9.0	Sept ${ }^{\text {a }}$	6.0	..do	S. T	S		8
76					12.0 9.5	Oet. ${ }^{\text {Oct. }}$	3.8	do		s. ${ }^{\text {com }}$		${ }^{9}$
80	Poim l'leasunt	12.5	Sept. 27	10.9	9.0	Oct. ${ }^{2}$	3.8	-....10	三. T .	S.T.		11
$8:$	thata.	120	sept. 6	15.3	8.5	vet. 24	4.0	do		Com'n.	$\stackrel{1}{2}$	12
89	Cherokee.	13.5	Sept 27	10.9	10.0	Oct. 5	4.7		S.	S.T.	3	13
$\stackrel{92}{9}$	Jue Ecatels.	10.5	Nuv. 25	13.3		Oct. 8	4.3	d	S.	Survey.	4	14
93 85	1 Bass.ind it or heellout.				9.5 4.0	$\mathrm{Cu}^{\text {do }}$	4.3 0.0	Cotuluwoul		S.	-	15
-985	1stad 14 or keelinut.	11.0	Nov. 2	55.8	-0.0	Uct. 24	0.0 0.0	Cotunwoor loi	三9.	Com'n.	5	10 17
103		13.5	Sept. 29	8.5	8.0	Sept. 27	2.2	do	ST	S.T.	$\frac{6}{7}$	18
121	Fout of hilind 16				15.0	Oet. 8	0.4do.		S.		
123	Cuthonwo				1s.0	Sept. 20	3.5	do		S. T.		
128	Fuot of stam 2 l				16.5	Oct. s	0.4	do.		S. 7 .		
131	Fut of hismat	13.5	Nov. ${ }^{2}$	5.8	10.5	Oft. 24	0.0	do.	s. T.	com'n.	s	19
1133	Wrubts pomit. mombubion.	13.0	Det. 29	6.7	12.0	...do...	0.0	40	S.T.	cumbe.	9	20
13i6	Mates Proint.				12.0	Dec. ${ }^{\text {a }}$	4.5					
130	Riverstyx.				10.5	Oct. 21	-0.4	do		Sr		2
140	1314nmers...				10.5	Oct. 24	0.0			con's		23
146	Furked beer	13.0	Nov. 9	6.6	9.0	uct. 27				S.T.		
150	\bigcirc Donuels.	10.5	Niov. 3	7.1	10.5	Oct. 21	3.5	Fuiton.	S. T.	s. T .	11	25

Authoritative least depths on bars between the mouths of the Ohio and Red rivers during the low-water seasons of 1907 and 1908 -Continued.

Distance below Calro.	Name of bar or crossing.	1907.			1808.			Nearest gauge.	Authority.		Serial number of bar.	
		Least depth observed.	Date.	Stage of river nearest gruge.	Least depth obsarved.	Date.	Stage of river nearest gauge.		$1907 .$	1808.	1907.	1908.
Miles.		Feet.		Feet.	Feet.		Feet.					
153	Ashporta..-				9.0	Oct. 21	Fect.	Fulton.		S.T.		
153	Fletchers T. H. (upper)				8.0	Sept. 27	5.2	.-.do.		S. T.		26
153.5	Fletchers T. H. (lower)				8.5	Oct. 25	3.7	...do.		Com'n.		20
158	Gold Dust...............	12.0	Nov. 2	7.1	8.5	-...do....	3.7	.do.	S.	Com'n.	12	27
162	New Haven.	11.0	1..do...	7.1	8.5	-...do.....	3.7	. .do.	S.T.	Com'n.	13	28
167	Bullerton.....	12.0	Oct. 29	7.8	9.5	-...do....	3.7d. do.	S. T.	Com'n.	14	29
177	Fulton Blufis. Hatchie b				9.0	Sept. 20	6.4	-....do.		S. T.		30
178	Datchie Shore of Island 34.	11.0	Nov. 8	7.1	10.0	Aug. 25	11.0	-....do.	S. T.	S. T .) 15	31
180	Island 34.................				10.0 9.1	Sept. 20	6.4	...do.		S. T.		32
181	Morgans Point.	15.0	Oct. 29	7.8	8.5	Oct. 25	3.7do.	S.T.	Com'n.		33
193	Bend of Island 35	9.5	Sept. 27	9.3	10.5	Dec. 1	5.0	-....do.	Survey.	S.T.	16	3
195	Uzzeis c....				12.0	Oct. 25	3.7do.		Com'n.		
196	Pecan Point	10.0	Nov. 8	7.1	10.5	Oct. 5	4.5	. do.	S. T.	S. T.	17	34
201	Waltz....-..............	11.0	- Nov. 2	7.1	8.5	Oct. 25	3.7do	S. T.	Com'n.	18	35
204	Corona $9 \times$ Dredging Project	10.0	Oct. 26	9.1				Memphis	Survey.			
204	Corona 14' Dredging Project	8.5	Oct. 14	11.0	8.0	Sept. 24	8.3do....	Survey.	S. T	19	36
209	Old River.	9.5	Nov. 8	6.8	9.0	Sept. 15	8.4	...do.	S. T.	S. T.	20	37
223	Artnur Paddy Hen	14.0	Nov. 6	6.6	15.0	Dec. 1	5.3do.	S. T.	S. T.		
233	Head President Island	12.0 14.0	Sept. 27	9.4 6.9	10.0		3.9	do	S. T.		21	
235	Nonconnah.	10.5	Dec. 17	7.8	15.0	Aug. 21	12.2	..do.	S. T.	S. T.	22	38
236	Below Nonconnah				9.0	Sept. 8	10.0	. . ${ }^{\text {do }}$ do.	S. 2.	S. T.	2	39
238	Wyanoke...........				9.0	Sept. 26	5.9	...do		S. T.		40
239	Foot President Island	10.0	Nov. 2	6.9	8.0	Oct. 26	3.9	. do	S. T.	Com'n	23	41
241	Armstrong.	10.5			17.0	Nor. 5	7.6	. .do		S.T.		
250	Cow Island.	10.5	Nov. 6	0.6	9.0 10.5	Aug. 21	$\begin{array}{r}12.2 \\ \hline\end{array}$	$\begin{aligned} & \text {....do } \\ & \text {. } \end{aligned}$	S. T.	S. T.	24	42
252	Daisy.	10.0	Dec. 17	7.8	7.0	Oct. 26	$\begin{array}{r}3.8 \\ \hline\end{array}$..do	S. $\mathrm{T}^{\text {P }}$	Com'n	25	43
255	Harckelrodes.	15.0	Oct. 24	8.4	8.5	..do....	-1.3	Mhoon Landing	S. T.	Com'n		4
259	Star Landing				9.0	Oct. 10	-0.7do.........		S. T.		45
264	Polks....-	9.5	Nov. 6	3.6	8.5	Oct. 26	-1.3	-....do	S. T	Com'n	26	46
269	Head McCullough T. H.	120	...do	3.6	8.0	Oct. 10	-0.7do do.	S. T.	S. T.	27	47
271	Foot McCullough T. E. or Peters	11.0	Oct. 24	8.4	11.0	Nov. 24	0.6do	S. T.	S. T.	28	48
274 275	Ashley Point....				11.5	Nov. 15	29	do		S.T.		49
276	Mhoons Bend.				10.5 8.0	Oct. 26	-1.3 -0.7			Com'n		50 51

[^10]| 280 | Bordeaux | | | |
| :---: | :---: | :---: | :---: | :---: |
| 287 | Iardin Point | | | |
| 312 | Montezuma | 13.5 | Sept. 27 | 127 |
| 818.5 | Westover. | 15.0 | Sept. 24 | 13.8 |
| 319 | Friars Point | | | |
| 327 | Ledbetter. | | | |
| 332 | Head Island 63 | 15.0 | Sept. 27 | 13.1 |
| 333 | Foot Island 63. | | | |
| 359 | Andersons. | 13.5 | Oct. 24 | 13.6 |
| 361 | Island 68. | | | |
| 361 | T. H. Island 68 | | | |
| 367 | Parkers... | | | |
| 384 | Henrico. | | | |
| 385 | Scrub Grass Bend | | | |
| 380 | Victoria. | | | |
| 408 | Indian Point | 13.5 | Oct. 24 | 17.5 |
| 427 | Jersey Point..... | | | |
| 425 | Catfish Towhead. Head Cypress Be | 13.5 | Nov. 9 | 9.6 |
| 436 | Choctaw Bend. | | | |
| 455 | Moss Lake. | 16.0 | Nov. 9 | 9.6 |
| 473-4 | Point Chicot to Salon | 9.0 | Nov. 10 | 7.6 |
| 476 | Salona.- | 10.5 | Nov. 22 | 12.5 |
| 484 | Refuge...- | | | |
| 501 | Longwood, Miss... | 13.5 | तov. 11 | 7.7 |
| 505 $806-8$ | Worthlington Point Fannie Bullitts T. H. | 10.5 | Nov. 11 | 7.7 |
| 512 | Head Grand Lake T. H. | | | |
| 512.5 | Foot Grand Lake T. H | | | |
| 513 | Leota | 10.5 | Nov. 11 | 5.8 |
| 517 | Carolins......... | | | |
| 520 | Hesd Loulsians Bend | | | |
| 532 | Wilsons Point. | 12.0 | Nov. 11 | 5.8 |
| 538 | Longwood, La Stack Island. | | | |
| 553 | Homestead. | | | |
| 564 | Salem. | 15.0 | Nov. 12 | 5.9 |
| 573-4 | Villa Vista Light to Henderson Light. | 12.0 | do. | 6.7 |
| $\begin{aligned} & 574 \\ & 578 \end{aligned}$ | Henderson | | | |
| 613 | Diamond Island. | | | |
| 618 | Kellogs. | 14.0 | Nov. 9 | 6.7 |
| 654 | Buck Rid | 13.0 | Nov. 26 | 11.2 |
| 697 | Waverly Point. | | | |
| 707 | Natchez Island. | 13.0 | Nov. 8 | 9.2 |
| 710 | Fords............ | 15.0 | ...do.... | 0.2 |
| 764 765 | | 11.0 | Nov. 12 | 7.8 |

Corona crossing.

[204 miles below Cairo.]

Linda crossing.

Pecan Point Crossing.
[195 miles below Cairo.]

Appendix No. 15.

Tabulated gauge readings at selected stations between Chain of Rocks and Cairo.
clain of rocks, mo.
1892.
[Gauge 10.42 miles from Eads Bridge. Zero of gauge, 321.18 feet above Memphls datum plane. Gauge read at $2 \mathrm{p} . \mathrm{m}$.

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1				89.40		105.40	99. 20	90.00	83.70	80.50	79.90	
2				00.60	91. 80	103. 60	99.50	89.80	83.40	80. 40	79.80	
3					91. 50	104. 40		89.40	83.00	80.40	79.70	
4				91. 50	91. 40	105. 40	101. 20	89.00	82.90	80.20	79.60	
6				95. 20	92. 50	10.6. 10	101.00	88.50	82. 60	80.10	79.50	
6				97.40	94.80	105.85	101.00	88.20	82.20	80.05	79.40	
7				95. 30	97. 20	105. 50	101.00	87,80	82.00	80.00	79.30	
8				95. 50	98.80	105.05	101.00	87.60	81.70	79.90	79.25	
θ				98. 30	99.50	104. 60	102.00	87.40	81.60	79.80	79.25	
10					100.10	104. 10	101.80	87.20	81.60	79.60	79.30	
11				95.60	101.40	103.40	101, 50	86.90	81.90	79. 50	79. 25	
12				94.00	102.40	102.80	101.20	86. 70	82.10	79. 40	79.20	
13				93.00	103.40	102.50	101.00	88.90	82.40	70. 40		
14				92.60	104.75	102.00	100.90	86.70	82.10	79. 30		
15				92.90		101.35	100.70	86.30	81.90	79.30		
16				92.90	107.45	100.90	100. 20	$8 \mathrm{8j} .10$	81.70	79.30		
17					107.70	100.10	99.80	88.00	81.70	79.20		
18				93.70	108.00	99.50	99.60	85.80	81.60	79. 20		
19				95. 00	108.10	99.00	99.20	85.70	81.60	79.20		
20				96.00	107.75	98.50	98.60	85.50	81.40	79.30		
21				97.65	107. 10	97.90	97. 60	85.20	81.40	79.35		
22				97.90)	106.70	97.30	97. 20	85.00	81.30	79.30		
23				97.80	103. 50	96.80	96.40	84.70	81.20	79.25		
24				97. 40	100.40	97.10	95.70	84. 50	81.10	79. 20		
25				96. 75	106.10	97.90	95.00	84.30	81.00	79.20		
26				95. 80	105. 60	98. 10	94.00	84.20	80.90	79.25		
27				95.00	105.10	98. 30	93.00	84.00	80.80	79.30		
28				94.20	104.30	98.70	92.00	83.80	80.70	79.45		
29				93. 50)	103.10	09.20	91.10	83.70	80.60	79.80		
30				92.80	103.05	99: (1)	90. 50	83.70	80.50			
31					103.00		90.20	83.70		79.90		

1893.

[Gauge 10.42 miles from Eads Bridge. Zero of gange 321.18 feet above Memphis Datum Plane. Gauge read at $2 \mathrm{p} . \mathrm{m}$.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1				80.90	102. 25	98.20	90.00	84.20	80.30	79.20	78. 20	78. 20
2				86. 40	102.95	98.80	90.00	84.60	80.40	79.10	79.00	77.90
3				86.30	103.00	99.30	89.70	84.60	80.30	79.20	79.00	77.90
4				86.20	102. 40	99. 50	89.50	84.00	80.20	79.20	79.10	
5				86.30	101.10	98. 70	89.10	83.50	80.10			
6				86. 70	100. 60	97.70	90.60	83.00	80.00	79.60	79.00	
7				86.70		96.90	92.50	82. 70	79.90	79.70	79.00	76.75
8				86.70	98. 20	97. 20	92.30	82.40	79.80	79. 60	79.00	75.75
9					97.60	97.30		82.10	79.80	79. 50	79.00	76.15
10				86. 60	97.00	96.80	90.80	81.90		79.60	79.00	
11				89.60	96.90		90.00	81.90	79.70	79.70	78.90	76.35
12				94. 30	97.40	94. 60	89.00	81.90	79. 70	79.60		76. 30
13				95. 00	97.70	93.70	88.20	81.80	79. 60	79.60	78.90	76. 25
14				94. 80	97.40	93.00	87.50	81.60	79.50	79.50	78.90	75. 95
15				94. 70	97.00	92. 60	87.00	81.50	79. 40	79. 40	78.90	76.20
16				94.90	96.80	92.40	87.60	81.40	79.30	79.30	78. 80	76.70
17				94. 90	96.60	91.70	88.30	81.40		79. 20	78. 80	77.40
18				94. 00	96.40		87.60	81.50	79.20	79. 20	78. 80	77.20
18				93. 10	95.90	81.00	87.10	81.10	79.20	79.20	78. 80	77. 10
20				94. 10	95.40	90.40	86.10		79.20 79.10	79.10 79.10	78.75 78.80	76. 80
21				97.30	95.00	89.90	85. 60	82.40 83.50	79.10 79.10	$\begin{aligned} & \text { 79. } 10 \\ & 79.10 \end{aligned}$	78.80 78.80	77.10
22				97.60	94.60 94.10	89.40 89.40	85.00	83.50 83.70	79.10 79.30	79.10 79.10	78.80 78.90	77.40 77.50
24				96. 80	93.90	89.80		83.20	79.30	79.10	78.85	
25				96. 70	93.60	90.00		82.60	79. 30	79. 10	78. 80	
26				97. 30	9.1. 20	91.60		82.00	79.30	79.10	78.70	77.90
27				98. 00	96.40	92.50			79.20	79. 10	78. 65	77. 95
28				98. 70	98. 70	92.00		81.30	79.20	79.00	78. 60	77.95
29				99.25	99. 30	91.60		81.00	79. 20		78. 40	78. 00
30				100.60	99. 30	90.50	84.40	80.90 80.70	79.10	79.00	78.30	78. 78
31					98. 70		84. 40	80.70		78. 90		78.00

Tubulatcd gauge readings at selected stations between Chain of Rocks and Cairo--Cont'd.
CLAIN OF ROCKS, MO.-Continued.
1894.
(Gauge 10.42 milles from Eads Bridge. Zero of gange, 321.18 feet above Memphis datum plane. Gange read at $2 \mathrm{p} . \mathrm{m}$. After October 1 gauge read at $8 \mathrm{a} . \mathrm{m}$.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1	7810	76.30	80.70	84.40	85.70	8980		82.70	79.10	79.35	78. 10	78. 15
2	78.20	7630	80.70	8420	86.80	89.70	88.90	8280		79.10	78.15	78. 20
3	78. 30	76.20	8080	83. 90	8690		88.50	82.50	79.00	78.5	78.25	78.30
4	78.50		81.30	83.70	86.70	89.10	88. 10	82.45	79.00	78.80	78.35	78.55
5	78. 65	77.10	81.80	8350	86. 60	8900	8500	82.30	79.20	78.75	78.40	78.85
6	78. 70	77.30	84.00	8340		8900	88.30	82.00	79.35	78.70	78.50	78.80
7		77 s0	8700	83.30	88.70	89.30	88.30	81.70	7935	78. 60	78.60	78.75
8	78.50	79.90	89 10	84.40	90.10	89. 60	87.60	81.50	7980	78.55	78.70	78.60
9	78.35		90.90	84.40	91.10	89.60	86.90	81.30	79.85	78.50	78.80	78.20
10	7315	80.70	91.50	84 90	92. 10		86.40	8100	79.80	78. 50	78.80	78.00
11	77.90	81.60		84.50	94. 60	8930	86.10	8090	7980	78. 60	78.70	77.90
12	77.80		90.30	84.90	94.20	8920	85.00	80.80	79 80	78. 60	78.60	77.75
13	77.50	81.40		8.50		8020	85.40	80.70	79.70	78.65	78.45	77. 65
14		81.00	87. 60	85. 60	91. 80	89.10	85.00	80.50	79.60	78.70	78.45	77.70
15	77.50	80.40	86.90	85.50	91.10	89.10		80.35	79.80	78. 60	78.45	77.85
16	77. 30	80.10	86, 20	85.30	90.80	88.90	84. 10	80.20	80.10	78.50	78.40	78.00
17	77. 60	79.70	85. 60	87.51	90.20	8890	83.00	80.00	80.70	78. 45	78.50	77.90
18	77.70			85.90	89.40	88.90	8380	80.00	8090	78.40	78. 45	77.85
19	77.80		84.60	90.40	88.50	89.00	83.80		80.70	78.15	78.45	77.85
20	77.90	80.70	84.30	89.00	87.80	89.00	83.80	79.90	80.30	78.10	78.45	77.85
21		81.10	84.30	88.50	87.20	89.00	83.70	79.80	8020	78.10	78. 40	77.90
22	79.00	80.70	84.50	87.40	86. 90	89.00	83.60	79.75	80.10	78. 10	78. 40	77.95
23	79. 20	80.70	84.60	86.80	86.70	89.10	83. 60	79.70	a 79. So	78.05	78. 45	78.00
24	79.60	80.70	84.70	86.40	80.50		83.50	79.60	80.35	78.15	78.45	78.00
25	78. 70	80.60		86.10	86. 50	89.00	83.10	79.50	80.20	78.30	78. 45	78.05
26	77.70	80.50	84. 60	85.90	86. 40	89.10	83.00	79.45	80.50	78. 40	78.40	78.00
27	76. 90	80.50	84. 40	85.70	86. 20	89.20	82.90	79. 40	80.40	78.25	78.30	77.70
28		80.60	85.40	85.40	86.20	90.00	82.80	79.30.	80.05	78.10	78.20	77.10
29	76. 60		85.90		87.90	90.10		79.25	79.90	78.05	78.05	77.50
30	76.50		85. 60	85.20	89.40	90.00	83.00	79.25	79.60	78.05	78.05	77.10
31	76. 40		84.90		89.70		82.90	79.20		78.10		77.10

- Reading changed one-half foot or more.

1895.

[Gauge 10.42 miles from Eads Bridge. Zero of gauge 321.18 feet above Memphis datum plane. Gauge read at $8 \mathrm{a} . \mathrm{m}$.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1	76.05	80.75	80.80	81.85	80.45	82.00	85.40	85.90	82.30	78. 55	77.70	77.15
2	75. 60	80.60	81.15	82. 60	80.25	81.90	85. 70	85. 05	82.45	78. 60	77. 65	77. 20
3	76. 20	80.50	81.35	82.65	80.25	81.60	85.80	85.30	82.95	78. 60	77.60	76.90
4	75. 80	80.40	S1. 65	82.10	80.40	81.40	86.10	84.90	83.30	78.70	77. 60	76.65
5	75. 60	80.40	81.20	81.50	80. E 5	81.30	35.95	84. 20	83.40	78.80	77. 55	76. 25
6	75. 70	80.30	81.35	81.15	80.90	81.40	85.35	83.60	83.55	78.80	77.50	75. 65
7	75.70	80.25	81.80	81.00	81. 60	81.40	88.30	83.25	83.80	78. 80	77.55	75. ij
8	75. 80	80.10	81.95	80.85	81.10	81.30	89.05	83.20	84. 10	78.70	77. 70	75. 40
9	75. 65	80.10	81.85	80.70	81.10	81.30	88.85	82.85	83.50	78.60	77.85	75. 40
10	75. 40	80.30	81.50	81.30	81. 20	81. 65	88.45	82.90	83.10	78. 60	77.90	75.50
11	75.70	80.55	81.40	82.90	80.30	82. 60	87.60	82. 80	82.75	78. 65	77.90	75. 65
12	75.20	80.65	81.00	83.10	80.75	82.70	86, 40	82.50	82.35	78. 75	77.80	75. 65
13	74. 60	80.65	80.75	83.00	81.00	84.05	84.95	82.10	81.90	78.85	77.75	75. 80
14	74.80	80.60	80.70	82.90	81.05	84.85	84. 65	81. 55	81.50	78.85	77.75	75.95
15	75. 10	80.50	80.75	82.55	81.00	84.90	84. 95	81.15	81.20	78.85	77.75	76. 05
16	75. 85	80.45	80.70	82.05	81.00	85. 00	84.85	80. 80	80.90	78.85	77.75	76. 15
17	76. 35	80.30	80.60	81.70	81.35	85.10	84. 65	80.55	80.60	78.75	7770	76. 20
18	76. 70	80.20	80.60	81.65	81. 50	85. 10	84. 50	80.45	80.45	78.65	77.60	76. 40
19	76. 60	80.10	80.55	81.40	82.40	85. 30	84. 55	80. 35	80.35	78. 60	77.55	77.35
20	76.80	80.00	80. 30	81.30	82.90	85. 10	85. 10	80.65	80.25	78. 60	77.50	87.10
21	76.90	80.00	80.05	81.20	82.95	84.90	85.15	80.95	80.00	78.35	77.50	94. 10
22	76. 80	80.15	79. 70	81.25	83.40	85.15	85. 35	81.20	79. 70	78. 30	77.50	94. 40
23	76. 60	80.15	79. 70	81.30	82.90	85. 50	85.70	81.00	79.30	78.25	77.50	94. 20
24	76. 50	80.35	79. 80	81.15	82.35	85. 60	86.10	80.80	79. 10	78.15	77.55	94. 30
25	76. 20	80.75	79.85	80.90	82.00	85. 45	86. 40	81.10	79.00	78.10	77.60	93. 90
26	75.80	82.70	80.80	80.70	81.80	85. 05	85. 90	81.60	79.00	78. 00	77.75	92. 50
27	75. 30	79.45	81.00	80.60	81.75	84.85	85.40	81.90	78. 90	78.00	77.80	90.85
28	75. 45	79.65	80.85	80 : 00	81.70	85.00	85.00	82.05	78. 70	77. 95	77.60	${ }^{90} .15$
29	75. 85		81.75	80.65	81.70	85. 30	84. 50	82. 35	78.60	77. 90	77. 40	89. 90
30	76. 50		82.05	80.60	81.85	85.35	84.75	82. 40	7s. 60	77. 80	77.25	88.10
31	79.00		81.85		81.95		84.90	82.30		77.75		88.25

Tabulated gauge readings at selected stations between Ohain of Rocks and Cairo-Cont'd.
CHAIN OF ROCKS, MO.-Centinued.
1896.
[Gauge 10.42 miles from Eads Bridge. Zero of gauge 321.18 feet above Momphis datnm plare. Gauge read at 8 a. m.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oot.	Nov.	Deo.
1	87.30	79.10	82.10	81.45	86.00	95. 80	88.60	86.20	82. 05	81.20	79. 40	80.20
2	86.20	79. 65	82. 50	81.05	86.20	95. 50	89.05	86.40	81.80	81.00	79. 60	80.15
3	85.30	30.35	82.40	80.80	80.30	95. 80	89.15	80.60	81.65	80.80	79.90	80.30
4	84.05	80.70	82.20	80.60	86. 30	95.95	89. 10	86.90	81.30	80.65	80.65	80.55
5	82.90	80.70	81.90	80.41)	86.35	96. 25	89.80	87.15	81.30	80.65	81, 25	80.30
6	82.30	80.80	81.75	80.20	86.30	96.60	89.65	87.20	81.00	80.55	82.15	80.00
7	81.90	81.00	81.50	80.16	86.35	96. 30	89.05	87.20	80.80	80.50	82.65	79.70
8	81.30	80.95	81.20	80.06	86.50	95. 70	89.00	87.10	80.70	80.40	82.30	79.55
9	80.85	80.85	81.10	80.05	86.65	95.80	89.30	86.65	80.55	80.35	81.85	79.35
10	80.45	80.70	81.00	80.35	86.90	-95.65	89. 00	80. 10	80.40	80. 25	81.60	79.20
11	80.10	80.60	80.90	83.95	87.20	95.00	88. 25	85.55	80.30	80.20	81.35	79.15
12	79.85	80.40	80.70	85.40	87.30	94.45	87.40	85.10	80.20	80.25	81.20	79.20
13	79.70	80.90	30. 65	85.70	87.00	93.40	86.95	85.00	80.15	80.30	81.00	79.40
14	79.65	82.65	80.40	85.35	86.70	91.60	86.50	84,55	80.20	80.30	80.90	79.60
15	79.55	83.10	80.30	85.10	86.30	90.00	85.80	84.00	80.40	80.50	80.80	79.85
16	79. 55	82.95	80.15	84.80	86.20	88.95	85. 30	83.70	80.60	80.60	80.75	89.10
17	79.50	82.60	79.90	84. 25	86.15	88.80	85. 20	83.35	80.45	80.55	80.80	80.45
18	79.50	82.35	79.70	84.20	86. 25	90.00	85. 30	83.15	80.55	80. 35	80.85	81.10
19	79.50	82.00	79.55	83.65	88.80	90.40	85.20	83.10	80.80	80.15	80.90	81.45
20	79.40	81.30	79. 45	83.20	92.70	90.40	85.75	83.70	81.50	80.10	80.80	81.55
21	79.30	80.60	79. 40	83.10	95.50	90.20	87.90	84.30	82.15	80.00	80.90	81.55
22	79.20	80.20	70. 40	82.90	96.50	89.75	91.90	84.80	82.90	79.95	80.80	81.50
23	79.15	79.90	79. 50	82.65	97.30	89.10	92.90	85.30	83.30	79.85	80.70	81.10
24	79.35	79. 70	79. 55	82.55	98.20	88.70	92.50	85.00	83.15	79.75	80.60	81.35
25	79.60	79.70	79.65	82. 65	98.90	88.50	91.30	84.50	82.80	79.65	80.55	81.30
28	79.60	80.10	80.30	82.65	99.45	88.20	90.05	84.35	82.65	79.60	80.50	81.20
27	79.15	80.60	80.75	83.20	99.00	88.30	89.20	84.10	82.30	79.50	80.45	81.00
28	79.00	81.40	80.90	83.70	99.25	88.75	88.30	83.50	82.10	79.45	80.40	80.80
29	78.95	81.70	81.20	84.30	98.65	89.05	87.60	83.05	81.85	79.40	80.30	80.75
30	78.85		81.80	85.30	97.90	88.50	87.10	82.70	81.55	79. 40	80.20	80.70
31	78.90		81.80		96.85		86.65	82.40		79.35		80.70

1897.

[Gauge 10.42 miles from Eads Bridge. Zero of gauge 321.18 feet above Memphis datum plame. Gauge read at 8 a. m.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July,	Aug.	Sept.	Oot.	Nov.	Dec.
1	80.70	79.80	85.10	95.60	102.25	88.50	92.50	88.00	81.20	79. 65	78. 85	78. 80
2	80.60	79.65	84.75	98.85	102.45	86.15	92.35	85.80	81.00	79.80	78. 90	78.70
3	81.29	79.90	85. 10	89.70	102. 30	86.30	92.85	85.50	80.85	79. 60	78.85	78. 45
4	92.10	80.40	85.30	99.50	102.00	86.90	93.45	85. 20	80.70	79.45	78.80	78.30
5	95. 50	80.70	87.00	99.60	101.25	87.70	93.05	84.95	80.60	79. 40	78.80	78.00
6	95.50	81.00	92.20	99.75	100.20	88.05	a 92.05	84.80	80.55	79. 40	78.85	77.60
7	95.80	81.30	93.20	99.80	98.85	88.35	91.80	84.60	80.65	79.35	78.90	76.95
8	94.80	81.80	92.90	99.45	97.65	88.45	91.45	84. 40	80.65	79. 30	79.10	76. 50
9	92.35	82.20	92.30	100.00	96.55	88.35	91.75	84.65	80.50	79.25	79.25	76.30
10	89.65	83.20	91.80	100.80	95.75	88.10	91.25	84.75	80.50	79. 20	79.30	76. 45
11	87.30	83.90	90.90	101.15	04.90	87.85	90.10	84.35	80.45	79.15	79.30	76. 60
12	85.30	83.90	90.45	100.80	94.00	87.55	89.50	84.10	80.30	79.10	79.35	76.70
13	84.151	83.85	89.90	100.45	93.00	87.15	88.70	83,90	80.15	79.10	79.30	76.80
14	83.65	85.00	89.70	99.85	92. 20	86.80	87.80	83.80	80.05	79.05	79.25	77.20
15	83.10	84, 80	89.20	98.99	91.55	86.60	87.20	83.80	79.95	79.00	79.25	77.35
16	82.85	85.45	88.70	98.30	91.09	86.50	86.75	83.75	79.85	78. 95	79.35	77.60
17	82.90	85. 50	88.60	98.15	90.30	86. 60	88.45	83.65	79.80	78.90	79.25	77.75
18	83.20	85. 20	88.65	98.20	89.70	86.75	86.65	83, 55	79.80	78.90	79.10	77.50
19	84.90	85.05	88.60	98.35	89.20	86.85	86.70	83. 45	79.75	78.85	79.00	76.25
20	86.00	84.80	88.90	98.25	88.70	86.70	86.40	83.30	79.70	78.85	78.95	76.00
21	86.40	84.80	89.65	98.50	88.20	86.40	86.05	83.15	79.65	78.80	78.95	75.90
22	86.60	85.65	90.20	98.70	87.70	86.35	85.70	83.05	79.60	78.75	78.95	75.50
23	86.65	87.00	98.95	98.95	87.35	87.10	85.50	82.95	79.60	78.75	79.00	75.60
24	86. 30	87.30	91.75	99.05	87.10	87.65	85.40	82.80	79.65	78. 70	78.95	75. 60
25	85.60	87.35	91.85	98.75	87.00	87.65	85. 90	82.60	79.80	78. 70	78.95	75.60
24	84.40	87.10	93.20	98.30	87.40	88.95	87.80	82.40	79.85	78.75	78.95	75.80
27	83.35	86.70	94.45	98.35	87.60	89.30	89.40	82.15	79.80	78.80	79.00	76.20
28	82.40	85. 80	94.90	99.15	87. 40	89.60	89.30	81.90	79.70	78.80	79.00	76.80
29	81.35		94.85	100.30	87.50	81.20	88.10	81.75	79.65	78.80	78.95	77.30
20	80.40		94.70	101.60	87.80	92.60	86.85	81.55	79.60	78.80	78.90	77.50
81	79.90		94.65		87.30		86.25	81.35		78.80		77. 80

Tabulated gauge readings at selected stations between Chain of Rocks and Cairo --Cont'd.
CHAIN OF ROCKS, MO.-Continued.
1898.
[Gauge 10.42 miles from Eads Bridge. Zero of gauge 321.18 feet above Memphis datum plane. Gauge read at 8 a.m.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1	78.05	79.90	82.00	93.60	86.70	90.55	94. 10	83.35	80.35	80.45	82.55	80.10
2	77.80	79.70	81.90	92.80	86.80	90.30	94.00	83.35	80.10	80.30	81.85	79.70
3	77.50	79.20	81.80	91.30	88.60	90.90	93.20	84.50	79.90	80.05	81.35	79.45
4	77.50	(a)	81.70	90.10	90.45	91.55	82.05	84.50	79.75	79.90	81.00	79.20
5	77.70	(a)	81.55	89.40	92.00	92.00	91.25	84.10	79.60	79.70	80.80	78.80
6	77.90	(a)	81.45	89.45	92.25	92.20	91.00	83.50	79.65	79. 40	80.75	78.80
7	78.25	(a)	81.35	88.70	${ }^{92.30}$	91.75	91.05	${ }^{83} .00$	79.60	79.25	80.80	78.65
8	78.35	(a)	81,30 81	89, 85	91.85	90.90	92.80	82.60	79.90	7.79	81.10	78.25
10	78.35	79.85	81.20 81.20	89.70	91.35	90. 45	93.05	82.75	80.60	79.00	81.20	78.00
10	78. 60	79.60	81.20	89.80	90.90	90.65	92.60	82. 45	81.20	78.90	81.30	77.00
11	79.90	79.70	81.30	89.65	90.25	91.30	91.75	82.05	82.20	79.00	81.60	76. 40
12	-880.30	80.30	81.60	88.90	89. 40	92.30	91.20	81.80	82.30	79.25	81.65	77.10
13	80.70	81.60	83.90	88.50	88.45	93.35	90.15	82.05	82.15	79.75	81.40	76.90
14	80.90	82.40	87.75	88.40	88.10	93.95	89.20	82.40	81.70	79.35	81.10	76.75
15	80.70	82.55	88.25	88.85	87.80	94. 10	88.35	82.25	81.35	79.00	80.85	76.80
16	80.55	82.65	89.20	88.05	88.45	94.60	87.35	82.60	81.35	78.75	80.60	77.25
17	80.30	82.65	89.60	88.45	91.95	96.00	86.40	82.25	82.70	78.55	80.45	77.50
18.	80.10	82.85	89, 45	87.80	94,00	96.45	85.85	82.25	83.65	78.60	80, 40	77.75
19	79.90	83.30	89.10	87.30	94.45	95.90	85.35	82.00	83,95	79.10	80.35	78.10
20	80.00	83.90	88.90	86.90	94.00	94.95	84,95	82,80	83.25	80.05	80.25	78.30
21	80.5	85.15	89.50	86.40	94.05	93,65	84.90	c83.65	82.60	81.60	80.25	78. 65
22	80.85	84.95	91.15	85.85	97, 45	92.50	84.70	c83.65	82.00	82.90	80.35	79.70
23	81.10	84.20	95.80	85.65	98.50	91.60	84.10	82.95	81.70	83.25	80.40	81.10
24	81.00	83.40	96.00	85.65	98. 15	91.00	83.80	82.25	82.25	83.15	81.10	82.10
25	80.80	82.95	95. 30	85.70	97. 15	90.40	83.75	81.80	82.40	82.80	81.60	82.75
28	81.00	82.60	94.30	86.50	96.15	89.90	83.90	81.65	82.20	82.25	82.60	83.10
27	81.60	82.30	93.30	89.00	95.10	90.40	84. 10	81.30	82.20	81.75	82.55	83.10
28	81.55	82.10	93. 40	89.00	93.85	92.30	83.70	81.10	81.80	82.00	81.85	82.80
29	81.20		93.10	88.20	93.15	92.45	83.45	80.95	81.20	83.00	81.10	82.55
30	80.80		93.25	87.25	92.55	93.50	83.50	80.90	80.80	83.50	80.50	-82.15
31	80.50		93.55		91.60		83.70	80.65		83.25		81.75

a Ice reading doubtful. Changed less than one-half foot. e Reading changed one-half foot or more.
1899.
[Gauge 10.42 milee from Eads Bridge. Zero of gauge 321.18 feot above Momphis datum plane. Gauge

Day.	Jan.	Feb.	M8r.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dea.
1	80.70	75.60	86. 80	85.20	96. 60	94. 00	91.90	85. 85	81.60	80.10	79.40	80, 30
2	80.00	76. 40	80.35	85.00	96. 40	94.55	92. 05	86.00	81.60	80.00	79.45	80.25
3	79.45	76. 80	85.85	84.55	95.90	95.25	92.50	85. 90	81.45	79.95	79.70	80.20
4	79.50	77.75	85. 60	84. 50	94.25	95. 25	93.15	85.55	81.30	79.90	79.80	80.20
5	79.60	78:25	85.00	84.75	92.75	95. 40	93. 65	85.35	81.20	79.80	79.95	80.10
6	79.60	78.35	85.00	85.25	91.75	95.40	93. 85	85.35	81.10	79.75	80.15	80.05
7	79.60	78. 55	84.80	85.50	81.20	94.85	94.25	85, 10	80.95	79.65	80.30	80.00
8	79.85	78.60	84. 05	85.65	80.90	04.05	94.30	84.80	80.90	79.55	80.40	79.95
9	79.35	78.90	83.80	85.75	80.85	93.85	94.20	85. 25	80,90	79.50	80.55	79.80
10	79.55	81.85	84.00	86.00	80.75	94.00	04,25	86.75	80.95	79. 40	80.65	79.90
11	79.45	81.40	84.25	86.10	91. 40	94.00	94. 65	87.80	81.10	79, 40	80.80	79.85
12	79.40	82.20	84.45	87.45	82.10	94. 40	94. 75	87.60	81.10	79. 40	80.85	79.90
13	80.00	82.05	84. 50	88.60	92.35	95.50	04. 35	87.10	81.10	79.30	80.90	79.85
14	79.65	82.00	84.95	88.30	82.60	95.75	93. 70	87.00°	81.05	79.25	81.00	79.95
15	79.40	82. 10	86.00	87.60	82.25	95.10	93.00	86. 60	81.00	79.20	81.05	80.00
16	79.65	82.10	87.90	87.40	01.75	93.85	92. 35	85.75	80.90	79.15	80.95	79.80
17	79.75	82.10	88. 50	87.35	91.00	93.55	91.90	85.10	80.85	79.25	80.90	79. 45
18	79.65	82.00	88.75	87.35	90.55	83.60	91.70	84.60	80.95	79.25	§0. 95	79. 40
19	79.55	81.80	89.45	87.40	89.85	93.65	91.60	84. 20	81.15	79.20	80.95	79. 60
20	79.50	81.50	90. 65	88.05	89.50	93.40	91.40	83.85	81.10	79. 20	80.90	80.15
21	79.60	78.90	91.35	89.00	90.35	93.20	90.90	83.60	80.90	79.15	80, 80	79. 90
22	79.50	78.60	91.30	89.55	91.40	92.80	90.15	83.25	80.75	79.05	80.85	79.65
23	79.50	78.85	90.90	82.35	93.40	92.10	89. 45	82.85	80.65	79.00	81.05	79.25
24	79.55	78.90	90.20	94.75	94.60	91.60	88.90	82.50	80.55	79.00	81.05	79.05
25	79.60	78.60	89.40	95.85	95.70	91.10	88.55	82.25	80.50	78.95	81.00	78.75
26	79.55	79.80	88.50	96.60	${ }^{-96.20}$	80.85	88.00	82.05	80.40	78.90	80.80	78.50
27	79.40	83. 95	87.55	96.70	96.00	91.00	87.40	81.95	80.40	79.00	80.65	78. 20
28	79.25	86.30	86.75	96.45	95.45	91.50	86.90	81.85	80.30	79.25	80.50	77.90
29	79.00		85.95	96.10	94.55	91.80	86.55	81.70	80.30	79.55	80.45	77.35
30	78.20		85.25	96.35	94.15	82.00	86. 20	81.60	80.20	79.75	80.35	76.75
31	76.30		85.10		94.10		85. 90	81.50		79.55		75.65

Tabulated gauge readings at selected stations between Chain of Rocks and Cairo-Cont'd.

CHAIN OF ROCKS, MO.-Continued.
1000.

【Gauge 10.42 miles from Eads Bridge. Zero of gauge 321.18 feet above Memphis datam plane. Gangn read at 8 a. m.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	De0.
1	75. 50	77. 75	81. 30	85. 60	87.55	85.45	83, 90	84.00	83.20	83, 60	85. 40	83, 30
2	76. 10	77. 30	81. 00	86. 15	37. 40	85.45	84.00	83. 10	83.35	84. 00	84. 80	82.90
3	78. 40	76. 65	80. 15	86. 15	87. 60	85.40	83. 90	83.35	83.35	85.05	84. 60	82. 65
4	80.10	76. 75	80.35	86. 10	87.70	85.10	84.00	83.05	83.35	85. 70	84. 65	82. 25
5	80.50	77.00	80.50	86.45	87.50	84.75	84.05	82.70	83.40	85. 76	84.85	82.00
6	78. 00	77. 50	82,30	86.90	87.15	84.45	83.85	82.30	83.50	85. 35	85. 10	81.85
7	78. 10	77.95	87. 60	87.60	87.90	84. 20	83.70	82. 00	83.10	85. 15	85. 90	81.60
8	78. 70	79.35	88.95	88.30	88.25	84.10	83.60	81.65	82.65	85.30	84.20	81.50
9	78. 60	81.00	89.15	88.30	$8 \mathrm{S}$.	84.00	83.40	81.40	82.25	85, 65	86. 00	81.35
10	78. 05	81.80	90.00	87.90	87.90	83.80	83.50	81.20	82.00	85.50	85. 70	81.30
11	70.05	81.40	91. 80	87.70	87.70	83.65	83.15	80.90	81.65	84.80	85. 40	81.20
12	78. 80	81.15	92. 35	87.80	87.55	83.40	83.35	80.70	81.50	84. 20	85. 30	81.10
13	78. 85	81.20	93.50	88.25	88.35	83.60	83. 35	80.50	81.30	83, 80	85. 20	80.95
14	78.75	80.75	94. 25	89. 70	88.30	85.20	83.00	80.30	81.15	83.60	85. 00	80.75
15	75.80	80.75	94. 50	89.95	87.55	86.00	82.75	80.20	81.10	83.40	84. 80	80.60
16	78. 65	81.15	94. 60	89. 25	86.75	85.25	82.80	80.10	81.00	83.30	84, 65	80.40
17	78.75	81.10	94. 30	83.50	86.15	84.65	83. 05	80.10	80.90	83.30	84.65	80.20
18	79.00	80.30	93. 60	87.80	86. 10	81.10	82. 85	80.20	80.80	83. 30	84.65	80. 05
19	79.90	80.30	92.55	87.25	86.40	83. 95	82. 60	81.50	80.75	83.40	84.80	79.85
20	81.50	80.55	91.35	87.40	86.40	83.95	82. 45	82.00	80.85	83.55	84.75	79.70
21	81. 65	81.40	90. 20	87.90	80.30	84. 20	82. 60	82.55	81.00	83.75	84.90	79. 55
22	81.10	82.05	89. 60	88, 05	80.30	85. 70	83. 25	82.80	81.40	84. 05	84.90	79. 35
23	80.10	32. 45	S9. 20	88.25	83. 35	86. 60	84.50	82.75	- 81. 05	84.50	84.85	79.35
24	80.45	82. 90	88. 6.5	88.50	86. 40	86.75	85. 10	82.70	81.75	84.80	84.90	79. 25
25	80.50	- 82.70	88. 10	88. 80	86.05	86.65	85. 30	82. 60	81.80	85.00	84.90	79. 25
26	80.50	81.80	87.80	89.10	85.70	86.50	85.40	82. 50	81.80	85. 05	84.85	79. 20
27	80.40	81.35	87.45	89.10	85.40	86. 00	85. 10	82. 50	82.00	85. 10	84. 65	79. 25
28	80.30	80.90	80.95	88.80	85.10	85. 40	85. 00	82.50	82.30	85.10	84. 50	79. 25
29	- 80.00		80.55	88.35	85.25	84. 75	84.70	82. 40	82.90	85. 05	84.30	79. 10
30	79.50		86i. 10	88.05	85. 80	84. 15	84. 45	82.45	83.30	85. 20	83.85	78. 85
81	79.15		85. 70		85.70		84. 30	83.05		85.50		78. 00

- Reading changed one-hall foot or more.

1901.

【Cauge 10.42 miles from Eads Bridge. Zero of gange 321.18 feet above Memphis datum plane. Gauge read at $8 \mathrm{a} . \mathrm{m}$.

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1	78. 80	79. 50	79, 60	89.90	87.35	82.80	86.20	82.15	79.60	79. 15	79. 50	78.75
2	78. 60	79.40	79.35	90.00	87.05	82.80	85.70	82. 25	79. 50	79.10	79.45	78.70
3	78. 50	79.30	79.15	90.00	86. 80	83.80	85.20	82.25	79. 45	79.00	79. 40	78. 65
4	78.00	79.55	79.30	90.35	86.50	84. 60	84.60	83.10	79.35	78. 95	79.30	78. 60
5	77.75	79. 40	79,70	90.45	80.25	84.80	84.20	82.05	79.30	79.00	79. 20	78.50
6	77.45	79.30	80.00	90.80	86.05	85.05	83.95	81.85	79.20	79.00	79. 10	78.45
7	77.40	79.10	80.20	91.00	85.80	85.30	83.70	81.65	79. 15	79.05	79.15	78. 40
8	77.50	78. 60	80.75	91.30	85. 60	85. 60	83.60	81.35	79.10	79.10	79. 10	78.40
9	77.90	78. 40	81.40	91. 60	85. 40	85.70	83.80	81.20	79, 05	79.15	79. 10	78. 60
10	78. 45	77.70	82. 60	92.80	85.15	85.45	84.55	81.10	79.00	79.15	79.15	78. 60
11	78.85	78. 30	85. 80	93.15	84.90	85.20	84.60	81.00	78.95	79.10	79.10	78. 40
12	79.95	78.40	88.10	93.25	84.75	85.10	84. 50	81.00	78.95	79.25	79.20	78.30
13	80.10	78. 50	89.00	93. 60	84.65	85.15	83.70	80.90	78.90	79. 25	79.20	78. 40
14	80.30	78.45	89.20	93.60	84.45	85.40 .	83. 60	80.80	78.85	79.16	79.15	78. 60
15	80.45	78. 50	88.80	93.45	84.25	88.05	83.40	80.80	78.80	79.10	79.15	78. 30
16	80.30	78.55	88.60	93.00	84.05	86.35	83.35	80.70	78.80	79.10	79.15	77.65
17	80.30	78. 60	88.40	93. 60	83.90	86.15	83.35	80.60	78.80	79.25	79. 10	77.05
18	80.50	78.75	88.35	94. 10	83.80	85. 70	83.35	80.60	78.80	79.40	79.10	76. 10
19	80.35	79.00	88.20	93.90	83.65	85.30	83.35	80.50	79.00	79. 50	79. 05	- 74. 65
20	80.20	79. 10	88.20	93.00	83.40	85.15	83.50	80.45	79. 30	79.65	79.00	74. 60
21	80.00	78. 85	88. 10	92.00	83.20	85.15	83.85	80.40	80.10	79.70	79.00	77. 30
22	80.05	- 78.60	88.80	91.30	83.00	85.25	83.85	80.30	80.35	79.70	79.00	78. 65
23	80.15	b 78.70	89.50	90.85	82.85	85.60	83.40	80.30	80.20	79. 65	79.00	79.10
24	80. 20	78.90	89.95	90.25	82.80	86.30	83.00	80.25	79.95	79.60	79.05	79. 20
25	80.05	79.30	90.35	89.70	82.65	86.70	82.80	80.20	79.75	79.60	79.00	78.45
26	79.90	80.10	90. 50	89. 20	83. 20	86.85	\$2. 60	80.10	79.60	79.45	78.90	77.45
27	79.95	80.05	90.35	88. 65	83.60	87.10	82. 40	80.00	79.45	79. 60	78. 85	77. 40
28	79.90	79.70	©). 00	88.30	83.45	87.30	82.25	79.90	79.35	79.50	78. 85	77. 40
29	79.85		89.70	88.00	83.20	87.25	82.10	79.80	79.30	79.50	78.80	77. 40
30	79.90		89.65	87.70	83.00	86.70	82.05	79.75	79.25	79. 50	78.75	77.30
81	79.75		89.70		82.90		82.10	79.65		79.55		77.68

Tabulated gauge readings at selected stations between Chain of Rocks and Cairo-Cont'd.
CHAIN OF ROCKS, MO.-Contínued.
1902.
[Gauge 10.42 miles from Eads Bridge. Zero of gauge 321.18 feet above Memphis datum plane. Gauge read at $8 \mathrm{a} . \mathrm{m}$.

Day.	Jan.	Feb.	Mar,	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Deo.
	77.55	76.00	79.40	83.10	81.80	89.50	94. 50	93.80	91.50	88.40	84.00	86.00
2	77.55	76.10	79.40	83,80	82.00	89.30	95. 20	92.90	90.80	88.20	83.70	86.30
3	77.50	76.50	79.75	83.90	83.65	90.80	95. 70	92. 10	90.50	88.25	83.40	86.10
4	77.20	76.15	80.80	83.95	83.90	91.30	95.85	91.30	91.00	89.20	83.20	85.90
5	77.70	76. 45	80.60	83.75	83.40	31.10	95. 40	90.85	91.30	89.70	83:10	85.95
6	78.00	77.00	80.40	84.00	82.75	30.80	94, 50	90. 50	90.80	90.10	83.40	86.00
7	78. 10	77.70	80.50	84.90	82.00	90.40	93.75	90.40	90.10	90.85	83.90	86.20
8	78.30	77.90	81.30	84.75	81.60	89.70	93.25	90. 30	89.10	91.80	83.00	86.40
9	78.05	78.50	82.20	84. 10	81.55	89.40	93. 40	89.90	88.05	92.40	84.40	86.05
10	77.85	79.15	82.60	83,65	82.20	89.80	93.20	89.50	87,30	92.10	85.00	8.5 .50
11	77.90	79.50	82.60	83.35	83.25	90.60	92. 60	89.00	80.90	91.30	85. 10	84.70
12	77.90	79.60	82. 60	83.10	83.70	91.40	92.75	88.40	86.40	90. 50	84.75	84.00
13	77.75	79.60	83.20	82.80	84.20	91.25	93.90	88.20	85.85	89.70	84.30	84.00
14	77.20	79.45	84.20	82.60	84.55	91.70	95.20	88.15	85.30	88.90	83.90	84.10
15	77.20	79.80	84.60	82. 45	84.50	02.60	90.20	87.60	84.70	88.15	83.70	83.80
16	77.65	79.90	85.80	82.30	84.40	92.50	96.75	86.90	84.25	87.60	83.50	83,30
17	77.80	79.90	86.00	82.10	84.30	92. 10	97.10	86.60	83.75	87.40	83.60	82, 80
18	77.80	79.70	85.60	82.05	84.20	91.80	97.60	86.50	83.50	87.40	83.90	82,90
19	77.80	79.60	85.00	82, 10	84.50	91.55	97.90	86.90	83.20	87.60	84.80	83.20
20	77.90	79.45	84.30	81.95	84.85	91, 30	97.85	87,40	82,80	87.90	85.70	83.60
21	77.85	79.50	83.50	81.55	84.60	00.80	97.60	88. 40	82.50	88.10	86.20	84.10
22	77.90	79,45	83.00	81.25	84,30.	90.40	97.45	89.30	82.25	88.70	86.30	84.80
23	77.80	79.40	82.60	81.00	84.30	90.20	98.00	89.65	82.05	88.95	86.10	85.30
24	77.80	79.15	82. 40	82.55	84.65	90.15	98.30	89.75	82.00	88.80	85. (k)	86.10
25	77.70	79.70	82.05	82.20	85.25	90.00	98.40	89.70	82.80	88. 70	85.70	86.80
26	77.70	78.90	81.75	81.90	85.90	90.00	98.50	89.75	84.70	88.40	85.80	86.75
27	77.10	78.35	81.75	81.40	86.75	.90. 40	98.20	90.05	85.70	87.45	86.00	86.40
28	75. 95	78.45	81.80	81.30	88.80	90.90	97.30	90.70	86.30	86.35	86.15	85.80
29	75.60		81.80	81.60	90.20	92.60	96.45	91.40	87.30	85.40	86.60)	85.10
30	75.20		81.80	81.75	90.10	92.90	95.40	91.70	88.30	84.80	87.00	84.10
31	76.00		81.90		80.80		94.60	91.70		84.30		83.20

$190 \overline{3}$.
[Gauge 10.42 miles from Eads Bridge. Zero of gauge 321.18 feet above Memphls datum plane. Gauge read at 8 a.m.)

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dea.
1	82.50	83.70	87.70	91.60	89. 80	99.30	91.65	88.30	89.30	88.80	87.30	81. 40
2	82.10	83.30	87.85	81.40	89.70	101.30	91.40	87.70	90. 80	88. 85	87.20	81.20
3	82.20	83.70	88.30	91.30	89.40	102. 75	90.70	87.30	91.15	88.90	87.00	81.00
4	82.65	85.20	89.10	91. 10.	89.20	104.05	89.90	87.60	91.10	89.00	80.85	80.80
5	82.80	88.05	89. 65	91.00	88.85	105.60	89.30	86.60	90.80	89.25	86.75	80.60
6	82.80	88.25	89.70	93.00	88.60	100. 00	88.70	86.50	90.20	89.40	80.75	80.60
7	83.20	87.30	90.30	03.60	88.50	169.30	88.30	87.40	89.40	89.65	87.10	80.45
8	83.25	86.65	92.60	03.60	88.33	110.10	88. 20	88. 10	89.00	00.25	87.30	80.30
9	83.00	85.80	95. 50	93.25	88.40	110.20	88.30	88.35	89.10	91.60	87.25	80.20
10	82.40	84.90	96. 50	93.00	88.50	110.60	88.30	88.40	88.60	93. 40	86.95	80.25
11	82. 10	84.30	96. 80	92. 70	88.40	110.45	88.30	88.60	88.70	93.60	86.80	80.00
12	81.40	84. 40	96. 50	04. 10	88.10	110. 20	88.05	88.40	89.90	93.40	86.40	79.70
13	80.00	84.80	95. 90	95.00	87.85	109.30	87.50	88.50	-91.30	93. 20	85. 95	79. 30
14	80.00	84.75	95. 60	95.30	87.70	108. 20	87.20	88. 65	91.80	92.80	85. 60	78. 50
15	80.00	84.60	95. 80	95. 50	87.40	106. 30	87.60	88.70	91.70	92.40	85.30	78.30
16	80.10	84.40	95. 50	95.40	87.50	104. 60	88.10	89.05	92.30	91.90	85.05	78.00
17	80.60	83.55	04. 70	95. 20	88.90	102. 80	89.20	88.60	92.35	91,20	84.90	77.70
18	81.30	83.00	95.00	95. 00	91. 10	101.50	90.20	88.70	91.90	90.80	84.50	77. 50
19	81.65	82.20	94.90	95. 55	92.10	100.100	90.80	89.00	91.80	90.30	84.20	77.50
20	82.05	82.10	94.70	94. 80	92.45	95. 70	90.30	89.10	91.85	90.00	83.85	78.10
21	81.85	82.10	95. 50	94.60	92.05	98. 10	89.90	89.20	91.35	89.20	83. tio $^{\text {a }}$	78. 60
22	81.80	82.20	95.65	94. 70	91.70	97. 40	89.80	89.15	90.50	88. 70	83.40	78. 90
23	81.85	82.30	95.20	94.20	91.50	96.60	89.90	88.70	89.75	88.40	83.20	79. 10
24	81.80	82.35	95.20	93.50	91.35	9\%. 10	90. 10	88. 05	89.10	88.20	8 8. 95	79.70
25	81.70	82.60	95.00	92.90	91.80	95. ${ }^{\text {tio }}$	90.50	87.60	88.60	88.10	82.70	79.30
26	81.40	82.80	94. 50	92. 30	93.20	95. 20	91.30	87.40	88.30	88.10	82.50	79.70
27	81.75	83.40	94.00	91.70	95. 40	94. 30	91.45	87.15	88.30	87.90	82.20	79.70
28	83.50	88.70	93.40	91.10	95.65	03.20	90.70	87.20	88.55	87.70	81.90	a 79.60
29	83.90		92.90	91.65	95.55	92.10	(10.00	87. 50	88. 70	87.60	81.70	80.20
30	83.80		92.30	90.20	95.90	91.60	89.60	88.15	88.80	87.50	81.45	80.10
31	83.85		91.90		96.80		88.90	88.70		87.50		80.60

Tabulated gauge readings at selected stations between Chain of Rocks and Cairo-Cont'd. CHAIN OF ROCKS, MO.-Continued.
1904.
[Gauge 10.42 miles from Eads Bridge. Zero of gauge 321.18 feet above Memphis datum plane. Gauge read at 8 a. m.]

Day.	J8n.	Feb.	Mar.	Apr.	May.	June.	Jüly.	Aug.	Sept.	Oct.	Nov.	Deo.
1	80.70	82.00	81.80	95. 80	105. 20	94.30	94.90	85. 50	81.80	84.50	83.40	79.80
2	80.75	81.40	81.70	95. 50	104.65	95.50	94.20	85. 20	81,05	81.00	83.30	79.80
3	80.40	81.50	81.70	95. 10	103.90	95.20	93.70	84.90	81.50	83. 85	83.20	79.70
4	79.70	81.35	81.80	94.50	102.85	94.20	93.30	84.65	81.60	83.40	83.10	79.60
5	79.40	81.50	82.00	93. 90	101.60	95. 60	92. 90	84.65	82.10	82.90	83.00	79. 50
6	79.65	81.65	82. 60	93.40	100. 10	88.50	92.40	84.40	81.80	82.60	82.85	79. 40
7	79.60	82.10	82, 90	92.70	88.80	99.80	91.75	84.00	81.50	82.60	82.70	79.10
8	79.75	82. 10	83.10	02.40	97.60	99.90	91.55	83, 60	81.30	82.50	82.65	78. 90
9	79.55	82.20	83.60	92.20	97.50	99.00	94.00	83. 20	81.20	82.20	82.50	78.80
10	79.60	82.75	83.80	93.40	97.35	98.00	96.30	82.90	81.30	82.00	82.50	78.90
11	79.60	83.20	84.20	93.90	96. 70	97.10	88.00	82.55	81,40	82.00	82. 45	78. 90
12	79.50	83.55	84.70	94.50	96.15	96. 40	98.90	82.40	81.35	81.85	82.30	78. 70
13	79.70	83.65	84.70	94.70	95. 25	95. 60	99.05	82.10	81.10	81.70	82.25	78. 30
14	79.75	83. 90	84.80	94. 50	94. 30	95.30	98.30	82.15	81,15	81.50	82.10	77.50
15	80.00	84.00	84.60	94. 40	93, 60	95.40	96, 40	82.15	81.00	81.35	81.95	77.30
16	80.10	83.70	84.50	94. 40	92.85	96.00	94. 50	82.30	$80 \cdot 90$	81.30	81.85	77.10
17	80.05	83.30	84.60	94.20	92.40	96.10	92. 95	82.50	81.00	81.20	81.70	76.80
18	80.35	82.90	85.10	95. 50	92. 65	95.70	92.30	82.60	81.60	81, 20	81.55	76. 20
19	80.45	82.50	85. 45	45.70	93.10	95.65	92. 00	82.40	82.30	81. 10	81.40	75.90
20	80.30	82.70	8.5.60	95. 20	93.30	95. 60	91.65	83.30	83.16	81. 10	81.30	75.90
21	81.00	82.65	85.60	94.80	82.70	95. 75	01. 20	84.50	84.21	81. 20	81.10	76.80
22	83.50	82.10	88.00	94.90	92.00	96. 30	90.10	84.25	84.40	81. 20	80.90	75.70
23	86.40	81.80	87.40	95.10	91.40	95.90	89.15	84.55	83.81)	81.30	80.80	75.75
24	87.50	81.90	88.60	95.80	80.70	94.80	88.70	85.00	83.15	81. 50	80.70	76.50
25	87.20	82.10	89.40	100.00	90.35	94.10	88.70	84.80	83.10	81.70	80.50	76.20
26	86.95	82.20	91.10	102.80	90.00	93. 10	88.65	85.10	83.60	81. 95	80.40	. 77.00
27	85.90	82. 30	91.85	104. 20	89.70	92.40	88.20	85.00	84.05	82.15	80.25	77.70
28	84.65	82.20	93.90	105. 10	90.10	92.40	87.40	84.30	84.00	82.50	80.10	77.30
29	83.95	81.95	95.10	105.80	90.00	93.25	86.80	83.40	84.05	82.85	80.00	75. 65
30	83.30		95.80	105.70	90.50	94.45	86.30	82.70	84.60	83.30	80.00	75.30
31	82. 60		95.90		92.30		85.80	82.20		83.40		75.30

1905.

[Gauge 10.42 miles from Eads Brldge. Zero of gauge 321.18 feet above Memphis datum plane. Gauge read at 8 a. m .]

Day.	Jan.	Feb,	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Deo.
1	75. 30	84.00	89.30	89.80	89.70	90.40	93.90	91. 50	84.30	86.70	85.00	83.70
2	75.85	83.90	89.40	90.40	88.70	90. 20	93.80	92.10	84. 20	86.00	85.00	83.80
3	77.30	83. 40	89.70	90. 20	88.10	90.30	93.80	92.50	-83.90	85.60	85.10	83. 00
4	77.80	84. 30	89.60	90.10	87.40	90.70	94.10	92.40	83.70	85.20	85.20	83.30
5	77. 40	84. 40	90.90	89.90	80.60	91.40	95. 30	91.60	83.30	84.90	85. 20	83.00
6	77.80	84.35	90. 20	89.35	86.00	91.00	95.90	90,80	83.20	84.60	85.70	82.70
7	77.60	84.10	89.50	88.70	85.10	91.60	96.40	89.00	83.30	84. 20	86.20	82.30
8	77.00	83.70	89. 10	88.10	84.60	91.00	96.20	88.00	83.40	83.80	86.20	81.80
9	77.20	83.80	88.70	87.70	84.10	90.40	95. 70	88.50	83. 40	83.10	85.90	81.40
10	76.70	83.50	88.35	87.30	83.90	90.10	95. 40	88.20	83, 30	83.30	85.80	81.00
11	76.00	83.40	88.30	87.00.	84.10	84.80	95.30	87.80	83.40	83.10	85.60	80.80
12	70.00	83.40	88. 40	86.80	84.60	89.90	95.80	87.20	84.20	82.90	85.70	80.60
13	75. 60	82.90	88.20	86.70	84.60	90.90	96.10	86.60	85.10	82.70	85.90	80.60
14	75.15	82.90	87.20	86.60	85.30	91.50	96.70	86.40	84.60	82.50	85.60	80.70
15	74.90	83.05	86.50	86. 60	86,80	92.20	97.10	85.90	84.00	82.30	85.00	80.80
16	74.80	83.10	80.00	86.70	88.60	92.30	96.60	85.30	84.00	82. 10	84.50	80.70
17	75.35	83.00	85.70	80.80	90.80	92.10	95. 40	85.00	88.00	82.00	84.00	80.70
18	76.00	83.10	85.60	86.80	90.90	91.60	93. 80	84.70	95.00	84. 10	83.70	80.70
19	76.60	83.00	85.60	86. 60	91.30	91.20	92.50	84.90	98.60	89.90	83.40	80,90
20	77.20	82.90	85. 30	85. 20	92.30	91.80	91.50	85. 60	100.70	88.40	83.40	80.90
21	77. 50	82.80	85. 20	86.00	92.00	92.00	90.90	85.60	101.30	87.00	83.60	81.10
22	78.00	82.80	85.60	85.80	91.20	91.80	90.40	85.90	101. 10	87.00	83.30	81.00
23	78. 25	82.90	86.40	86.00	90.60	91.50	89.80	87.00	100.10	86.80	83.00	81.00
24	78. 55	83.30	87.10	86.40	90.30	91.60	90.00	89.30	98.00	86.60	83.00	80.90
25	79.30	83.70	87.40	80.70	89.80	92.20	90.50	89.60	95. 10	86.10	82.90	80.80
28	81.30	84.60	87. 70	87.10	89.60	92.70	91.20	89.20	93.10	88.80	82.80	80.70
27	83.20	86.90	88.00	87.60	89.50	92.80	91.00	89.00	91.50	87.50	82.70	80.60
28	83.80	87.90	88. 40	87.90	89.80	92.80	90.00	88.40	89.70	86.60	82.70	80.60
29	83.70		89.00	88.00	00.00	93.10	89.50	87.20	88.20	88.10	83.00	81.10
30	83.70		89.20	89.00	90.90	93.50	89.40	86.00	87.20	85.80	83.40	81.20
81	84.00		89.05		90.90		90.70	84.90		85. 40		81.40

Tabulated gauge readings at selected stations betucen Chain of Rocks and Cairo-Cont'd. CHAIN OF ROCKS, MO.-Continued.
1906.
[Gauge 10.42 miles from Eads Bridge. Zero of galige 321.18 feet above Memphis datum plane. Gauge. read at $8 \mathrm{a} . \mathrm{m}$.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1	81.5	86.7	93.4	96.3	92.4	87.0	91.1	84.0	84.0	85.2	81.3	83.2
2	81.4	80.9	93.8	95.7	92.4	87.7	91.1	84.0	83.7	85.5	81.7	83.4
3	81.7	80.7	94. 2	95.3	92.4	88.1	91.3	84.3	83.0	85.8	81.9	83.7
4	82.7	85.9	93.6	94.8	93.5	88.5	91.2	84.1	83.4	85.8	82.1	83.8
5	86.7	85.3	92.2	95.2	92.2	89.0	90.8	83.9	83.2	85.5	82.2	83.8
6	87.7	84.6	91.4	95.0	92.3	89.0	90.4	83.7	83.2	84.5	82.2	84.2
7	87.3	83.9	90.7	94.7	93.2	89.6	90.2	83.7	83.1	84.0	82.2	84.4
8	80.5	83.2	90.4	94.7	93.7	90.1	89.9	83.8	83.1	83.7	82.4	84.2
9	85.4	83.0	90.4	9.5 .2	93.0	90.7	89.4	83.8	83.1	83.5	82.4	84.0
10	84.2	82.8	90.2	95.4	92.1	91.2	88.9	84.0	83.0	83. 2	82.5	83.7
11	83.2	82.4	89.9	95.1	91.3	91.3	88.3	84.3	83.1	82.9	82.7	83.5
12	82.8	82.3	80.6	94.7	90.8	90.8	88.0	84.5	83.3	82.6	82.7	83.3
13	82.5	82.3	89.3	94.8	90.3	90.4	87.6	85.1	83.1	82.5	82.6	83.3
14	82.3	82.5	88.9	96.5	89.8	90.3	87.4	85.7	83.0	82.5	82.6	83.1
15	82.1	82.5	88.6	97.2	89.4	90.2	87.1	86.1	82.9	82.3	82.6	82.8
16	82.2	82.4	88.0	96.6	88.8	89.9	87.0	86.1	82.8	82.2	82.6	82.5
17	81.8	82.5	87.3	96.1	88.2	89.6	80.7	85.7	82.8	82.1	82.7	82.2
18	81.7	82.8	86.8	95.7	87.6	89.4	86.5	85.2	82.8	82.0	82.9	81.9
19	81.8	83.1	86.5	95.5	87.3	89.4	80.1	84.8	83.0	81.9	82.7	81.4
20	81.9	83.4	86.1	95.2	87.0	89.9	85.7	85.1	83.2	81.8	82.7	81.0
21	82.4	83.6	85.4	95.0	86.6	90.8	85.6	85.1	83.1	81.6	83.1	81.2
22	83.7	83.7	84.9	94.5	86.3	91.5	85.6	84.9	83.1	81.5	83.4	81.0
23	84.5	84.7	84.6	94.0	80.1	92.2	85.6	84.5	83.1	81.4	83.4	80.7
24	85.8	86.9	84.7	93.6	86.0	92.5	85.9	84.1	83.7	81.4	83.3	80.2
25	86.0	89.2	84.9	93.6	86.0	92.7	86.7	83.9	84.5	81.2	83.1	79.8
26	85.8	90.9	85.1	93.3	85.8	91.8	86.9	83.9	84.8	81.1	83.1	79.5
27	85.6	92.2	89.5	93.0	85.8	91.0	86.2	85.7	84.9	81.1	83.0	79.2
28	85.5	93.0	93.3	92.8	85.8	91.0	85.9	86.1	84.9	81.0	83.0	79.1
29	85.5		94.9	92.6	86.1	91.3	85.2	85.3	85.2	81.0	83.0	79.2
30	85.8		95.9	92.4	83.0	91.3	84.8	84.8	8.2	80.9	83.0	79.7
31	86.2		96.6		86.5		84.3	84.4		81.0		80.1

1907.

[Gauge 10.42 milez from Eads Bridge. Zero of gauge 321.18 feet above Memphis datum plane. Gauge read at 8 a. m.$]$

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	Juls.	Aug.	Sept.	Oct.	Nov.	Dec.
1	80.5	88.2	87.5	88.9	90.3	86.8	93.9	96.3	86.0	82.9	81.3	80.6
2	80.9	87.8	87.3	89.2	90.6	87.0	93.3	95.1	86.0	82.9	81.4	80.5
3	81.3	87.1	87.0	89.2	90.7	87.9	92.9	93.7	85.9	83.2	81.2	80.5
4	82.0	80.3	86.7	89.0	90.5	90.3	92.2	92.8	85.8	83.9	81.1	80.4
ε	82.9	85.5	86.5	83.9	89.8	91.9	91.4	92.2	85.9	84.4	81.1	80.4
6	83.5	84.7	86.5	88.9	89.6	92.5	90.7	91.6	85.8	84.4	81.0	80.2
7	83.8	83.7	86:5	88.9	89.6	92.5	90.8	91.0	85.6	84.5	81.0	80.2
8	83.9	82.5	86.1	88.7	90.2	91.5	91.1	91.0	85.4	84.6	80.9	80.1
9	83.8	82.0	85.8	88.9	91.0	91.2	91.3	90.8	85.0	84.9	80.9	79.9
10	83.8	82.0	85.6	88.9	91.3	91.2	91.3	90.5	84.5	85.3	81.0	79.9
11	83.7	82.1	85.8	88.9	90.8	91.3	91.3	90.1	84.1	85.4	80.8	79.9
12	83.7	82.3	86.4	89.2	90.1	92.4	91.3	89.5	83.8	85. 5	80.8	79.7
13	83.7	83.0	87.9	90.5	89.1	93.8	91.5	89.0	83.6	85.3	80.7	79.7
14	84.0	83.9	90.0	90.6	88.5	94.2	91.9	88.7	83.3	85.0	80.7	79.7
15	84.5	84.9	90.3	90.4	88.5	93.9	92.6	88.4	83.2	84.5	80.6	79.7
10	84.7	84.6	89.7	90.2	90.7	94.8	92.8	88.4	83.0	84.2	80.6	79.8
17	85.8	84.6	89.1	90.2	92.3	93.7	93.4	87.9	82.8	83.8	80.6	79.9
18	88.4	85.0	88.9	90.2	92.5	92.8	95.0	87.9	82.7	83.4	80.6	80.0
19	90.3	85.4	88.7	90.5	92.2	92.2	95.9	88.5	82.3	83.1	80.6	80.0
20	94.0	85. 2	88.7	91.1	90.7	91.8	96.2	89.3	82.2	83.0	80.5	79.9
21	96.7	84.9	89.0	91.5	89.7	a 91.7	96.6	89.5	82.0	82.7	80.6	79.8
22	97.1	84.9	88.3	91.9	88.9	91.3	97.4	89.3	81.9	82.5	80.6	79.7
23	97.3	85.6	87.6	91.4	87.9	91.3	98.0	89.0	82.1	82.2	80.6	79.7
24	96.6	86.6	87.3	91.6	87.3	92.0	98.5	88.6	82.3	82.1	80.6	79.8
25	95.6	87.3	87.1	91.6	86.7	93.7	98.8	a 88.4	82.5	82.0	80.5	79.8
26	94.1	87.6	87.0	91.2	a 86.3	94.0	98.7	88.7	82.6	81.9	80.5	79.6
27	92.5	87.6	87.0	90.9	86.2	95.2	98.2	87.8	82. 8	81.9	80.5	79.6
28	91.0	87.6	86.8	90.1	86.9	95.2	97.6	86.8	82.9	81.6	80.6	79.6
29	89.9		86.8	89.5	87.0	94.9	97.4	86.4	82.9	81.5	80.6	79.5
30	89.2		87.8	89.5	86.9	94.4	97.2	86.3	82.9	81.4	30.6	79.4
31	88.6		88.2		86.8		97.2	86.1		81.3		79.4

Tabulated yauge readings at sclected stations between Chain of Rocks and Cairo-Cont'd.
CIIAIN OF ROCKS, MO.-- Continued.
1908.
[Gauge 10.42 mlles from Eads Brldge. Zero of gauge 321.18 feet above Momphis datum plane. Gauge read at 8 a. m.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1	79.60	79. 00	88. 30	86.50	87.80	98. 90	101. 30					
2	79. 80	78. 00	88. 20	86.30	87. 40	99. 30	101. 30					
$?$	79.80	77. 80	88. 50	86.30	87.00	99.90	101. 70					
4	79.80	77. 60	88. 70	86. 60	87.00	101.00	102. 00					
5	79.80	77. 80	85. 90	86. 60	87.40	101.30	10.10					
6	79. 80	77. 80	S9. 30	86.50	88.20	101.30	102. (x)					
7	79.80	78. 10	89.50	86.50	88.90	101.40	101.80					
8	79.70	78. 60	89.50	80.70	89.60	101. 40	(1). 10					
9	79. 50	79. 20	90.30	87.40	90. 30	101. 40	99. 30					
10	79.30	79. 20	91. 80	88.90	91.00	101. 50	98.10					
11	79.30	79.30	91.70	90.10	91. 60	101. 60	98.00					
12	79.60	79.70	91. 70	90.80	91.40	102.00	97. so					
13	79. 50	79.70	91. 70	90.80	90.80	102. 60	97. 60					
14	79. 50	80.40	91.50	90.80	90.60	103.00	97. 10					
15	79.70	82. 30	91. 10	90.90	90.60	103.70	96. 30					
16	79.70	85. 50	90. 80	90. 70	92. 60	104. 80	95. 30					
17	79.50	86.90	90.30	(1). 10	04.20	10:5. 50	94.30					
18	79. 40	86. 90	89.90	89. 60	95. 00	105. P	93. 60					
19	79. 40	87.10	\$9. 60	88.70	95. 30	106.10	93. 70					
20	79. 40	87. 80	\$9. 20	88.00	95. 10	106.10	93.70					
21	79.00	87. 30	88. 90	87.50	94. 50	$10 \mathrm{f} .10$	94.10					
22	79.00	87. 30	88.70	87.30	94. 20	105.80	94.00					
23	79.30	87.10	88.40	87.00	94.00	105.30	93.50					
24	79. 70	80.70	88.00	87. 40	94. 00	$\begin{aligned} & 100.50 \\ & 104.70 \end{aligned}$	92.80					
25	79.60	80.30	87.50	87. 60	93. 60	104.20	92.30					
26	79.70	86.50	87.50	87.80	93. 80	103. 90	91.90					
27	79. 50	87. 90	86. 90	88. 40	95.00	103. 70	91. so					
28	79. 80	88.30	86. S0	88. 90	96. 20	103. 20	91. 80					
29	79.80	88.50	87.00	88. 90	96.70	102. 60	91. 80					
30	79. 20		87.00	88. 40	97.10	101.80	91.30					
31	78. 89		- 86.70		98.50		(9). 80					

BISGEILS POINT, MO.
1880.
[Gauge 3.30 mlles from Eads Brldge. Zero gauge 320.30 feet above Memphls datum plane. Gauge read at about noon.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July	Aug.	Sept.	Oct.	Nov.	Dec.
1						85. 00	91.00	85.10	79. 60	7920	75.90	71.00
2						8.5 80	91.50	8.4 (i)	7980	7960	75. 80	71.40
3						86.90	92.10	84.10	79.90	7970	75. 70	71.70
4						86. 90	92. 90	83.60	81.00	70 S0	75. 60	71. 90
5						86.10	93. 10	8330	8200	8000	756	7230
6						86.00	9380	8300	81.50	8010	75 (0)	7200
7						86. 80	94.30	82.70	81.60	80010	75 60	72.90
8						86.50	94. 40	82 20	81.50	7980	75. 50	72. 60
9						86.10	94. 40	82.40	8220	79 tio	7540	7230
10						8620	94. 50	82.20	8280	7930	75. 40	7220
11						8720	9460	8210	83.00	79 (0)	75. 60	7210
12						8870	0.470	81. 00	8250	7880	7570	7240
13						8880	94. 70	81.60	81.80	7700	75. 60	72.50
14						8320	94.50	81.30	81.10	7760	75 (20	72. 60
15						S7 60	9420	81.10	8050	7740	7570	73.00
10						8760	9410	8080	8000	7710	7590	73. 40
17						8710	93.70	8060	7940	7700	7600	7380
18						86.70	93.10	80.10	7900	7670	76.20	74. 10
19						8030	9230	79 s0	78 60	7640	7610	$74: 0$
20						8600	91.80	7940	7840	71.20	7i. 90	7420
21						86.00	91.00	7910	7820	76. 20	75.80	74.00
22						8640	9020	78.70	7780	76. 30	7580	73 \%0
23						87 \%0	8970	78. 40	77 60	70. 40	74.80	7340
24						88.00	8940	78. 20	77.50	76. 60	74.20	73. 20
25						8520	8900	7800	776	7670	73%	$73: 0$
26						88.40	85.60	7780	7780	7670	72. 90	73:0
27						8930	8530	7770	7800	76.50	71.90	$73: 0$
28						(1) 20	8770	7770	78.00	7640	71.30	$72: 0$
29						9060	8700	77. 80	78.20	7630	71.00	71.10
30						9080	3620	78.50	78. 60	76. 20	70.90	731.0
31						90.90	85.70	79.40		76.00		74. 50

Tabulated gauge readings at selected stations between Chain of Rocks and Cairo-Cont'd.

BISSELLS POINT, MO.-Continued.

1881.

[Gauge 3.30 mlles from Eads Bridge. Zero of gauge 320.36 feet above Memphis datum plane. Gauge read at about noen.]

Day.	Jan.	Feb.	Mar.	A pr.	May.	June.	July.	Aus.	Sept.	Oct.	Nov.	Dec.
1	75.00	75.60	81.00	91.30	100.40	89.50	91.20	84.10	76.50	81.30	92. 30	89.20
2	76. 10	75.60	82.60	93.00	100. 60	89. 20	91.40	83.80	76. 40	82. 30	92. 40	89. 60
3	76.40	75.50)	83.80	93. 30	101.30	83. 50	92. 40	83.50	76. 30	84.60	92. 50	88.00
4	76. 80	75. 51	84.06)		102. 10	85. 90	93.00	83.10	76. 30	85. 60	92. 60	87.70
5	76.80	75.30	84.00		102. 60	89.6	93. 20	82.70	76.30	87.70	92.70	37.30
6	76. 70	75.30	83. 80		102. 90	90.00	93.00	82. 40	76.30	87.70	92.80	87.00
7	76.80	75. 20	83. 60		102.90	90.00	92. 50	82.00	76. 40	87.80	92.90	86.60
δ	76. 50	75. 80	83. 60		102. 30	89.70	91.50	81.50	76. 40	88.00	92.90	86.10
9	76.40	76. 70	83. 60		100.99	89.20	90.40	81.00	76. 50	88.10	92.90	85.80
10	76. 30	78. 20	83.30		98. 10	89.10	89.20	80.70	76. 60	88. 20	92.80	85.50
11	76.30	85.70	82.90		97. (k)	89.10	88.00	80.20	76. 90	88.50	92. 70	85.10
12	76.40	85.40	82. 10		95.80	89.10	87.00	80.00	77.10	88.70	92. 50	84.90
13	76. 50	85. 30	83.50		95. 00	89.10	86. 40	79.60	77. 10	88.90	92. 00	84.60
14	76.70	85.30	85. 80		94. 80	90.10	80. (1)	79.30	77.60	88. 90	92.70	84.51
15	76. 30	83.00	87. (i)		94. 60	90.50	86.80	79.00	77.80	83.80	93.10	85. 20
16	76. 20	82.10	88. 20		94. 20	90.70	87. 60	78.60	78.10	83. 50	94. 20	86.50
17	76. 40	81.60	88.50		93. 70	90.60	88. 70	78. 40	78. 10	83.10	94. 50	86.80
18	76. 40	80.50	88.80		93. 50	90. 70	89.30	78.20	78.80	83. 20	94. 60	86.20
19	76. 40	79.80	90.00		93. 50	91.10	89.70	78.00	79. 10	83.80	95.10	85. 50
20	76. 40	79. 10	90.10		93.50	92.20	90.00	77.90	79.20	90.00	97. 80	85.00
21	70. 40	78.80	00.10		93. 30	93. 20	90.30	77.80	79. 30	91.00	97.80	84.70
22	76. 30	78. 60	89.80		9.3. 40	93.00	90.50	77.70	79. 40	92.00	97.10	84.20
23	76. 20	78. 40	89. 20		93. 20	93.00	90.50	77.60	79.50	92. 40	96. 20	84. 20
24	76. 10	78.00	88. 70		93.04	93.00	90. 50)	77. 60	79. 70	92.60	95. 50	85.00
25	76. 00	78. 40	85. 10		93. 20	93.00	90. 30	77.50	79. 90	93.10	94. (i)	86.00
26	75. 90	78.70	88.80		93. 50	93.00	90. (x)	77. 40	80.10	93.30	93.70	86.50
27	75.80	78. 90	89.00		93. 10	92. 30	89. 20	77.30	80. 30	93. 50	92.50	86.50
2 S	75. 70	79.70	89.10		93.00	92. 41$)$	87. 80	77.10	80. 10	93. 40	91. 40	86.40
29	75. 70		89.10		92. 30	92.00	S6. 20	77.00	S0. 80	93. 10	90. 50	86. 00
30	75. 70		89.20		91. 50	91.60	85. 20	76. 80	81.00	92. 80	89. 50	85. 70
31	75. 60		89.90		90. 50		84. 50	76. 60		92.50		85.10

1882.

[Gauge 3.30 miles from Eads Bridge. Zero of gauge 320.36 fect above Memphis datum plane. Gauge read at about noon.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov	Dec.
1	85.	77.90	80.8	85.	93.	96.	97.60	85.	78.30	75.30	78.	78
8	84.70	78.10	86.30	85.80	93.40	96.40	98.30	85.50	78. 10	75.20	78.90	78
3	84.50	78.10	86.30	86.00	93.20	96.60	99.30	85.00	78.30	75.10	73.90	78.20
4	83.40	77.90	85.10	86.00	92.70	96.70	100.80	85.00	78.40	75.00	78.80	77.80
5	52.90	77.70	84.70	86.00	- 92.00	96.40	101.30	85.00	78.20	75.00	78.60	77.50
6	82.60	77.70	84.50	86.00	91.60	96.00	101.40	85.50	78.10	75.00	78.50	77.20
7	82.40	77.80	84.70	85.90	91.40	95.80	101.10	86.10	78.10	75.00	78.20	7.00
8	81.70	77.80	84.70	85.80	91.30	93.60	100.80	85.80	78.10	74.80	78.00	76.80
	81.30	78.00	${ }^{84.70}$	85.70	91.30	35.50	100.40	85.40	78.10	74.70	77.80	75.90
10	81.30	78.20	85. 10	86.40	91.40	95. 10	99.70	84.90	78.20	74.70	77.60	75.00
11	81.10	78.40	86.10	87.30	02.20	94.60	98.80	84.30	78.40	74. 30	77.60	74.00
12	80.90	78.30	87.70	87.60	92.80	94.00	97.80	83.80	78.40	74.90	77.60	72.80
13	80.70	78.30	88.10	88.10	92.80	93.10	96.70	83.60	78.30	75.00	77.70	72.20
14	80.60	78.20	87.80	88.8.0	92.80	92.50	95.70	83.10	73.10	75.20	77.80	72.00
15	80.80	78.50	87.20	89.80	92.30	92.50	94.80	82.60	78.00	75.40	78.50	71.80
18	81.10	78.60	86.80	91.10	92.70	92.60	94.00	82.30	77.90	75.60	78.70	71.30
17	81.00	78.50	80.40	91.80	92.60	92.70	93.20	82.10	77.70	75. 80	78.50	70.90
18	80.50	78.30	36.00	91.00	92.40	93.80	92.90	81.80	77.50	76.00	78.20	70.70
19	80.00	78.20	86.00	91.00	92.20	9.540	92.80	81.50	77.30	76.20	78.10	70.50
20	79.60	79.40	86.10	90.60	92.10	95. 30	92.60	81.10	77.00	76.80	78.20	70.70
21	79.30	89.00	86.30	90.00	92.30	95.00	92.50	80.70	76.80	77.60	78.30	71.60
22	78.80	96.50	86.70	89.60	92.40	94.70	92.50	80.30	76.60	77.80	78.40	72.00
23	78.20	96.60	86.80	89.50	91.80	95.70	92.10	80.10	76.60	77.80	7840	72.50
2.4	77.70	95. 40	86.80	90.60	91.00	96.10	91.10	79.80	76.50	77.80	73.40	73.60
25	77.30	93.70	80.60	92.00	90.20	96.30	90.10	79.60	76.30	77.80	78.40	74.60
26	77.60	91.80	86.60	92.50	.89.90	95.90	89.10	79.50	76.00	77.80	78.30	75.00
27	77.60	89.80	86.40	92.60	90.10	95.50	88.30	79.40	75.80	77.80	78.40	76.00
28	77.80	88.10	86.20	92.80	91.10	95. 40	87.40	79.20	75.60	77.80	78.40	76.20
29	78.00		86.00	93.00	93.20	96.10	36.70	79.00	75.50	77.80	78.50	76. 30
30	77.90		85.80	93.20	93.10	96.80	80.10	78.70	75.40	78.00	78.60	76.30
81	77.60		85.70		95.70		80.00	78.50		0		76.30

H. Doc. 50, 61-1-10

Tabulated gauge readings at selected stations between Chain of Rocks and Cairo-Cont'd.
BIS\&ELLS POINT, MO.-Continuod.
1883.
[Gange 3.30 miles from Eads Bridge. Zero of gange, 320.36 feat above Memphis datnm plane. Gange read at about noon.]

Day.	Jan.	Febi.	Mar.	Apr.	May.	June.	July.	Aug.	Sopt.	Oct.	Nov.	Dec.
1	76.50	74.00)	0.4. 20	S6.00	86. 70	94. 00	101. 50	80.00	79.20	74.70	79. 30	78.30
2	76. 30	74.0n)	94. 10	85. 80	86.80	93.20	100. 70	87.06)	78.90	74.80	79.30	78.20
3	76. 10	74. 40	94.00	85.00	86i. 80	92. 60	100. 00	89.00	78. 70	75.10	79.10	78.10
4	75.70	74.70	93. 40	84.70	87. 20	92, 30	99.00	80.10	78.40	75. 30	78. 70	78.00
5	75. 40	75.00	92.60	84.09	87. 40	91.80	97.70	88.20	78.40	75. 40	78. 20	77.90
6	75.00	75.20	91.70	83.70	87.50	91.20	06.50	87.70	78. 20	75.60	78. 10	77.70
7	74. 20	75.00	91.00	83.40	87.60	91.10	94.80	87.20	78.00	75.90	77.80	77.50
8	74.10	74.90	90.80	83.60	87.70	91.80	93. 50	86.70	77.70	76. 50	77.80	77.20
9	74.00	74. 30	91.00	84. 60	87.80	92.80	92.50	86.50	77. 40	76. 70	79.00	77.00
10	74. 10	73.70	90.70	85.30	87.90	93.20	91.50	86. 20	77.10	76. 70	80.50	70.90
11	74.20	73.70	89.60	85.40	88.00	03. 60	91.10	85.80	76. 90	76. 70	81.70	76. 50
12	73. 60	73.50	89.00	85. 60	88.00	94.00	01.00	85.20	76. 70	76. 70	82. 20	76. 90
13	72.30	73. 30	88.70	85. 50	88.00	94. 50	91.00	84.70	76. 50	76. 70	82.00	77.10
14	72.50	73.10	87.90	85.40	SS. 00	94.50	91.00	84.00	76. 20	77. 30	81.70	77.10
15	72. 40	75.30	87.70	85.30	88. 10	95.80	91.20	83.40	76. 00	76. 70	81. 20	77.00
16	72.60	78.20	87.50	85.10	88.50	97.30	82.00	83.10	75.80	76. 30	80.60	77.00
17	72.70	88.00	87.70	84.30	89. 40	98. 20	02.50	82. 70	75. 60	76. 30	80.20	77.00
18	72.90	92.00	87.30	84. 50	90.70	99.40	92. 60	82.50	75. 60	76. 30	79.70	77.00
19	73.50	94.00	86. 80	84.50	01.60	100.80	02.20	82.70	75. 30	76. 70	79.00	76.30
20	73. 70	93.20	88. 60	84. 30	93.00	101.50	91.70	82.70	75. 20	76. 70	78.40	75.70
21	73.90	02.00	86.70	85.30	94. 40	102. 40	91.10	82.00	75. 10	77.60	78. 00	75.20
22	73.80	91. 60	86.80	86. 40	94. 60	102. 30	90.50	81.50	75.10	78. 80	77. 90	74.60
23	73.50	92.00	86.80	87.30	95.00	103.40	90.20	81.20	75.00	78.00	78.50	74.00
24	73.30	82.60	86.80	88.80	95. 00	103.80	89.20	81.40	75. 00	78.50	79.30	73.60
25	73.30	93.00	86.70	88.70	94. 50	101.4)	88.00	82.00	75. 00	78.10	78.90	73. 40
26	73. 40	94.60	86.50	88.10	94.00	104.60	87.00	81.80	74. 10	78.20	78.70	72.90
27	73.60	94.60	86.20	87.50	93.50	119.30	86.30	81.40	74. (0)	78.10	78.70	72.70
28	73.50	94.50	86.10	87.10	93. 60	103. 40	86.50	81.30	74.00	77.80	78. 10	72.40
29	73.70		85. 70	86.80	93. 70	103. 20	86.00	80.50	74. 80	77.90	78.30	72.20
30	73.90		85.20	88.70	94. 60	102. 40	8 8. 90	84.00	74.80	78. 30	78. 30	72.20
31	74.00		85. 50		94.50		85.80	79.50		79. 10		72.70

1884.

[Gauge 3.30 miles from Eads Bridge. Zero of gange 320.36 fect above Memphis datum plane. Gauge read at about noon.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	Junc.	July.	Aug.	Sept.	Oct.	Nov.	Dee.
1	72.90	80.20	79.90	92. 60	89.10	85. 60	88.90	84. 50	80.30	88.30	85. 40	80.30
2	72.90	82.00	79.60	92.80	88.6)	85.00	88.50	84.90	80.50	89.00	85.00	79.60
3	72.80	77. 00	79. 50	93.60	89.10	84.50	87.00	84. 20	80. 10	90.20	84.10	78.70
4	71.70	78.20	79. 30	93.90	90.10	85. 10	87.30	83.70	80. 319	89.30	83.60	77.90
5	71.20	78.90	79.40	91.10	90.80	85.90	87. 6	83.40	80.20	88. 20	83.10	77.30
6	71.00	81.00	79.20	91.50	92.00	86.10	86. fio	83. 30	79.70	87.40	82. 60	76.80
7	71.50	83.40	79.00	95.00	93.30	85. 30	80.50	82.80	79.00	86.80	82.50	76.50
8	74.90	82. 90	78.80	05.20	93. 30	86. 60	80.80	82.10	78. 40	86.60	82.10	76.30
9	77.70	82.10	78.00	95.90	93. 20	86. 80	87.10	81.50	78.00	86.50	81.60	'76.50
10	78.00	81.00	77.70	96.50	92.70	87.50	87.30	81.00	77.80	83.20	81.20	77.50
11	78.60	79.80	77.70	96.50	92.20	88. 80	87.00	80.40	77.90	86.60	80.90	78.40
12	79.40	78.70	77.70	96.410	01.70	89.50	88.40	80.00	77.80	87.40	80.70	79.10
13	79.80	78.30	79. 20	96. 8.0	91.50	90.00	85. 80	79.70	77.70	88.00	80.50	80.00
14	79.80	80.20	78.10	95.70	91.20	89.00	85. 60	79.40	77.50	88.20	80.30	80.90
15	80.00	82.10	78. 00	92.90	90.40	89.40	85. 40	79. 20	77.30	88.20	80.20	80.90
16	80.10	81.80	78.00	94.10	89.40	88.70	85.60	79.00	78. 00	88.10	80.00	80.50
17	80.40	81.60	78.20	93. 40	88. 60	88.20	87.00	78. 70	77.70	87.80	79.80	80.00
18	80.50	82. 10	77.80	92.60	88.00	87.80	88.70	78. 40	77.10	87. 50	79.70	79.30
19	80.50	82. 80	79.40	91.00	87.90	87. 60	88.60	78.30	77.80	87.10	79.60	78.30
20	80.20	83. 60	82.40	91.20	87.80	87.70	87.50	78.10	77.80	83.80	79.40	77.60
21	80.00	82.60	84.00	91.10	87.90	88.10	86.30	78.10	77.50	86.40	79.30	76.80
22	80.00	82.10	84. 40	90.40	87.90	88.90	85.10	78. 60	77.10	80.00	79.10	75.60
23	80.00	82. 10	85.10	90. 20	87.50	88.90	84.00	78. 60	77.70	85.90	79.00	73.50
24	79.80	82.10	85.40	90.90	87.00	89.20	83.20	78. 20	78. 00	85.50	79.09	72.90
25	79.60	81.90	88.20	91.90	86. 50	89.10	82.80	77.80	78.40	86. 10	80.00	72.20
26	79.80	81.50	87.80	92.30	80.00	89.20	82.70	77.70	79.00	86.60	81.50	72. 10
27	80.00	81.10	89.40	92. 20	85.80	89.55	82.80	77.70	81.20	86.80	81. 60	72.60
28	79.80	80.70	91.50	91.80	85. 50	89.70	33.00	77.90	83.00	86.40	81.40	73.00
29	79.70	80.40	93.80	90. 80	85. 50	89.60	83.80	78.40	85.00	88.00	81.10	73.30
30	79.60		93.80	00.10	85.70	89.40	84. 10	79.30	87.00	85.90	80.80	75. 10
11	79.60		92.90		85.80		84. 10	79.80		85.50		81.10

Tabulated gauge readings at selected stations between Chain of Rocks and Cairo-Cont'd.

BISSELLS POINT, MO.-Continued.

1887.

[Gauge 3.30 miles from Eads Bridge. Zero of gauge 320.36 feet above Memphis datum plane. Gauge read at about noon.]

Day.	Jan.	Feb.	Mar	Apr	May.	June.	July.	Aug.	Sept.	Oot.	Nov.	Deo.
1					85. 50	82.00	84.70	78.20	75. 40	76.70	74. 10	
2					85.60	81.20	84.90	78.00	75. 40	76.60	74. 10	
3					85.50	80:60	84. 90	77.90	75.30	77.00	74.10	
4					85. 50	80.30	85.10		75.10	76.40	74.00	
5					86.30	80.10	85.30	77.60	75.00	76.10	74.10	
6					86.70	80.30	85.30	77.40	75.00	76.00	74.00	
7					86.90	80.50	85.10	77.30	75. 00	75.70	74.00	
8					86.40	80.80	84.70	77.00	75.10	75.60	73.90	
9					85.90	81.10	84.60	76.90	75. 90	75. 50	73.80	
10					85.40	81.00	84. 40	76.70	76.70	75. 40	73.80	
11					84.90	81.00	84.30	76. 70	77.00	75. 40	73.80	
12					84. 60	81.00	83.70	76. 70	77. 20	75. 30	73.80	74.80
13					84.30	83.30		76. 40	77.00	75.70	73.80	74.30
14					84.10	84. 20	82.60	76. 30	76.80	76.60	73.80	73.90
15					84.00	84.70	82.10	76. 10	76.80	76. 50	73.80	73.70
16					84. 40	85.60	81.70	76. 10	76.70	76.00	73.80	73.60
17					84.30	88.30	81.30	76. 40	77.00	75.50	73.80	73. 20
18					84.60	88.40	81.00	76.30	79.40	75. 20	73.90	72.90
19					85. 20	85.70	80.60	76.10	79.70	75.00	73.90	72.80
20					85. 20	84.80	80.20	76.00	79. 40	74.80	73.80	72.80
21				83.70	84.50	84.00	80.00	75. 90	79.00	74.70	73.80	72.60
22				84.50	84. 10	83.60	79. 90	75.80	78.50	74.60	73.70	72.20
23				87.70	83.80	84.00	79.80	75.60	78.10	74. 60		71.70
24				87.90	\$3. 50	84.00	79.80	75. 50	77.70	74.40		70.70
25				87. 20	83.10	84.00	79.70	75. 60	77.40	74.30		70.30
26				86.30	83.10	83.90	79.80	75.90	77.10	74.30		70.20
27				85.70	83. 40	83.80	79.80	75.90	77.00	74. 30		70.10
28				85. 60	83.10	83.90	79.60	75.80	76.80	74.30		70.80
29				85.50	83.10	84. 20	79.20	75. 60	76.80	74. 20		72.20
30				85. 40	83.10	84. 40	78. 80	75. 50	76.80	74. 20		73.00
31					82.70		78.50	75. 40		74. 10		73.80

1888.

[Cauge 3.30 mlles from Eads Brldge. Zero of gauge 320.36 leet above Memphis datum plane. Gauge read at about noon.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oot.	Nov.	Dec.
1	74. 20	82.50	82.30		90.20	97. 60	95. 80	83.60	80.60	73. 90	73.50	
2	74. 60	80.20	81.80		90.30	97. 60	95. 40	83.00		73.90	73. 50	
3	75. 40	81.00	81. 20		90.10	95. 00	94. 60	8.20		73.90 7388	73. 50	
4	76. 50	${ }_{82}^{82} 30$.	81. 70		c0. 90 91.10	98. 30	93. 80	881.50		73.80	73. 50	
5	79.50	${ }^{82} 30$	${ }_{83}^{82} 90$	88.50 87 80	91. 10	97.80 96.70	${ }_{92} 93.10$	81.00 81.00			73.70 73.60	
6	78.60	82.90	83.50 83.40	87.80 87.40	91.20 91.30	96. 70	92.1 91.	81.00 81.50	78.20 78.00	73. 80	73. 70	
8		88.90	83.10	8830	91. 60	95. 20	91. ${ }^{\text {a }}$	83.60	77.70	73. 80	74.00	
\%		80. 00	82.40	90.00	91. 60	94.70			77. 40	73. 80	74. 70	
10			82. 60	90.60	92. 10	94.00	93. 00		77.10		75. 40	
11		77. 80	82.90	90.00	92. 90	93.50	93. 80		76.80		76.10	
12		77. 10	83. 30	${ }^{90} 000$	93.00	92.90	${ }_{93}^{93.70}$	88.10	76. 50		76.30	
14	77.20	76. 30	83.30	91.40	93. 10	92.40 91.90	${ }_{93.00}$	85. 20	75. 90 75		76. 80	
15	76. 60	76. 30	83.20	91.70		91.70	92.70	87.30	75. 50		77.00	
16	76. 10	76. 50	83. 20	91. 40	94. 40	92.50	92.20	8 c 80	75. 70		76. 70	
17	75. 70	75. 60		91.10	94. 60	93.30	91.60	88.10	75. 70		36.20	
18	75. 30	75. 50		90.70	95. 20	94.30	${ }^{90} 30$	86.00	75. 40		75.80	
20	76. 70	76. 60		90.40 90.40	95. 40	94.00 93.10	87. 80	85.20 84.60	75.10	73. 40		
22	79.70	79.30		90.70	96. 40		87.20			73.50		
23	81. 60	80.50		91. ${ }^{\circ} 0$	وi. 80	93.90	87.00			73. 50		
24	82. 50	82. 60		91. 90	96. 80	94. 00	86.20			73. 50		
25	82.80	84. 20		91. 50	96. 50	94.70				73. 50		
$2{ }^{26}$	82. 30	34.40		${ }^{90} 80$	96. 20	94. 60	85. 20			73.50		
27	82.80	84.20		${ }^{90} 00$	${ }^{95.90}$	94. 40	84.70			73. 60		
${ }_{29}^{28}$	82. 60	84.00 83.20		89. 80	95.90 96.80	94.50 95.00	81.60 85.80			73. 60 73.60		
30	83.20			90.10	97.50	95. 60	8180	81.30		73. 60		
31.	84. 20				97.70		83.00	81.30		73. 60		

Tabulated gauge readings at selected stations between Chain of Rocks and Cairo--Cont'd.

BISSELLS POINT, MO.-Continued.

1889.

[Gauge 3.50 miles from Eads Bridge. Zaro of gauge 320.36 foet above Memphls datum plane. Gauge read at about noon.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	sept.	Oct.	Nov.	Deo.
1		76.00			78. 00	93.00	84. 10	81.40	74.30	73. 50	72.30	73. 70
2		74.50			78.40	91.70	83.60	81.010	74. 30		73.10	73. 80
3		74. 40			78. 10	89.80		8050	74.10		75.70	73.80
4		74.30			77.80	87. 40		80.20	74. 10		77. 40	73.70
5		74. 30			77.80	85.50		7950	74. 40		76.80	73. 40
		74. 70			78.00	84.00		78.40		72.90	75. 90	73.20
7		74.70			77.70	-82.90		78. 30		72.90	75. 40	73.00
8		74.30			77. 30	8240		77.90	74. 20	72.80	75.00	72.70
9		73.80			77.00	82.90		77.50	74.20	72.70	74.70	72.70
10		73.60			76.80	85.70		77.40	74.20	72.60		72.80 72.80
11	75. 00	73. 50			76.70	87.60	88.40	77. 10	74.20	72.50	77.70	72.80
12	74. 70	73.50			76.70		80.10		74.30	72.40	79.0n	73.10
13	74. 50	73.20			76.80		80 79 80		74.70	72.20 72.10		74. 10
14	75. 00	73. 20			76.80 77.10		79 79 70			72.10 72.20		
15	75.80	73.20 73.40			77.10 77.50		79.70 79.60			72.20 72.20		
17	76. 60 78.00	73.40 74.20			77.50 77.80		79.60 79.50			72.10		74.70 74.70
18	79.40	75. 60			79.40		79.70			72.10		74.70
19	80.10	75. 50			79.90		80 60			72.10		74. 50
20	80.50	74.80			82.00		82.10	79. 40		72.10	74.70	74.40
21	80. 20				815. 20		83.70	79. 10	76. 00	72.00	74.30	74. 30
22	79.20				87.70	${ }^{86.80}$	83.30	78.80	75.80	72.10	74.00	74.30
23	78. 20				87. 40	${ }^{86} 60$	888	78.30		72.20 72.60	73.80 7360	74.20
24	77.40				86.80 8680	86.00	81.60	77.60 76.90	74.50	72.60 72.80		74. 0
25 26	76.80 76.60				80.60 88.10	85.40	81.20 80.00	76.9 76.40	74.30 74.30	72.80 72.70	73.60	74. 74.00
27	76. 50			81.60	85.40	85.70	80.50	75.90	74.10	72.60	73.60	73.90
28	76. 20			80.50	85.00	85.50	80.20	75.50	${ }^{73.90}$	72.50	73.60	73. 90
29	75.80			79.70	84. 50	84.80	81.30	75.00	73.80	72.30	73.60	73. 80
30	75. 40			79.30	${ }^{90} 60$	84. 40	82.00	74.80	73.60	72.20	73.60	73.70
21	75. 30				93.00		81.80	74.50		72.20		73.70

1890.

[Gauge 3.30 miles from Eads Bridge. Zero of gauge 320.36 feet above Memphis datum plane. Gauge read at about noon.]

Day.	Jan:	Feb.	Mar.	A pr.	May.	June.	July.	Aug.	Sopt.	Oct.	Nov.	Doo.
1	74.00	77.10	76. 20	82.10	88.80	80.80	89.00	79.10	76.30	76. 10	76. 60	74.90
2	75.20	77.80	75. 70	81.70	86.10	80. 30	88.80	78. 8.0	76.30	76.30	76. 50	74. 50
3	75.30	73. 20	75. 30	83.00	85. 40	80.10	88.70	78.50	76. 20	76.30	76. 40	74. 50
4	75. 30	78. 20	74. 90	85. 60	84.80	80.50	88.60	78.20	75.90	76. 10	76. 10	74. 40
8	75. 40	78.90	74. 30	86.00	84. 40	81.40	88.30	77.90	76.00	75.90	76.00	74.30
6	77. 50	79.50	73. 80	85. 30	83.80	81.80	88.10	77.70	76.00	75. 80	75. 80	74.10
7	79. 70	80.10	73.80	84.00	83. 40	81.60	87.80	77.50	75. 50	75. 70	75. 50	73. 90
8	79. $\mathrm{c}_{1} 0$	79.80	73. 60	83.20	83. 40	81.60	87.70	77. 40	75.50	75. 60	75. 30	73.70
9	78. 50	79.30	73.70	82.60	83. 40	82.00	87. 60	77.50	75.60	75. 50	75. 30	73. 20
10	77:80	79.00	74.10	81.70	82. 00	83.60	87. 20	77.50	7E. 50	75. 80	75. 10	72.70
11	78. 10	79.00	74. 90	81.20	81. 40	84. 60	80.20	77.10	75.50	76. 20	75. 00	72. 00
12	80.00	79. 20	76. 10	80.80	81. 10	85.10	85. 10	76.80	75. 60	78. 20	74. 80	72. 50
13	83. 40	79.30	77.90	80.60	81.20	86. 60	84.70	76.70	75.60	75.90	74.70	72.50
14	85. 10	79. 40	80.90	80.70	81.80	87.80	84. 40	76.60	75. 50	75. 40	74. 60	72.00
15	86.00	79.60	82.70	81.10	82.20	87.80	84. 50	77.00	75. 50	75.10	74. 60	71.80
16	85.00	79.90	83. 60	81.70	82.10	87. 80	84. 10	78.00	75. 30	75.00	74.70	71.50
17	83.80	79.60	83.30	82.10.	81.70	87.80	83.10	77.20	75. 20	75.00	74.90	71.40
18		79. 20	82.60	82.30	81.80	83.00	82.80	76. 50	75. 10	75. 60	74. 90	71. 40
19		79.00		82.40	81.80	88.20	82.20	76. 40	75. 30	76.60	74.90	71.50
20		70.00		83.20	81. 40	88.40	81.70	76. 40	75.60	77.10	75.10	71.70
21		78. 80		84.10	81. 20	88.30	81.50	76. 30	76. 00	77. 60	75. 60	71.80
22		78. 40		84. 20	80.90	87.80	81. 20	76. 10	76. 40	77. 60	76.70	72.00
23		77.80		83.90	80. 50	87.80	81. 30	76. 60	76. 50	77.40	77. 30	72.00
24		77. 40		83.60	80. 50	88. 50	81. 20	77.20	71.30	77.20	77.20	72.20
25		77.20		83. 50	81.50	88.50	81.40	77.00	76. 40	76.90	76. 80	72.30
26	75. 00	77. 30		83.00	82.60	88.20	81.70	76.70	76. 30	76. 80	76.60	72. 40
27	75. 60	77. 50		85.60	81.50	88. 010	81. 30	76. 70	76. 10	76. 50	76. 20	${ }^{72.30}$
28	76. 00	77. 40		87. 40	81. 20	88. 50	80. 60	76.50	76. 00	76. 50	76.00	72.00
29	76. 50			87.30	81. 10	89.20	80. 10	76. 20	76.00	70.50	75. 60	${ }^{71.50}$
30	76. 50		83.40	87. 20	81.00	89.20	79.80	76. 20	75.90	76. 50	75. 20	${ }_{71} 71.30$
21	76.60		82.60		81.00		79.50	76.40		76.60		71.30

Tabulated gauge readings at selected stations between Chain of Rocks and Cairo-Cont'd.
BISSELLS POINT, MO.-Continued.
1891.

〔Gauge 3.30 miles from Eads Bridge. Zero of gauge 320.36 feet above Memphls datum plane. Gauge read at about noon.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Deo.
1	71.80	72.60	79.20	88.00	88.10	83.90	89.60	83.00	78. 10	72.60	72.90	72.10
2	72.20	72.80	78. 70	8 S .20	88.70	83.60	91. (k)	84.10	77. 40	72.50	72.80	71.60
3	72.70	73.00	78.20	85. 20	88.90	82.60	92.00	883.20	77.00	72. 40	72.80	71.20
4	73.10	73.00	77.40	88. (k)	89.40	83, 60	92.60	82.20	76. 60	72.30	72.80	71.40
5	73.30	73.20	76. 610	87.60	80.20	87.30	92.30	81.70	76. 20	72.30	72.80	71. 50
8	73.10	73.20	76. ${ }^{2} 0$	87.80	88.70	87.70	91.70	81.10	75.10	72.20	72.80	71.50
7	73.30	73.00	7 Fi .10	87.80	88.50	87.10	90.40	82.20	75. 60	72. 00	72.80	71.80
8	73.70	72.40	70. 50	8.7. 30	88.20	89.20	89.00	81.80	75.30	72.20	72.80	72. 20
9	73.80	72.20	70. 60	87. 20	87.60	90.90	88.60	81.30	75. 10	72.20	72. 10	72.10
10	73.50	72. 30	76. 60	87.20	87.00	91.70	88. (1)	81.00	74.90	72.30	73.10	71.70
11	73.30	72.30	76. 50	87. W)	86.50	91.60	89.30	80.80	74.70	72. 60	73.10	71.60
12	33.10	72. 20	73. 60	8.3. 21	$8 \times .10$	91.70	89.10	80. 50	74. 50	73.10	73.00	71.70
13	72.90	73. 70	76. 10	89.00	85.70	90.50	88.40	80.20	74.40	73. 50	72.80	71.80
14	72.50	73.20	75.80	88.90	85.30	88.50	87.60	79.40	74. 40	73.90	72.80	72.00
15	72.40	73.70	75. 70	89. 50	84.90	87.80	86.60	79.20	74. 30	74.30	72.90	72.30
16	72.10	74.00	75. 50	89.10	84. 10	88.40	80.10	78.50	74.10	74. 40	73.00	72.50
17	71.90	73. 90	75. 60	(90) ! 0	84.00	83.20	86.10	80.90	73.90	74.50	73.20	72.70
18	71.80	73.90	75. 60	91, 30	83.60	87.90	81.00	81.00	73.80	74. 40	73.20	73.60
10	72.00	73.70	75. 70	91.40	82.90	87.60	85.20	81.80	73.70	74.30	73.30	73. 20
20	72.10	73. 70	76.40	91. 510	82.40	87.90	84. 10	83.40	73.60	74.20	73.10	73. 310
21	72.10	73.60	78. 20	91.40	81.90	88.40	84.10	86.40	73. 50	74. (6)	73.30	7.3. 40
22	72.30	75. 30	80.40	91.40	81.80	85.10	83.50	87.90	73.50	73.80	72.80	73.30
23	72.50	77.40	82.00	91.60	82.40	90.30	83.10	80.50	73.40	73.80	73.30	73.70
24	72.50	78. 60	83.90	92.20	83.80	91.70	82.80	85.10	73.30	73. 60	73. 60	74. 10
25	72.60	79.60	85. 10	92. 40	83.10	91.90	82.90	84.40	73.20	73. 60	74. 10	74. 10
26	72.50	80.20	85. 10	92.10	84.20	91.20	83.10	83.80	73.10	73.50	74.00	74.20
27	72.40	80.10	88.00	91.40	84.80	90.00	83.40	82. 60	73.00	73.30	73. 50	74.20
28	72.50	79.70	86. 60	90. 80	84.50	89.70	83.30	81.20	72.90	73.30	73. 10	74.00
29	72.70		87.20	90.20	84.20	88.20	82.70	80.00	72.80	73.20	72.80	73.80
30	72.60		87.80	89.40	84. 50	88.50	82.50	79.10	72.70	73. 10	72.60	73.90
31	72.50		87.90		84.50		82.80	78.50		73.00		74.10

1892.

[Gauge 3.30 miles from Eads Bridge. Zero of gauge 320.36 feet above Memphis datum plane. Gauge read at about noon.]

Day.	J8in.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1	74.30	75. 40	82.80)	86.30	89.80	101.30	90.70	86.20	76.80	73.90	73.10	71.30
2	74.00	76. 40	82. 40	83.20	89.10	101.70	97.10	85.60	76. 70	73.80	72.90	71. 10
3	76.80	75. 80	82.00	86.70	89.10	102. 50	97.70	85.20	76. 50	73.90	72.70	71.00
4	76. 50	76.40	82.10	88.70	89.00	103. 50	98.80	84.60	76.20	73. 40	72.60	70. 80
5	75. 70	76.60	82.30	92.30	89. 80	103.80	99.60	84.10	76.00	73.20	72.50	70.70
6	74.90	77.80	82.00	94.50	92. 20	103.60	99. 60	83.60	75. 80	73. 20	72.40	70.70
7	74. 40	80.00	82.00	95.70	95.00	103.20	99. 10	83.20	75.60	73.00	72.30	71.10
8	74.10	81.00	82.80	96.00	96. 60	102. 80	99.70	82.80	75. 40	72.80	72.20	71.20
9	73. 50	83.00	84.80	95.80	97.10	102. 40	99.80	82.30	75.40	72.80	72.10	72.00
10	72.50	83.40	87.00	93.70	88.00	101.90	99.60	82.00	75. 20	72.60	72.10	72.60
11	71.40	83.30	86.80	92.00	99.00	101. 50	99.30	81.70	75. 10	72.40	72.10	72.70
12	71.40	82.90	86.30	91. 40	100.10	100. 70	98.90	81.60	75. 70	72.40	72.00	72.70
13	75.00	82.00	85. 50	90.20	101.30	100. 40	98.80	81.80	76. 30	72.30	72.00	72.60
14	77.60	81.00	34.60	59.20	103.20	99.90	98.60	81.50	76. 00	72.20	72.00	72.40
15	77.70	80.40	84.00	90.40	104.30	99.20	98.60	80.90	75.80	72.20	72.00	72.20
16	77.70	80.70	83.50	90.50	104.90	98.70	98.00	80.60	75. 60	72. 10	71.90	71.90
17	77.90	80.20	82.80	90.60	105. 50	88.00	97.50	80.30	75. 40	72.10	72.30	71.60
18	78. 40	79.40	82.50	91.20	105.90	97.30	97.30	80.10	75. 30	7200	72.20	71.00
19	78. 10	79.60	82. 20	92.30	106.10	96. 60	96.00	79.80	75. 10	72.10	72.20	70.60
20	78. 20	83.30	81.60	93.70	105.70	96. 10	96. 20	79.50	75.00	72.20	72.00	70.20
21	78. 60	85.90	81.10	95.30	105.00	95. 60	95. 20	79.10	75.00	72.20	72.10	69.50
22	78. 50	85. 40	80.60	95. 40	104.50	94.70	04.70	78. 80	74.90	72.20	72.10	68. 30
23	78.70	84. 10	80.80	95. 60	104. 30	94.30	94. 20	78.40	74. 80	72.10	72.10	68.60
24	78.80	82.70	81.70	95.00	104. 20	94.60	93.50	78.10	74.70	72.10	72.00	68.30
25	79.10	81.60	82.00	04.30	103.90	95. 30	92.70	77.80	74.60	72.00	72.00	68. 40
26	79.60	81.50	82.50	93.60	103. 50	95. 60	01.60	77.50	74. 40	72.10	71.90	68.20
27	79.60	82.20	82.60	92.70	102.90	95.70	90. 40	77.20	74.20	72.20	71.80	71.00
28	79.60	82.70	82.40	91.80	102.00	(16. 20	89.10	77.00	74.10	72.30	71.80	71.80
29	78.00	83.00	82.60	91.10	101.10	96. 50	88.00	76. 910	73.90	72.80	71.60	72.40
30	74.90		83.80	90.50	100. 70	96. 50	87.20	76.80	-3.90	73.20	71.40	73.80
31	75.00		85.10		100. 70		86.70	76.80		73.20		74.00

Tabulated gauge readings at selected stations between Chain of Rocks and Cairo-Cont'd.

BISSELLS POINT, MO.-Continued.

1893.

[Gauge 3.30 miles from Eais Bridge. Zero of gauge 320.36 leet above Memphls datim plane. Gainge read at about noon.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Deo:
1	76.00	75.00	79.80	84.70	99.60	95.60	86.30	78.20	72.50	70.60	70.60	69.50
2	75.70	74. 60	80.80	84.40	100.20	06.20	86.50	78.70	72.30	70.60	70.40	69.20
3	74.70	74.00	81.10	84.00	100.40	96.70	85.80	78.70	72.10	70.60	70.50	68.60
4	74. 40	74.00	81.00	84.00	99.80	96.90	85.40	78.00	72.00	70.60	70.60	68. 40
5	74.40	74.10	80.60	83.80	99.10	96.30	85.30	71.80	71.80	70.70	70.60	67.70
6	74.10	74.80	80.30)	83.90	97.90	95.30	86.90	77.30	71.70	71.20	70.50	67.60
7	73.70	74.50	80.30	84.50	96.70	94. 50	83.40	76.10	71.60	71:30	70.60	67, 40
8	74. 10	74.70	80.10	84.30	95، 70	94.80	89.30	75.60	71.40	71.20	70.50	67.20
9	74.30	75.00	81.60	84.00	94.80	94.90	89.00	75.20	71.40	71.10	70,50	67.30
10	74.30	75.00	85.10	85.40	94.20	94.30	87.30	74.90	71.40	71.00	70.50	67.50
11	74.50	75.10	86.80	88.00	94.20	93.20	86.20	74.60	71.30	71.40	70.50	67.70
12	75.10	75.10	87.50	91.00	94.80	92.00	85.10	74.70	71.20	71.30	70.50	67.70
13	75. 40	75.20	87.60	91.80	95.00	91.00	83.90	75.00	71.10	71.20	70.50	67.80
14	75. 40	75.90	87.40	91.70	94. 70	90.10	83.00	74.60	71.00	71.20	70.40	67.40
15	75.50	77.40	87.00	91.60	94.30	89.70	83.40	74.20	70.90	71.00	70.40	67.70
16	75.40	78.10	86.90	91.70	94.10	89.60	81.80	74.00	70.80	70.80	70.40	68.10
17	75.60	77.80	87.80	91 (1)0	93.90	89.30	81.90	73.80	70.70	70.70	70.40	68.70
18	75.80	77.30	89.20	90.80	93.60	87.80	83.00	73.80	70.70	70.70	70. 40	68. 70
19	75.80	77.00	89.80	89.80	93.10	87.80	84.20	73.60	70.60	70.70	70. 40	68.60
20	75.60	76.90	89.80	90.90	92.60	87.00	84.00	73.60	70.50	70.70	70.40	68.40
21	75.80	77.10	89.30	94.40	92.00	86.30	83.00	75.00	70.50	70.70	70. 40	63.70
22	75.80	76.70	85.80	94. 70	91.80	85.70	82.30	76.60	70.40	70.70	70. 40	63.00
23	75.90	76.90	88.90)	94.30	91.20	8.60	81.70	77.10	70.60	70.60	70.40	62. 16
24	75.90	70.70	89.00	93.80	90.90	86.20	81.00	76.60	70.60	70.60	70.40	69.40
25	76.00	76.90	3i. 10	93.80	90.70	86.30	80.20	75.80	70.60	70.60	70. 40	69.70
26	75.90	77.60	8.800	9.940	90.80	88.60	79.50	75.00	70.60	70.60	70.40	69.70
27	75. 80	78.50	86.30	¢ 530	93.90	89.60	78.90	74.30	70.60	71.60	70.20	69.70
28	75.80	79.20	86.00	(6.00	96.20	88.90	78. 40	73.70	70.60	70.50	70.20	69.80
29	75.60		85.60	90.50	90.80	88.40	78.10	73.30	70.60	70.60	70.00	69.70
30	75.60		85.30	98.10	98.80	87.30	77.80	73.00	70.60	70. 50	69.80	69.70
81	75. 30		85.00		96.20		78.40	72.70		70.50		69.80

1894.

[Gauge 3.30 mi:- 'rom Eaas Bridge. Zero of gauge 320.30 feet above Memphis datum plane. Gauge read at 8 a. m.; arter October 1, about noon.]

Day.	Jan	Feb.	Ma	Apr.	May.	June	July.	Aug	Sept.	Oct.	Nov.	Deo.
1	70.	68.00	72.	79.00	80.80	86.10	85.00	76.5	71. 20	71.8	70.20	70.6
2	70.20	68.00	72.80	78.70	82.10	85.90	84.90	70.60	71.00	71.50	70.30	70.55
3	70.20	67.80	73.00	78.50	82.40	85.60	84. 50	76.20	71.00	71.18	70.45	70.75
4	70.40	68.10	73.60	78.20	82. 20	85.40	83.90	76. 10	71.00	71.05	70.50	71.00
	70.60	68. 70	74.20	77.70	82.20	85.30	83.80	75.80	71. 20	70.95	70.65	71.55
6	70.70	69.00	70.80	77.60	83.10	85. 20	84. 20	75.40	71.50	70.89	70.75	71.45
7	70.80	69.50	81.70	77.40	84.70	85. 60	84.30	75.00	71.50	70.65	70.80	71.45
8	70.70	70.80	8.5. 20	78.10	80.40	85.80	83.40	74.70	72.00	70.60	71.05	71.22
9	70.40	72.40	86.80	79.60	87.00	85.80	82.40	74.40	72.30	70.48	71.25	70.70
10	70.20	73.30	87.70	79.70	88.80	85.60	81.80	74.10	72. 20	70.48	71.25	70.40
11	70.00	73.80	87.60	79. 20	91.30	85.40	81.40	73. 90	72.20	70.55	71.10	70. 28
12	69.90	73. 40	86.40	79.50	90.80	85.30	81.20	73.70	72.20	70.60	71.10	70.15
13	69.60	72.70	34.80	80.30	89.40	85.30	80.70	73.50	72.20	70.65	70.82	70.00
14	69. 30	71.80	83.30	80.40	88.50	85.40	80.00	73.30	72.00	70.65	70.85	70.12
15	69.10	71.50	82.20	80.00	87.80	85. 20	79.30	73.00	72. 10	70.65	70.85	70.25
16	69.40	71.40	81.30	80.00	87.60	85.20	78.80	72.80	72. 40	70.45	70.78	70.40
17	69.70	71.70	80.60	82.60	80.80	85.20	78.60	72.60	73.	70.40	70.85	70.35
18	69.60	71.80	80.00	84. 60	85.80	84.90	78.30	72.50	73.80	70.35	70.85	70.35
19	69.60	72.20	79.40	86.40	84.80	84.90	78.20	72.30	73.	70.25 70.20	70.85	70.28 70
20	70.10	73.00	79.10	88.10	83.80	${ }^{85} 500$	78.20	72.20 72.20		70.20 70.20		
21	70.60 71.00	72.60 72.30	79.00 79.10	84.20 83.00	83.20 82.70	85.00 85.10		72.20 72.10	73. 00	70.20 70.25	70.82 70.85	70.38 70.38
${ }_{23}^{22}$	71.00 71.40	72.30 72.50	79.10 79.20	83.00 82.30	82.70 82.50	85.10 85.20	77.90 77.90	72.10 72.00	72.90 72.80	70.25 70.15	70.85 70.88	70. 70 70
24	72.10	72.50	79.30	81.80	82.30	85.20	77.70	71.80	73.10	70.20	70.90	70.50
25	71.30	72. 60	79.30	81.30	82.20	85.20	77.30	71.80	73.00	70.55	70.95	70.52
20	70.30	72.80	79. 20	81.20	82.10	85. 20	77.10	71.60	73.30	70.60	70.95	70.45
27	69.30	72.80	78.41)	80.90	81.90	85.40	76.90	71.60	73.30	70.40	70.78	7038
2	68.60	72.80	80.10	80.60	81.80	86.30	Ti. 70	71.40	72. 90	70.25	70.60	7040
29	68.20		80.90	80.30	81.80	80.40	77.30	71.40	72.50	70.20	70.45	${ }^{69.83}$
30	(68. 30		80.60	80.30	83. 60	85.c0	76.90	71.40	72. 20	70.20	70.45	69.60
31	68		79		85.70		76. 60	71.20		70.25		69. 40

Tabulaled gauge readings at selected stations between Chain of Rocks and Cairo--Cont'd. BISSELLS POINT, MO.-Continued.
1895.

GGauge 3.30 miles from Eads isidge. Zero of gange 320.36 feet above Memphis datum plane. Gauge read at 8 a. m.$)$

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1	68.00	73. 60	73. 60	75. 78	74. 10	76. 45	80.98	81.65	77.10	71.50	70.48	69.94
2	67.32	73. 20	74. 70	76.50	73.90	76. 27	81.37	81.60	77. 28	71.43	70.44	69.97
3	67.82	73. 20	75. 00	77.00	73.82	75. 92	81.48	81.08	78. 00	71.50	70. 40	69.82
4	67.63	72.95	75.30	76. 25	74.05	75. 65	81.88	80.67	78.60	71.69	70.38	69.35
5	67.45	72. 95	75. 10	75. 50	74. 32	75. 65	81.73	79.95	78. 55	71.83	70. 29	69.83
6	67.45	72.80	75. 10	74. 95	74. 67	75. 72	81.00	79.16	78.80	71.89	70.26	68.38
7	67.45	72. 10	75. 50	74. 75	75. 60	75. 69	84.05	78. 68	79.10	71. 85	70. 26	67.99
8	67.55	72. 10	75.00	74.50	75. 50	75. 53	85.35	78. 65	79. 50	71. 75	70.42	67.80
9	67.65	72. 32	75.80)	74. 25	75. 57	75. 50	85.10	78. 20	78. 82	71. 65	70. 58	67.85
10	67. 40	72. 60	75. 30	74. 72	75. 20	75.85	84.55	78. 18	78. 30	71. 65	70.74	67.96
11	67. 45	73. 00	75. 10	77.00	74. 60	77.05	83.55	78. 04	77.82	71.70	70.72	67.96
12	67. 45	73. 25	74. 75	77.50	74.45	77.35	82.25	77. 58	77.30	71.77	70. 42	67.85
13	67. 60	73. 25	74. 40	77. 45	74.70	78. S0	80.58	77. 13	77.75	71.90	70.59	68.33
14	70.80	73. 25	74. 30	77.22	74. 92	80.107	80.10	76. 34	76. 10	71.93	70. 59	68.55
15	71.15	73.15	74. 45	76.85	75.00	80.08	80.44	75. 65	75. 83	71.93	70.53	68.64
16	71.75	73. 12	74. 40	76. 15	74. 88	80. 20	80.35	75. 17	75.15	71.99	70.56	68.72
17	72. 60	72. 95	74. 25	75.70	75. 30	80.35	80.12	74. 72	74. 68	71. 80	70.50	68.92
18	73. 12	72. 75	74. 20	75.45	75. 53	80.10	79.98	7.4. 52	74.42	71.78	70.38	69.02
19	71. 35	72. 65	74. 20	75. 28	76. 30	80. 58	79.97	74. 36	74. 27	71.83	70.27	69.59
20	70. 65	72. 52	73. 80	75.10	77.38	80. 42	80.60	74. 68	74. 10	71.58	70. 28	81.27
21	69. 65	72.55	73. 8.5	75. 02	77.53	80.15	80.80	75. 18	73. 72	71.35	70.29	90.65
22	69. 12	72. S 2	73.20	75. 10	78.02	80. 18	81.02	75. 58	73. 27	71. 22	70.25	91.35
23	$6 \mathrm{6S}$.	73.10	73.20	75.20	77.5. 5	80. 89	81.47	75. 45	72.78	71. 13	70.25	91.15
24	69.0)	73. 35	73. 30	75. 50	76. 80	81. 20	81.90	75. 02	72. 33	71. 07	70.32	91. 39
25	68. 52	73.90	73. 28	74.80	76. 35	80.97	82.31	75.38	72.18	70. 98	70. 40	90.98
26	68.05	72. 35	74. 20	74. 47	76. 08	80.50	81.79	76. 12	72. 11	70. 93	70. 64	89.30
27	67. 42	73.10	74. 70	74.30	76.00	80.22	81.45	76. 62	71.91	70. 82	70. 69	87. 60
28	67. 60	72.30	74. 42	74.35	76.05	80. 40	80.78	76. 78	71.78	70.75	70. 45	86. 80
29	71. 00		75. 70	74. 35	76.00	80.78	80.19	77.19	71.58	70.67	70.27	86.43
30	73.35		76. 05	74. 27	76. 10	80.83	80.53	77.33	71.53	70. 58	70. 10	85.65
31	73. 40		75. 84		76. 30		180.60	77.13		70.52		84.66

1896.

[Gauge 3.30 miles from Eads Brldge. Zero of gauge 320.36 feet above Memphis datum plane. Gauge read at 8 a.m.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1	83.57	72.60	70.69	76.10	81.85	9321	85.96	82.48	76.38	74.90	71.80	73.10
2	82.38	73.10	77.23	75. 55	82.05	92.90	86.45	82.68	75.95	74.48	71.95	73.04
3	81.28	74. 40	77.20	75.17	82.21	93.25	86.57	83.02	75. 47	74. 13	72.42	73.28
4	79.72	75.02	76.00	7481	\$2. 25	93.45	81. 80	83.43	75.07	73.92	73. 60	73. 00
6	78.31	75:14	76. 52	74.54	83.31	9383	87.27	83.68	74.78	73.79	74. 67	73.47
6	77.30	75.21	7i. 28	74. 33	82.22	$9+10$	87.05	83.77	74.41	73.77	75.95	72.86
7	76.75	75.50	76. 00	74.09	82.27	93. 50	86. 41	83.67	74. 09	73. 63	76. 75	72.33
8	75.90	75. 66	75.54	73. 88	82.49	93.25	86.30	83.60	73.80	73. 45	7650	72.04
9	75.20	75. 49	75. 32	74.10	82.64	93. 40	- 86. 60	8310	73.54	73.30	75. 90	71.79
10	74.60	a 75.10	75. 17	74.38	82.99	93.17	8635	82.33	7329	73.25	75.35	71.47
11	74.03	74.83	75. 00	7868	83.33	92.62	85.44	81.57	7303	73.19	7499	71.35
12	73.63	74.48	74.76	80.85	8346	92.02	84.47	81.00	72.90	73.29	74. 70	71.40
13	7344	74.90	74. 48	81.42	83.16	9097	8383	8079	72.83	a 73. 40	74. 42	71.73
14	7330	77.33	7424	81.12	82.87	8918	8319	8023	72. 00	73.33	74. 23	72.06
15	73.20	78.80	7405	80.73	82.44	8745	82. 35	79.49	7325	73.54	7407	72.50
16	73.15	78. 29	7390	8040	82.32	86.24	81.67	79.07	7351	73.83	74. 03	73.02
17	73.07	77. 16	7359	80.05	82.25	86.17	81.47	78.62	73. 48	73.75	74. 02	73.60
18	73.04	77.35	7322	79.80	82.36	87.48	81. 60	78. 19	73.60	73.48	74. 23	74.39
19	73.07	7685	a 730	7920	85.02	87.90	81. 55	78.03	74. 10	73.20	74. 20	75.09
20	72.95	7599	72.91	78. 65	89.38	8799	82. 08	78.74	75.08	873.00	74. 22	75. 38
21	72.99	74.93	72.82	78. 40	92.36	87.77	84.98	'9.70	76. 12	72.90	74.26	75. 40
22	72.60	74.10	72.78	78.23	83.45	8725	89.40	80.40	77. 20	72. 70	74. 10	75.38
23	72.61	73.60	7294	77.95	94.20	80.54	90.41	8102	7799	72.53	74.00	75.20
24	7289	7322	7315	77.70	95.21	8605	9002	8081	77.83	72.40	7378	75. 10
25	7328	73.13	7345	77.70	9607	8577	8876	8009	77.30	72. 32	73.75	75.10
26	7320	73 63	7425	7782	9657	8546	8725	7980	76.97	7210	7365	7490
27	72.70	7430	75.16	7845	9ti 30	85.58	86.35	7947	76.55	7200	7352	7463
28	72.48	75.52	75.20	7920	9670	8604	8524	7862	7625	71.910	7347	74.37
29	7240	76.09	7563	79 90	96.00	8643	8433	77.94	75 S9	71.85	7326	74 18
30	72.30		7633	81.05	$95 \quad 24$	85.80	8370	7748	75. 39	7187	73. 12	74.18
31	72.33		76.54		94.20		83.00	7691		71.78		74.12

Tabulated gauge readings at selected stations between Chain of Rocks and Cairo-Cont'd.

 BISSELLS POIN'T, MO...Continued.1807.

【Qauge 3.30 miles from Eads Bridge. Zero of gange 320.3 f det above Memphis datum plane. Gauge read at 8 a. m.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oet.	Nov.	Dec.
1	74.15	73.00	80. 40	02. 70	99. 95	82.45	89. 50	81.20	74.20	71.20	70. 30	70.70
2	74. 10	72. 70	79.95	95.75	100.35	81.95	89.30	81.00	73.85	71.16	70. 40	70.45
3	74.70	73. (x)	80. 25	96.85	100. 25	82.10	89.70	80.60	73. 55	71.05	70.45	70. 15
4	88.10	73.70	80. 70	96. 70	99.95	82.75	90.60	80.10	73. 30	71.05	70. 40	69.95
5	92. 15	74.30	82.55	96.75	99. 15	83.85	90.10	79.80	73.15	71.05	70. 40	70.00
6	92. 50	74.85	83. 30	96.85	98. 10	84.30	89.00	79.60	72.95	70.95	70. 45	69. 20
7	92. 910	75. 20	89.85	96. 70	96.90	84.65	88. 70	79.35	72. 85	70.90	70. 80	(18. 15
8	92.00	7585	89.101	96. 65	95. 50	84.80	83.30	79. 15	72.85	70. 85	70. 90	67.50
9	89.35	76. 40	89.05	97.00	04. 40	84.70	83. 60	79.35	72.85	70. 70	71.05	67.20
10	88.20	77. 65	88.35	98. 00	93. 50	84.35	88.10	79.60	72.85	70.65	71.30	67. 40
11	83. 50	78. 70	87.30	98. 35	92. 65	84. 10	80. 70	79.00	72.70	70. 60	71.30	67.40
12	81.10	78.95	86.85	98. 20	91.65	83.65	86.00	78.70	72.60	70.55	71.30	67.75
13	79. (i)	78.90	84.25	07.95	90.60	83.10	85.00	78.45	72.25	70. 50	71.30	67.75
14	78. 70	80.20	86.05	97.15	89.70	82.65	83.80	78.25	72.05	70. 45	71.30	69.20
1.5	78. 20	80.10	85. 40	96. 40	88. 90	82.30	82.00	78.20	71.90	70. 35	71. 30	(i8. 50
16	77.80	80.90	84.90	95.80	88. 25	82. 20	82.30	78.15	71.70	70. 35	71.35	(i8. 75
17	77. 70	81.00	81.85	95.70	87. 45	82.20	81.90	78. 00	71.55	70.25	71.35	69. 10
18	78.10	80. 60	84. 95	95.85	86.65	82. 40	81.90	77.85	$71.45{ }^{\prime}$	70. 25	71.10	188.90
19	80.10	80. 40	84.95	95.95	86.00	82.50	82.20	77.65	71. 40	70.20	71.00)	67.90
20	81.50	80. 10	85.25	95.90	85.35	83.25	81.90	77.45	71.30	70. 20	70. 90	67.55
21	82. 20	80.00	86.10	96. 10	84. (in	81.90	81.40	77.35	71.25	70.15	70. 85	67.45
22	82.35	81.00	86. 80	96. 40	84. 05	81.90	80.90	77.10	71.15	70.10	70.80	67. 10
23	82.35	82.70	87.50	96. 65	83.55	82. 80	80. 50	76.95	71.15	70. 10	70.80	67.00
24	81.95	83.20	88.30	96.80	\$3. 15	83.10	80.40	76.80	71.25	70.10	70.80	67.00
25	81.30	83.15	88. 10	96.50	83.05	83.35	81. 00	76. 45	71.50	70. 10	70. 80	67.10
26	79.90	82. 90	59. 70	96.10	83.60	85.05	83.30	76.10	71.60	70. 10	77.85	67.15
27	78. 60	82. 45	91.10	96.10	83.75	85.35	85.40	75. 70	71.50	70.15	70.90	67.45
28	77.50	81.30	91. 65	96. 90	83. 70	85.90	85. 30	75.35	71. 40	70. 20	70.05	67. ${ }^{\text {6 }}$
29	76.15		91. 65	98.00	83. 70	87.80	84. 20	75. 05	71.30	70. 0	70. (k)	68.14
30	74.30		01.55	99. 20	84.10	89.50	82.50	74.80	71.25	70. 25	70.85	68.90
31	73.55		91.55		83.50		81. 60	74.50		70.25		69.20

1898.

[Gauge 3.30 miles from Eads Bridge. Zerc of gange, 320.36 feet above Memphis datum plane. Gauge read at 8 a. in.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1	69.80	72.35	70.00	90.65	82.90	87.65	91.65	78.05	73. 20	73. 40	76.50	73.10
2	69.90	72.65	75.85	89.65	82.80	87.35	91. 55	77.95	72.85	73.10	75.45	72.50
3	69.30	72.05	75.70	88.15	84.95	88.05	90.70	79.45	72.50	72.65	74.70	72.00
4	68.90	71.50	75. 65	80.80	87.30	88.75	89. 35	79.70	72.20	72.35	74.20	71.50
5	69.10	71.20	75. 40	86.00°	89.00	89.30	88. 55	79. 10	72.00	72.00	73. 80	71.20
6	69.40	70.80	75.30	86.05	89.25	89.50	88.15	78. 40	71.85	71.60	73. 75	70.85
7	69.95	71.15	75.15	86.40	89.25	89.05	88. 15	77.60	71.85	71.35	73.75	70.70
8	70.05	71.55	75. 05	86.20	88.75	88.05	90.30	76.95	72.25	71.15	74.20	70.15
9	70.20	72.45	75.00	86.20	88.25	87.55	90.65	77.10	73.25	70.90	74.35	69.70
10	70.45	72.45	74.95	86.45	87.70	87.55	90.10	76.80	74.15	70.80	74. 60	68.70
11	72.15	72.45	75.10	86.20	86.95	88.50	89.15	76. 15	75. 60	70.85	74.95	68.00
12	72.85	73.25	75.45	85.45	85.95	89.60	88.55	75.70	75. 90	71.15	75.05	68.55
13	73.60	74.85	78. 00	85.00	84.90	90.75	87.20	75.85	75. 85	72.05	74.75	68.55
14	74.00	76. 15	83.05	84.80	84. 65	91.50	86.05	76.35	75.25	71.60	74. 35	68.50
15	73.80	76. 40	84.75	85.30	84.10	91.60	85.00	76.25	74.65	71.05	74.00	68.50
16	73. 60	76.60	85. 20	85.45	84. 80	92.15	83.60	76.55	74. 50	70. 50	73.65	68.90
17	73.25	76. 60	85. 65	84.85	88.70	93.65	82.50	76.26	76.35	70.50	73. 45	69.05
18	72.95	76.75	85.55	84.10	90.95	94.10	81.70	76.15	77. 60	70.50	73.30	69.25
19	72. 65	77.35	85. 20	83.45	91.70	03.55	81.05	75.80	78. 30	71.00	73.25	69.55
20	72.75	78. 20	85. 10	82.95	91.20	92.55	80.50	76.80	77. 60	72.25	73. 20	69.95
21	73.35	70.65	85. 10	82.40	- 01.30	91.20	80.35	78.00	76. 55	74. 50	73.20	70. 40
22	73.95	79.65	87.05	81.70	94. 70	89.85	80. 10	78.15	75.70	76. 50	73.35	71.76
23	74.40	78.85	92.50	81.45	95. 70	88.90	79.30	77.20	75.10	77.30	73.25	74.20
24	74.30	77.80	02.80	81.40	b 95.50	88.20	78.80	76.15	. 75.85	77.30	74.15	75.70
25	74. 10	77.15	92.30	81.45	04. 70	87.55	78.70	75.60	76. 20	76.70	74. 90	70.70
26	74.25	76. 70	01.40	82.20	93.60	86.90	78. 80	75.15	75.95	76.00	76. 10	77.35
27	75.00	76.25	Q0. 40	85. 55	92.40	87. 50	79.10	74.70	75.85	75.25	76. 60	77.33
28	75. 20	76.00	90. 45	85.60	91.25	89.75	78.65	74.30	75.35	75.25	75. 65	77.00
29	74.65		90. 05	84. 50	90. 60	89.95	78.15	74. 10	74. 50	76. 65	74. 60	76. 70
30	74.05		¢0. 20	83.50	89.75	01.10	78.25	74.00	73.85	77.55	73.75	76.20
31	73.60		00.65		88.70		78.60	73.65		77.35		75.75

Tabulated gauge readings at selected stations between Chain of Rocks and Cairo-Cont'd. BISSELLS POINT, MO.-Continued.

1899.

[Cange, 3.30 miles from Eads Bridge. Zero of gange 320.36 feet above Memphis datum plane. Gauge read at 8 a.m.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Alug.	Sept.	Oet.	Nov.	Dec.
1	74.35	67. 50	82.30	80.90	93. 90	01.50	80.35	81.70	74. 70	72.20	71.25	72.90
2	73. 40	(6s. 10	\$1.70	80. 165	93. 80	92.10	89.50	81.90	74.85	72. K 0	-1.25	72.80
3	72.60	(i8. 70	81.10	80.10	93.30	92.80	80.95	81.85	74. 60	71.90	71.70	72. 60
4	72.20	(69. 50	80.60	80.10	91. 610	92.90	90.15	81.30	74. 40	71.85	72.00	72.100
5	72.35	70.40	79.95	30. 25	89.90	93.100	91.25	80.95	74.20	71.75	72.20	72.60
6	71.85	75.60	78.95	80.90	88.95	93.100	91. 50	80.95	74.00	71.60	72.45	72. 50
7	72. 20	71.45	80.01)	81.25	88.30	92. 50	91.85	80.15	73.80	71.40	72.70	72.45
8	72.75	72.35	79. 20	81.30	87.95	91. $\mathrm{l}^{\text {a }}$	91.95	81). 10	73.60	71.20	72.90	72. 35
9	72. 10	75. 10	78.55	81.50	87.90	91.40	91.85	80.60	73.100	71.10	73.15	72.25
10	71.80	76. 65	78.70	81.80	87.90	01.55	91.90	82.55	73.70	71.00	73.35	72.85
11	72.10	$7 \mathrm{7i} .35$	79. 60	81.90	88.65	91.85	92.35	84.00	73.95	71.00	73.45	72.20
12	72.100	75.) 60	79.40	83.45	\$9.35	92. (1)	92.40	83.85	74.00	71.00	73.70	72.45
13	72.60	75. 20	79.35	8.4. 90	89.70	93.30	92.05	83.25	74.100	70. 90	73.75	72.25
1.4	72.85	75. 40	80.00	8.i. 70	90.10	93, is 5	91.30	82.95	73.90	70.70	73.85	72. 25
15	72. 35	75. 60	81.20	83. 80	89.15	92.90	90. 65	82.50	73.80	70. 65	74.00	72.45
16	72. 65	75.) 15	83.40	83. 30	89.05	91.55	89.90	81. 30	73.70	70.10	73. 90	72.319
17	72.80	75. 1.5	54. 30	83. 30	\%S. 20	91. 20	89.35	8). 55	73.55	70. 615	73.80	71.65
18	72.75	7\%. 70	84.70	83.50	87.70	91.20	89.105	79.9	73.70	70.80	73. 50	71.60
19	72. 65	76. 40	85.40	83.65	S6. 90	91.15	85.90	79.40	73.95	70.80	73.85	71. 10
20	72.55	74.95,	86.80	84. 30	S6i. 50	91. 09	88.75	78.80	73.95	70.75	73.75	72.70
21	72. 6.5	72. 20	87.10	85.50	87.50	90.75	88.20	78. 40	73.75	70.65	73.60	72. 40
22	72.55	70.90	83.70	8 81. 05	85. 60	90.30	87.30	73.85	73.30	70.60	73.10	71.85
23	72.50	70. 45	87.30	83.25	90.85	89.55	8ti. 50	77. 20	73.25	70. 50	74.00	71.30
24	72. 50	70.40	810.65	92.00	92. 10	88.90	85. 80	76. 60	73.15	70.40	74.05	$70.91)$
25	72.70	70.55)	85. 80	93.40	93. 30	85.35	85.25	7i. 10	72.90	70. 40	73.90	70. 40
26	72.60	72. 20	84.75	93.90	03.70	85.15	8.4. 65	75.70	72.80	70.35	73.60	69.90
2	72. 80	7i. ${ }^{\text {a }}$	s3. 10	94. (x)	93. 60	8.5. 35	83.90	75. 50	72. 70	70.35	73.35	69. 20
28	72.30	81.40	82. 70	93.90	(2). 90	Sts. 80	83.25	75.35	72.05	70.90	73.20	cs. 70
29	71.75		81.75	93.50	92. 10	89.15	82.75	75.10	72.45	71.35	73.10	tis. 20
30	70.55		\$1. (x)	93. 70	91.70	S9. 40	82.25	74.8i	72.35	71.85	73.00	tis. 90
31	68.75		80.70		91.70		81.80	74.75		71. 20		6tic 6

1300.

[Gauge 3.30 miles from Fids Bridge. Zero of gauge 320.36 fect above Memphis datum plane. Gauge read at 8 a. m.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1	69.60	69.90	74. 20	81.50	8:3. 85	81.15	79.10	79.30	77.80	78. 40	80.80	78.00
2	89.40	69.20	74.20	82.25	83.70	81.10	79.25	78.70	78.00	78.90	80.00	77.50
3	69.80	65.50	73.70	82.30	83.90	\$1.10	79.10	78.30	78. 10	80. 20	79.70	73.00
4	70.20	68.00	73.45	82.25	83.95	s0. 80	79.20	77.90	78.00	S1. 10	79.70	76. 60
5	71.10	68.30	73.70	82.55	\$3.75	S0. 30	79.30	77.40	78.00	81.20	80.00	76.25
6	68.80	68.80	76.00	83.10	84.00	79.90	79.10	76.85	78. 25	80.70	80. 40	75.90
7	88. 50	69.40	\$3.20	83.80	84. 20	79.55	88.95	76.25	77.70	St) 30	81. 30	75.65
8	69.70	71.30	85.10	St. 60	84.55	79.45	7S.60	75.75	77.00	80.50	81.50	75.50
9	69.30	73. 50	Ni.30	54.70	84.50	79.30	78.40	75.20	76.50	81.10	a 81.70	a 75.20
10	70.35	75. 20	86. 30	84.25	84. 25	79.00	78. 10	74. ${ }^{(1)}$	76.00	81.00	81.10	75.00
11	70.65	75.20	5s. 20	83.90	84.05	75.60	78.10	74.40	75. 70	80.10	80.70	74.85
12	70.50	74.65	85.90	81.00	83.85	is. 45	78.20	74.00	75.10	79.30	80.60	74. 75
13	70. 40	74.60	90.15	84.65	84. 70	78.60	78.30	73.70	74.80	78.80	80. 40	74. 40
14	70.40	74.10	91.00	86.30	84.75	80.30	77.90	73. 40	74. 30	78.50	80.30	74. 15
15	70.45	73.90	91.20	86.60	83.90	81.80	77.50	73.10	74. 40	78.20	79.90	73.90
16	70.20	73.90	91.40	85.90	82.95	80.90	77.50	72.90	74.25	78.00	79.60	73.65
17	70.25	74.30	91.00	84.90	82.25	80.10	77.90	72.80	74.00	78.00	79.60	73.35
18	70.65	73.50	90.30	84.10	82.15	79.40	77.60	a 72.94	73.85	78.00	79.80	73.00
19	71.75	72.95	89.30	83.45	82.45	79.10	77.30	74. 10	73.80	$7 \mathrm{S}$.	79.80	72.70
20	74.45	73.20	88.05	83.45	82. 45	79.10	77.10	75.90	73.93	7S.30	79.80	72.50
21	75.10	74.00	S6. 85	84.10	52.30	79.35	77.10	76.90	74.20	78. 50	73.90	72.25
22	74.40	75.55	\$6. 10	84. 10	S2. 20	S1. 20	78.00	77.20	74. 70	78.90	79.90	72. ${ }^{\prime}$ (1)
23	73. 60	76. 40	85.70	84.55	52. 20	82.10	79.70	77.20	75. 25	79.60	79.90	72.00
24	73.30	77. 45	\$5. 10	84.90	82. 20	82.70	S0.60	77.10	75.45	79.90	80.00	71.65
25	73.30	77.00	84.45	85.25	81.90	82.50	80.80	76.95	75.50	80.10	80.00	71.60
26	73.40	$76.00{ }^{-}$	S 4.05	85.60	81.50	8.2. 40	81.00	76.80	75.55	30.30	79.90	71.50
27	73.40	75.40	33.30	85. 63	81.15	\$1.80	50.70	76.70	75.50	S0. 40	79.70	71.53
2 s	73.20	74.50	33.20	85.25	50.80	S1. 10	\$0.50	76.75	76.25	80. 40	79.60	71.60
29	72.50		\$2.70	84.75	80.90	S0. 40	80.10	76. 60	77.30	\$0.30	79.30	71. 10
30	71.80		S2. 00	81.30	81.510	79.50	79.80	76.60	77.90	80.30	78.50	71.100
31	71.10		S1.60		81.50		79.60	77.50		-80.80		70.95

- Changed less than one-hall foot.

Tabulated gauge readings at selected stations between Chain of Rocks and Cairo-Cont'd.

BISSELLS POINT, MO.-Continued.
 1901.

[Gauge 3.30 miles from Eads Bridge. Zero of gauge 320.36 feet above Memphis datum plane. Gauge read at $8 \mathrm{a} . \mathrm{m}$.]

Day.	Ian.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1	70.80	72.35	72.60	86.15	83.70	77.75	82.30	76.30	71.30	71.05	71.85	70.70
2	70.50	72.10	72.10	86.30	83.40	77.70	81.70	76.40	71.20	70.85	71.75	70.65
3	70.20	72.00	71.90	86.30	83.10	78.90	81.00	76.40	71.05	70.75	71.60	70.65
4	69.90	72.20	72.05	86.60	82.80	80.30	80.30	76.20	70.95	70.60	71.50	70.45
5	69.35	72.00	72.65	86.80	82.50	80.50	79.75	76.10	70.80	70.60	71.30	70.35
6	68.95	71.90	73.15	87.30	82.30	80.75	79.30	75.70	70.70	70.75	71.30	70.30
7	68.85	71.55	73.40	87.50	82.00	81.00	78.90	75.30	70.55	70.85	71.15	70.20
8	68.85	70.80	74.20	87.80	81.75	a 81.40	78.80	74.80	70.45	70.90	71.15	70.25
9	69.40	70.40	75.10	88.30	81.50	81.55	79.00	74. 55	70.45	71.10	71.05	70.45
10	70.20	69.70	77.00	89.60	81.20	81.30	80.10	74.30	70. 40	71.15	71.15	70.40
11	70.80	70.10	80.60	89.90	80.90	81.00	80.15	74.10	70.30	71.10	71.15	70.15
12	72.50	70. 50	83.80	90.00	80.70	80.80	79.50	74.00	70.30	71.15	71.30	70.05
13	73.10	70.50	85.10	90.30	50.65	80. 80	78.90	73.90	70.25	71.35	71.35	70.25
14	73.30	70.60	85.20	90.35	80.20	81.20	78.65	73.80	70.25	71.20	71.25	70.50
15	73.70	70.75	84.80	90.35	79.95	82.00	78.50	73.60	70.20	71.10	71.25	69.95
16	73.55	70.75	84.50	90.05	79.70	82. 40	78. 40	73.50	70.00	71.05	71.30	69.50
17	73.40	70.90	84.35	90.50	79.50	82.10	78. 40	73.25	70.00	. 71.25	71.20	68.25
18	73.75	71.00	84.35	91.10	79.30	81.60	78.35	73.20	70.15	71.50	71.15	67.65
19	73.60	71.45	84.10	00.90	79.10	81.15	78.35	73.10	70.45	71.75	71.15	66.55
20	73.40	71.75	84.15	89.95	78.80	80.90	78. 50	72.90	70.90	71.95	71.15	667.95
21	73.10	71.40	84.05	83.80	78.50	80.90	79.10	72.80	72.40	72.05	71.10	668.05
22	73.10	71.15	84.85	88.15	78.20	81.00	79.10	72.70	73.00	72.10	71.10	b 68.9 ${ }^{\text {\% }}$
23	73.20	71.30	85.60	87.55	78.00	81.50	78.45	72.60	72.80	72.05	71.10	$\checkmark 70.40$
24	73.30	71.65	86.10	86.90	77.80	82.40	78.00	72.50	72. 40	71.95	71.15	b 71.00
25	73.10	72.00	86.60	86.25	77.50	82.75	77.50	72.10	72.10	71.80	71.05	b 71.80
26	73.00	72.65	86.80	85.70	78.30	83.00	77.10	72.25	71.75	71.75	71.05	- 73.80
27	72.95	73.10	86.70	85.20	79.00	83.30	76.80	72.10	71.55	71.75	70.85	- 74.30
28	72.85	72.90	86.30	84.80	78.70	83.60	76.50	72.00	71.35	71.80	70.80	b 74.00
29	72.80		86.00	84.50	78.30	83.50	76.30	71.80	71.25	71.85	70.80	b 73.95
30	72.90		85. 85	84.10	78.10	82.90	76. 10	71.65	71.15	71.85	70.75	b 73.70
31	72.70		85.90		77.00		76.10	71.45		71.85		b 73.75

a Changed less than one-half foot.
b Doubtful on account of ice, gorged from December 20, 1901, to January 11, 1902.

1902.

[Gauge 3.30 miles from Eads Bridge. Zero of gauge 320.36 feet abovo Memphis datum plane. Gauge read at $8 \mathrm{a} . \mathrm{m}$.]

Day.	Jan.	Feb.	Mar.	Apr,	May.	Junc.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1	a 73.50	67.45	72.00	77.70	76.00	85.85	91.70	91.40	88.85	85.00	78.90	82. 80
2	a 73.05	67.65	72.20	78.90	76.15	85.85	92. 40	(1) 45	8820	84. 65	7840	82.00
3	a 71.80	67.70	71.95	79.00	78. 35	87.35	93. 00	89.50	87.80	84.70	77.90	81.65
4	-71.75	71.30	74.00	79.00	79.20	87.00	93.20	8S. 70	88.30	85.70	77.45	81.30
5	a 74.15	72.30	74.00	78.90	78.50	87.75	92.80	. 88.40	88.70	80.40	77.35	8130
6	a 75. 70	72.10	73.60	79.10	77.70	87.55	91.85	87.90	88.10	80.90	77.60	81.50
7	a 76.30	72.80	73.80	80.30	76.60	87.15	91.15	87.80	87.20	87.75	78. 50	81.70
8	a 75.60	72.80	74.70	80.20	76.00	86.35	90.60	87.60	86.10	88.80	78.65	82.00
9	a 74. 60	72.30	76.00	79.40	75.80	86.10	0085	87.15	84.80	89.45	79.20	81.60
10	a 72.45	72.30	76.90	78.40	76.55	86.160	0055	86.70	83.85	89.15	80.05	80.80
11	a 70.15	72.50	76.90	78. 40	78. 10	87.35	89.90	80.05	83.10	88.30	80.30	79.80
12	69.50	72.50	76.80	78.09	78.90	88.20	90. 10	85.50	82.00	87.40	79.75	78.60
13	63.30	72.80	77.70	77.60	79.60	88.15	91.30	85.25	81.85	86.50	79.20	78.50
14	69.00	72.70	79.10	77.25	80.00	88.60	92. 70	85.10	81.00	85.50	78. 70	78.80
15	68.50	72.50	79.70	77.00	79.90	89.50	93.70	84.40	80.20	84. 60	78.25	78. 40
16	68.95	72.90	81.10	76. 80	79.80	89.45	94. 10	83.55	79. 50	83.85	77.95	77.60
17	69. 30	73.10	81.40	76. 50	79. 60	89.05	94. 60	83.10	78.70	83.60	78. 05	76.85
18	69.40	73.00	81.00	70. 40	7960	88.80	94. 95	83.00	78.20	83.60	78. 45	76.85
19	69.45	72.90	80.40	76. 40	79.90	88.50	95.20	83.55	77.70	83.85	79.69	77.20
20	69.55	72.70	79.50	76. 30	80.40	83.20	95.15	85.10	77.10	84.20	80.90	78.05
21	69.60	72.80	78.45	75.75	80.30	87.80	94. 90	85.50	76.50	84.60	81.70	78.55
22	69.60	72.80	77.65	75.50	79.80	87.25	94. 80	81.50	76.00	85.20	81.80	79.60
23	69.55	72.60	77.30	76.00	79.80	87.10	95. 25	86.90	75.65	85.50	81.70	80.30
24	69. 40	72. 40	76.90	77.10	80.20	87.10	05. 70	87.00	75.45	85. 40	81.30	81.40
25	69.35	72.60	76. 40	76. 75	80.90	87.00	95. 75	87.00	76.60	85. 20	81.10	82.50
26	69.10	75.10	76.00	76. 30	81.70	87.00	95.85	87.00	79.55	84.80	81.20	82.30
27	68.55	71.60	75. 90	75. 40	82.70	87.35	95. 65	87.30	81.20	83.70	81.40	c 82.00
28	67.50	70.00	76. 05	75.20	84.85	8790	94. 70	88.10	82.10	82.30	81.60	81.25
29	66.65		76.05	75. 45	86.40	8385	93.90	88.75	83.50	81.00	82.20	80.30
30	66.45		76.10	75.90	86.40	90.00	9300	89.10	84.75	80.10	82.80	78.80
31	6\%. 30		76.20		80.15		92.10	89.10		79.40		7740

[^11]Tabulated gauge readings at selected stations between Chain of Rocks and Cairo Cont'd. BISSELLS POIN'T, MO.-Continued.
1903.
[Gauge 3.30 miles from Eads Bridge. Zero of gauge 320.30 feet above Memphis datum plane. Gauge read at $8 \mathrm{a} . \mathrm{m}$.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1	76.25	78.00	83.40	88. 75	87.00	97.10	89.15	84. 70	85. 45	84.80	82. 90	73.65
2	75.75	77.55	83.70	88.50	a 86.70	99.05	a 88.00	83.95	87.30	84.50	82. so	73.35
3	75.85	77.70	84.20	88.20	86.40	100. 75	88.00	83.25	87.90	84.90	82. 50	73.00
4	76.30	79.60	85.10	88.20	86.10	102.00	87.00	83.80	87.90	85. 00	82.25	72.65
5	76. 65	83. 60	85. 80	89.10	85. 80	103. 60	86.10	82.35	87.50	85. 30	82.10	72.20
6	76.95	84.30	85.90	90.25	85.60	104.90	85. 40	82.10	80.35	85. (0)	82.00	72.10
7	77.30	83.10	86.60	90.70	75.40	107. 00	85.00	83.20	85. 60	85.90	82.50	72.00
8	77.30	82. 20	88.80	90.80	85.20	107. 40	84. 80	84.30	81.95	86. 60	82. 85	71.80
9	76.90	81.20	92.10	90. 40	85.25	108.00	84.80	84.50	85.10	87.90	82.80	71. 65
10	76.60	80.00	93.15	90.00	85.35	108. 30	84.85	84. 60	84. 50	89.10	82. 40	71.50
11	76.00	79.00	93.15	89.85	85.25	108. 20	84.80	84. 90	84.55	90.10	82.10	71.15
12	75.00	79.00	a 93. 20	91.40	85.00	107. 90	84.45	84.65	85. 80	59.90	81.70	70.95
13	74.05	79. ${ }^{10}$	a 92.60	92.30	84.60.	107. 30	83.75	84.76)	87. 65	89.50	81.15	70.55
14	73.20	79. 60	a 92.30	92. 60	84.40	106. 30	83.45	84.85	88.30	89.15	80. 10	69.40
15	73.00	79. 50	92.60	92.80	84.05	104. 60	83. 65	85.05	88.25	88. 80	a 80.00	${ }^{6} 69.20$
16	73.00	79.20	92. 30	92. 75	84. 10	102.90	84.50	85.45	88.85	88.30	79.70	4 (i8. 85
17	73.55	78. 30	91. 60	02. 55	86.00	101.30	85.80	81.85	89.05	87.65	79.40	${ }^{6}$ (is. 50
18	73.95	77.50	91.80	93.20	88. 40	$\mathfrak{9 9 . 8 0}$	87.15	84.95	88.45	81.90	78. 90	${ }^{\circ} 685.35$
19	74.70	77. 10	91.70	92. 90	89.50	98.20	87.90	85. 35	88.30	81.35	78. 40	${ }^{\text {b }} 69.05$
20	74.95	76. 60	91.50	92. 20	89.85	96. 90	87.40	85.40	83.35	85.90	77.80	b 69.20
21	75.15	76. 30	92.50	92.00	89.45	90. 10	86. 80	85.55	87.85	85.30	77.50	c 69.55
22	74.95	76. 35	92.80	92.15	89.10	95. 50	86.65	85. 45	86.90	84.80	77.10	70. 10
23	75.00	76. 45	92.40	91. 60	88. 80	94. 50	86.75	84.95	86.10	84.40	76. 80	c 70.45
24	74.80	70. 40	92.40	91.00	85.70	94. 00	87.00	84.05	85.35	84.10	76.40	71.15
25	74.70	76.55	92.00	90. 30	89.10	93. 65	87.35	83.35	84.75	84.00	76. 00	c 71.85
26	74. 20	76.75	91.60	89. 60	00.60	03. 15	88.40	83.10	84.30	83.85	75. 50	a 72.30
27	74.55	77. 40	91.20	89.00	93.00	92. 00	88.55	82.70	84.30	83.65	75. 10	c 71.70
28	715. 70	81.70	90.60	85. 40	93.30	(K). 70	87.70	82.75	84.60	83. 50	74.10	71.40
23	78.40		89.90	87.90	93. 30	89. 0	86.95	83.15	84.70	83.35	74. 20	71.70
30	78. 20		89.45	\$7. 50	93. 70	89.10	86.35	84.00	84.70	83.20	73.80	72.00
31	78. 20		89.05		0.930		85.55	84. 70		83.10		72.50

a Changed less than one-balf foot. © Doubtful on account of ice. e Reading changed one-half foot or more.
1904.
[Gauge 3.30 milles from Eads Bridge. Zero of gauge 320.36 feet above Memphls datum plane. Gauge read at $8 \mathrm{a} . \mathrm{m}$.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1	72.80	75. 20	75.05	92.70	102.20	01.80	92.60	a 80.40	74.95	78.75	77. 40	73.10
2	72.70	74.20	74.80	92. 40	101.95	93.20	91.90	$a 79.90$	74.50	78.50	77.30	73. 00
3	72.70	73. 90	b 74.80	92.10	101. 10	93.00	91. 40	7950	74.30	77. 80	77. 20	72. 80
4	71.95	7380	75.10	91.50	a 10000	91.80	9090	79. 10	74.30	77. 40	b 77.05	72.70
5	71. 40	73.75	75.20	90.85	a 99.10	93. 40	90.45	78. 90	74.90	76.75	b 76.90	72.50
6	71. 45	73.90	76.30	9025	97. 80	96.10	8990	78. 60	74.80	b 76.25	76.75	72.40
7	71.40	74.80	76.80	89.60	96. 40	97. 60	89 co	78. 30	74. 40	76. 10	76. 60	72.10
8	71. 40	74.95	77.00	8910	9.5. 30	97. 30	83.80	b 77.70	74. 10	7000	76.50	71.80
9	71.10	75.20	77.65	8885	95.20	96. 50	91.80	77.10	73.80	75.75	76.40	71.65
10	a 70.90	75.85	77.90	9020	95. 00	95.70	04.20	76. 80	7300	75. 40	76.30	71. 63
11	a 71.00	76.50	78. 40	0090	94. 40	a 9490	96. 00	76.00	74. 10	75.30	76.20	71.60
12	a 70.95	77.20	7920	91.50	93.70	94.00	96.95	75. 50	74.00	75.20	76. 10	71.45
13	a 71.00	77. 40	79.25	91.75	92.80	93. 20	97.00	75. 30	73.75	7490	76.10	71.30
14	a 71.10	77.70	7940	91.50	91.80	92.90	90.10	75. 10	73.75	74.65	76. 00	70.45
15	a 71.60	77.95	7925	91.50	9090	93.00	94.45	75. 20	73.55	74. 40	75.80	70.00
16	a 71.65	77.60	7910	91.40	9020	93 60	92.30	75. 30	73. 40	74.30	b 75.60	69. 90
17	a 71.60	b 77.20	79.30	91.25	89.70	93.70	9040	75. 60	73.45	74.20	75. 40	69. 60
18	a 72.00	a 70.70	7990	92.60	8980	93.60	8970	75. 50	a 73.75	74. 20	75.20	69. 10
19	72.25	a 70.10	80.40	92.80	0035	93.40	8930	75.50	74.80	74.10	75.10	68.60
20	a 72.30	76.25	8050	92.30	0060	93.50	8890	76. 70	a 76. 10	74.00	74. 90	68. 60
21	73.10	76.00	8050	91.70	9000	93.70	83.30	78.50	77.90	74.20	74.70	68. 50
22	76. 80	75. 40	8095	91.80	89.30	9420	87.00	7820	78. 40	74.20	74.50	68.4C
23	80.70	75.00	82.90	9200	88.70	93.80	85.80	a 78.50	77. S0	74.45	74.35	68.30
24	82.80	75.00	84. 50	92.70	83.00	92.70	8.5	a 79.10	77.20	74. 70	74.15	68.75
25	82.50	75.30	85.50	96.90	87.60	91.00	85.00	a 78.80	70. 60	7495	73.90	6900
26	82.20	75.50	87.50	9985	8730	${ }^{9} 10$	84.95	b 7940	77.30	75. 31	73.75	6925
27	81.20	7580	8840	-101.35	8700	8980	8450	7940	7800	75.60	73.60	7020
28	79.65	75. 60	90.85	102. 10	87.80	8975	83.30	78. 60	7800	76. 20	7340	70.00
29	78.60	75.35	92.40	10275	8770	9070	83.30	7730	77 90	76. 60	7325	CS 90
30	77.35		9300	102. 60	8820	92.20	a 81.50	76.25	7850	76. 90	73.25	68.30
31	76.15		92.95		90.00		$a 81.00$	75. 60		77.35		6.9. 10

- Reading changed one-hald foot or moro.
o Changed less than one-half foot.

Tabulated gauge readings at selected stations between Chain of Rocks and Cairo-Cont'd. BISSELLS POINT, MO.-Continued.
1905.
[Gauge 3.30 miles from Eads Bridge. Zero of gauge 320.36 feet above Memphls datum plane. Gauge read at 8 a. m.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Deo.
1	67.70	79.70	85.70	85.90	85.45	86.85	90.80	a 88.50	79.50	82.80	80.30	78.00
2	68.00	78.50	85.60	86.70	84.80	86.60	90.80	89.20	79.30	81.90	80.00	78.20
3	69.40	77.80	85.60	86. 30	84.00	86.70	90.75	89.60	78.80	81.30	80.20	77.90
4	70.50	77.70	85.60	86.30	83.00	87.10	91.30	89.60	78.30	80.70	80.30	77.60
5	70. 10	77.90	87.00	86.10	82.40	88.00	92.30	88.80	78.00	80.30	80.90	77.10
6	70.30	78.00	S6. 50	85. 50	81.80	88.50	82.90	87.80	77.90	79.90	80.90	76.60
7	70.30	77.90	85.60	84. 80	80.60	88.10	03.40	86.60	77.80	79.20	81.60	76.00
8	70.00	77.60	85.30	\$1.20	79.90	87. 50	93.30	86.00	78.00	78.60	81.60	75.20
9	70.25	77.50	84.80	83.50	79.30	86.90	92.90	85.10	77.90	78.10	81.20	74. 40
10	70.00	77.20	84.40	83.10	79.10	86.45	92.80	84. 50	77.70	77.80	81.00	73. 70
11	69.70	77.00	84.40	82.70	79.20	85.95	92.80	84.20	77.80	77.50	80.90	73.30
12	69.40	76. 90	84. 35	82.40	79.80	86.30	92.90	83.40	a 78.80	77.10	80.90	72.90
13	69.00	76.45	84.10	82.30	79.80	87.35	93.30	82.70	80.30	76. S0	81.20	72.70
14	68. 40	76.20	83.00	82.30	80.70	88.00	94.10	82.35	79.60	76.50	80.90	72.90
15	68.10	76. 40	82.00	82.30	82.20	88.75	94. 40	81.80	78.80	76.20	80.20	73.10
16	667.90	76.45	81.40	82. 20	84.35	89.00	a 93.95	80.90	78.80	76.00	79.40	73.00
17	b 70.70	76. 50	81.00	52.40	86.15	85.80	92.80	80.40	81.00	75.80	79.00	73.00
18	${ }^{6} 73.00$	76.50	80.90	82.40	87.15	88.30	91.10	80.20	91.90	77.90	78.10	73.00
19	674.30	76.45	80.70	82.20	87.60	87.90	89.70	$80.68)$	95.90	85.90	77.80	73.20
20	b 74.70	76.40	80.50	81.90	88.70	88.40	88.70	81.00	97.90	85.00	77.60	73.30
21	b 75.10	76.50	80.30	81.70	88.50	88.60	88.00	81.40	98.80	83.00	78.00	73.60
22	6 75.40	76.60	a 80.70	81.30	87.70	88.50	a 87,30	81.80	98.60	83.00	77.70	73.60
23	b 76.00	76.70	81.60	81.30	87.00	88.10	a 83. ${ }^{\text {c }}$ (0)	83.20	97.60	82.70	77.20	73.50
24	b 76.40	a 76.70	82. 60	81.15	86.70	88.20	86.80	85.90	95.20	82.30	76.90	73.40
25	78.30	a 77.00	83.00	82.30	86.30	83.50	87.30	86.30	92.50	81.90	76.80	73.20
26	78.90	77.90	83.60	\$2.70	86.00	89.40	88.20	85.80	90.70	82.40	76.70	73.10
27	79.30	80.50	83. 30	83.30	85.85	89.50	88.011	85. \% $^{(1)}$	89.00	83.70	76.60	72.90
28	80.20	83.70	84. 10	83.40	sti. 20	S9. 70	86.80	85.00	S6.80	82.50	76.50	72.90
29	79.90		85.00	83.80	8 8i. 10	89.95	86.00	83.40	84.90	\$1. 80	76.90	73.60
30	79.60		85.30	84.90	87.25	90.30	85.90	81.80	83.60	81.40	77.60	73.80
31	79.80		85.10		87.35		87.45	80.50		80.90		74.20

a Reading changed one-half foot or more.
D Doubtful on ascount of lee.
1906.
[Gauge 3.30 milles from Eads Bridge. Zero of gauge 320.30 feet above Memphis datum plane. Gauge read at 8 a. m.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1	74.3	82.0	90.0	93.2	89.3	82.7	88.0	78.6	78.3	79.9	73.7	76.8
2	74.3	82.4	90.4	92.9	89.3	83.5	88.0	78.4	77.8	80.2	74.5	77.1
3	74.6	81.9	91.0	92.3	69.3	84.1	88.2	78.8	77.5	80.6	74.8	77.5
4	76.0	80.9	90.0	91.9	89.4	84.8	88.1	78.7	77.3	S0. 8	75.1	77.6
5	81.5	80.2	89.0	92.2	89.2	85.4	87.7	78.1	77.0	80.33	a 75.3	77.7
6	83.6	79.3	88.0	92.0	89.1	85.3	87.4	78.0	76.9	79.1	75.3	78.0
7	83.0	78.7	87.2	91.7	690.2	86.0	85.9	77.8	76.8	78.3	75.4	78.5
8	81.9	77.6	86.7	91.8	90.7	86.7	86.4	78.0	76.7	77.8	75.6	78.5
9	80.6	76.9	86.6	92.3	90.0	87.5	80.0	78.0	76.7	77.4	75.7	78.0
10	78.8	76.6	86.5	92.5	89.1	87.8	85.4	78. 2	76.7	76.9	75.9	77.6
11	77.2	76.3	Si. 2	92.2	88.5	35.0	84.6	7 S .8	76. 9	76.6	76.0	77.4
12	76.4	75.9	85.8	01.8	87.9	87.8	84.2	79.0	77.0	76.3	76.0	77.2
13	75.7	75.7	85.4	91.8	87.3	87.2	83.7	79.7	76.9	76.0	76.0	77. 0
14	75.5	76.9	84.9	93.7	86.5	87.0	83.4	80.6	76.7	75.8	75.9	76.8
15	75.2	76.1	a S4. 5	94.4	85.9	686.9	83.0	81.2	76.5	75.6	70.0	76.5
16	75.4	76.0	83.8	93.8	85.2	a 80.5	82.8	81.3	70.4	75.4	76.1	76.2
17	74.9	76.2	83.0	93.2	84.4	86.1	82.4	80.8	76.2	75.3	76.2	75.0
18	74.6	76.5	\$2. 3	93.0	83.7	80.1	82.0	80.0	76.1	75.2	76.3	75.1
19	74.6	77.0	82.0	92.8	83.2	80.2	81.6	79.6	76.6	75.0	76.1	74.5
20	74.9	77.4	81.4	92.4	82.9	86.8	81.1	79.8	76.9	74.7	76.1	73.8
21	75.5	77.7	80.5	92.0	82.3	87.8	80.7	79.9	76.8	74.5	76.7	73.7
22	77.4	78.0	79.7	91.7	82.0	88.7	80.8	79.5	76.7	74.4	77.1	a 73.3
23	78.6	79.1	79.5	91.2	¢ 81.8	89.3	80.7	79.1	76.7	74.2	77.2	73.3
24	80.7	81.9	79.5	90.8	81.5	89.8	81.2	78.5	77.4	74.2	77.0	72.4
25	81.0	85.0	79.7	90.5	81.4	90.0	82.4	78.0	78.7	73.9	76.9	71.8
26	80.7	87.0	80.0	90.3	81.3	89.0	82.8	77.9	79.1	73.7	76.8	71.3
27	80.5	88.5	85.1	90.1	81.2	88.3	81.8	80.3	79.3	a 73.6	76.8	70.8
28	80.3	89.4	89.8	89.9	81.4	88.0	81.2	81.2	79.4	73.5	76.8	70.5
29	80.2		91.6	89.7	81.5	a 88.3	80.4	80.3	79.3	73.3	76.7	70.6
30	80.6		92.7	89.5	81.3	88.3	79.6	79.4	79.7	73.3	76.7	71.4
31	81.3		93.1		81.7		79.0	79.0		73.3		72.1

Tabulated gauge readings at selected stations between Chain of Rocks and Cairo-Cont'd. BISSELLS POINT, MO.-Continued.
1907.
[Gauge 3.30 miles from Eads Bridge. Zero of gange 320.36 feet above Memphis datum plane. Gauge read nt 8 a. m.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	Junc.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1	72.8	84.4	83.0	85.0	87.1	82.8	91.7	94.2	81.6	76.8	74.4	73.3
2	73.4	83.7	82.8	85.4	87.4	83.1	91.0	92.8	81.5	76.9	74.5	73.2
3	74.1	82.9	82.4	85.5	87. 5	81.2	90.6	91.4	81.6	77.3	74.2	73.2
4	75.1	81.9	82.0	$8{ }^{\text {8. }} .2$	87.3	87.0	89.7	90.5	81.6	78.2	71.2	73.1
5	76.3	80.9	81.7	85.1	81.6	S! 0	85.9	85. 7	81.5	78.8	74.0	73.0
6	77.4	79.6	81.7	85.1	86.2	S9. 7	a 88.2	SJ. 1	81.4	79.2	74.0	72.9
7	77.8	78.1	81.6	84.8	86.3	89.4	88.2	88.5	81.1	79.3	73.9	72.8
8	77.9	76.5	81.4	84.8	87.0	8s. 6	88.5	88.3	80.8	79.4	73.8	72.5
9	77.9	75.8	81.0	85.0	87.9	88.4	88.4	87.9	$a \leq 0.4$	79.8	73.8	72.4
10	77.9	a 75. 6	80.6	8.50	88.4	SS. 7	88.6	87.7	79.6	80.2	73.8	72.4
11	77.8	75.7	80.8	85.1	87.9	89.0	88.7	87.4	79.0	81.5	73.7	72.3
12	77.7	Tis. 0	81.7	85.6	86.9	89.7	88.7	86.5	78.5	80.6	73.5	72.0
13	77.7	77.0	83.4	8 8t. 8	86.0	91.0	88.8	84.0	78.0	\% 0.4	73.4	71.9
14	78.1	78.0	86.1	87.0	85.1	91.7	a 89.4	85.7	77.7	79.9	73.3	72.0
15	78.7	70.8	86.5	86.8	85.1	91.4	90.1	85.1	77.2	79.4	73.3	72.0
16	79.1	79.4	85.9	8 6 .7	:87. 5	92.2	90. 3	85.0	77.0	79.0	73.3	72.1
17	80.3	79.2	8 si .1	86.6	89.4	91.2	91.1	84.7	7li. 8	78.4	73.2	72.2
18	83.3	79.8	S1.9	81.6	89.8	90.2	92.7	81.3	76. ${ }^{\text {a }}$	77.9	73.2	92.5
19	86.2	80.4	84.6	87.1	89.0	89.4	93.4	si. 1	76.1	77.5	73.2	72.5
20	89.9	80.1	84.6	87.7	87.8	89.0	03.8	84.1	75.8	77.2	73.2	72.4
21	93.3	79.7	85.1	88.4	S6. 6	85.9	91.2	86.3	75.5	76. 7	73.4	72.2
22	a 93.8	79.6	81.4	85.6	85. 6	85.4	9.4	86.1	75.4	76.4	73.4	71.8
23	94.0	80.6	83.7	88.2	81.5	88.8	95.6	85. 9	75.5	76.1	73.3	72.0
24	- 03.5	81.8	83.0	88.4	83.6	89.3	96.3	85. 4	75.9	75.8	73.2	72.1
25	92.5	82.8	82.8	85. 6	83.0	91.3	9 9. 6	85. 0	76.2	75.5	73.2	72.1
26	90.9	83.1	82.7	88.0	82.3	91.7	96.6	85.6	76.4	75.4	73.1	72.0
27	89.0	83.3	82.7	87.7	82.0	92.8	96.0	84.4	76.5	75.3	73.2	72.0
28	87.8	S3. 2	82.6	Sti. 8	83.0	92.9	95.4	83.0	76.8	$7 \therefore 0$	73.3	71.8
29	86.6		82. 7	8ti. 1	83.2	92.5	95.1	\$2. 4	76.9	74.7	73.4	71.7
30	85.8		83.8	86.2	83.0	92. 1	95.0		76.8	74.5	73.4	71.7
31	85.1		84.2		82.9		94.9	s1. 8		74. 4		71.8

a Reading changed one-half foot or more.

- Changed less than one-hall foot.

1908.

[Gauge 3.30 miles from Eads Bridge. Zero of faute 320.36 feet abovo Memphis datum plane. Gange read at \& a. m. ${ }^{\text {] }}$

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1	71.90	71.10	84.50	82.60	84.40	96.00	99.85					
2	72.00	71.00	84.10	S2. 40	83.50	(iti so)	99.80					
3	72. 20	69.30	84.80	82.60	83.40	91. 20	101. 00					
4	72.20	69.30	85.00	82. 10	83. 11	95 20	100. 40					
6	72.00	69.30	85. 20	82.50 ;	83.79	98. 70	10090					
6	72.00	69.50	85.60	82.501	84.70	95.70	100.89					
7	72.00	69.70	81.00	82.50	85.70	98. 910	100.50					
8	71. S0	70.30	36.00	82.80	86.50	(3) 100	91.00					
9	71.60	70.80	80.90	83.60	87.10	99.00	97.70					
10	31.50	71.00	88.50	85.90	87.90	69. 60	94. 70					
11	71.50	71.10	8.8. 50	87.00	88.50	99.30	(4). 30					
12	71.90	71.90	\$8. 60	87.90	8.8.5)	94. 50	9.3. 90					
13	72.30	72.00	85. 50	87.90	\$7. 50	169. 20	92.80					
14	72.40	72.60	88.30	87.70 :	\$7.30	16i. 80	95.40					
15	72.20	75.30	88. 20	88.00	87.70	101. 50	94. 40					
16	72.00	a 31.70	87.50	87.70	\$8.70	102.90	93.11					
17	72.00	\$2. 50	87.00	87.00	91.20	103. 70	92. 20					
18	71.40	\$2.50	86.60	86.30	92.10	104. 40	91.60					
19	71.60	82.90	86.20	85.50	92. 30	104. i^{0}	91.50					
20	$71.30)$	83.00	85.80	84.70	92.50	104.60	91.60					
21	71.00	83.80	83.50	83.90	92.00	104. 10	91.90					
22	71.00	83.30	85.20	83.60	91.60	103. 90	91.90					
23	71.40	82.90	84.90	83.40	91.40	103. 30	91.40					
24	72.00	82.50	84.40	83.80	91.40	103.20	90.60					
25	72.00	81.90	83.90	84.10	91.10	103.00	90.10					
26	72.00	82.20	83.70	84.30	91.20	102.50	89.60					
27	72.30	83.80	83.10	84.90	92.40	102.10	89.40					
28	72.10	84.90	83.10	85.70	93. 70	101. 40	89.30					
29	71.80	84.80	83.00	85.90	94. 10	100. 80	89.10					
30	71.50		83.20	85.00	94.40	100.00	SS. 60					
31	71.10		82.90		95.60		88.10					

Tabulated gauge readings at selected stations between Chain of Rocks and Cairo-Cont'd. WA'IERS POINT, MO.
1891.
[Gauge, 22.40 mlles from Fads Bridge. Zero of gauge, 377.54 feet above Memphis datum plane. Gaugo read at 8 a.m.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July,	Aug.	Sept.	Oct.	Nov.	Dec.
1										4. 50	4.65	3.95
2										4.35	4.55	3.40
3										4.25	4.50	3.00
4										4.15	4.40	2.95
5										4.10	4.40	3.05
6										4.05	4.40	3. 20
7										4.05	4.40	3.45
8										4.00	4.40	3.70
9										4.00	4.50	3. 80
10										3.90	4.70	3. 60
11										4.30	4.75	3. 20
12										4.60	4.70	3. 20
13										4.95	4.60	3. 30
14										5.40	4.50	3. 50
15										5.80	4.50	3.70
16										6.05	4.70	3.90
17										6.15	4.70	4. 10
18										6.15	4.75	4.30
19										6.10	4.80	4.50
20										6. 00	4.85	4.70
21										5. 80	4.60	4.80
22										5. 60	4.50	4.85
23									5. 25	5.50	4.85	4.95
24									5. 15	5.45	5.00	5. 20
25									5. 05	5. 30	5. 60	5. 35
26									4.95	5.25	6. 00	5.50
27									4.85 4.75	5.15 5.00	5. 50	5. 50 5.40
$\begin{aligned} & 28 \\ & 29 \end{aligned}$									4.75 4.70	5.00 4.90	5.00 4.70	5.40 5.25
29									4.70	4.90	4.70	5. 25
30 31									4.60	4.80	4.50	5.10
31										4. 70		5.10

1892.

[Gauge, 22.40 miles from Eads Bridge. Ziero of gauge, 377.54 feet abovo Memphis datum plane. Gange read at 8 a. m.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nor.	Deo.
1	5.50	5.80	13.90	16.70	19.70	29.00	24.70	17.00	9.10	6. 45	5.80	4.30
2	5.85	7.40	13. 50	17.10	19.00	29.30	24.90	16.60	9.10	6.45	6.70	4.10
3	7.05	7.30	13. 20	17.30	18. 40	29.70	25.40	16.10	9.00	6.30	5. 40	4.00
1	8.15	7.50	12.90	18.80	18.50	30.40	25.80	15. 70	8. 80	6.10	5.30	3.80
5	7.45	8.20	13.20	21.60	18.60	31.10	26.70	15.30	8.60	5. 95	5.25	3.80
6	6.70	8.65	13.15	24. 60	20.25	30.90	27.00	14.90	8.45	5.85	5.20	3.75
7	6.30	11.60	13.20	26.60	22.70	30.70	27.00	14:50	8.20	5.70	5.00	3.90
8	5.70	13.30	13.30	26.20	24.30	30.50	27.10	14.20	8.00	5.60	4.90	4.10
9	5.30	15.00	14. 25	25.60	25.10	30. 10	27.15	13.90	7.80	6.50	4.80	4.80
10	5.00	15.20	17.30	24, 60	25.40	29.70	27.05	13.50	7.80	6.30	4.80	5.50
11	3.90	15.00	17.80	23.30	28.00	29.30	26.90	13.30	7.80	5. 20	4.80	5.70
12	2.25	14.55	17.50	21.80	27.10	28.60	26.70	13.25	7.90	5.10	4.75	5.60
13	1.80	14.00	16.80	19.60	28.10	28.20	26.30	13.20	8. 50	5.00	4.75	6. 59
14	2.40	13.00	16.00	19.80	29.50	27.80	26.35	13.35	8.60	4.90	4.70	5.35
15	2.20	12.30	16. 20	20.00	31.30	27.30	26.30	12.85	8. 30	5.00	4,70	5.10
16	3.00	12.20	14.60	20.00	31.80	26.80	26.00	12.50	8.10	4.90	4:60	4.95
17	2. \% ${ }^{3}$	12.20	13.80	20.10	32.30	26.40	25.70	12.30	7.90	4.90	4.60	4.50
18	3.10	11.40	13.30	20.40	32.60	25.80	25.50	12.00	7.80	4.90	4.70	4.20
19	4.20	11.00	13.10	20.90	32.80	25. 20	25.20	11.90	7.60	4.80	5.05	3.75
20	4.35	12.70	12.55	22.70	32.60	24.70	24.70	11.50	7.60	4.90	5. 10	3.35
21	4.70	17.20	12.25	23.80	32.30	24.30	24.00	11.25	7.60	4.95	5.05	2.70
22	4.90	17.50	11.70	24.80	31.80	23.6n	23.30	11.00	7.40	4.95	5.00	2.25
23	4.70	16.20	11.50	24. 60	31.50	23.10	23.00	10.50	7.30	4.90	+ 4.90	1.80
24	4.90	14.70	12.50	24.10	31.30	22.95	22.50	10.30	7.20	4.80	4.85	1.55
25	6.15	13.40	13.10	23.50	31.20	23.40	21.90	10.10	7.20	4.30	4.80	1.60
26	5.05	12.70	13.30	23.00	30.85	23.80	21.50	9.80	6.85	4.90	4.70	1.40
27	5.50	13.25	13.00	22.10	30.50	23.05	20.10	9.60	6.85	4.90	4.70	0.80
28	6. 75	13.70	13.40	21.30	29.90	24.20	19.40	9.30	6.70	4.95	4.70	1.80
20	8.00	13.90	13. 20	20.70	29.30	24.50	18.50	9.20	6.60	5.25	4.60	2.50
30	6.90		13.90	20.20	28.70	24. 65	17.80	9.15	6.60	5.70	4.50	3.20
31	6.05		15.10		28.60		17.30	9. 10		5.80		4.10

Tabulated gauge readings at selected stations between Chain of Rocks and Cairo-Cont'd.
WATERS POINT, MO.-Continued.
1893.
[Gauge, 2240 miles, frorn Eads Bridge. Zero of gauge, 377.54 feet above Memphis datum plane. Gauge read at 8 a. m.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1	5. 50	6.80	10.90	15.80	27.60	24.30	17.20	10.80	6.10	4.25	4.00	3.40
2	5.50	6.50	11.45	15.80	28.50	24.10	17.20	10.90	5.95	4.25	4.00	3. 20
3	5.50	6. 20	12.05	15. 20	29.20	24.70	16.90	11.10	5.75	4.25	4.00	2.60
4	6.60	6.00	12.20	16.20	28.90	25.00	16. 60	10.85	5.60	4.30	4.00	2.30
5	6.30	5. 70	11.70	15.00	28.10	24.80	16.20	10.20	5.45	4.35	4.15	1.90
6	7.00	5.80	11.60	15.00	26.80	24.10	16. 50	9.70	5.35	4.45	4.10	1.60
7	7.80	6.00	11.50	15. 20	25.80	23.20	18.60	9.20	5.25	4.85	4.10	1.45
8	7.60	6.010	11.40	15.50	24.90	23.10	19.40	8.80	5.10	4.80	4.00	1.35
9	7.80	6. 10	12.10	15.20	24.10	23.30	18.70	8.50	5.05	4.75	4.00	1.35
10	7.40	6.45	14.50	15.60	23.50	23.10	17.90	8.10	4.95	4.85	4.00	1. 55
11	7.30	6.50	16.90	17.80	23.30	22.40	17.40	7.80	5.05	4.90	4.10	1.65
12	7.25	6.50	17.79	20.70	23.30	21.60	16.50	8.20	5.00	4.90	4.10	1.70
13	7.35	6.45	17.80	21.30	23.70	20.80	15.60	8.10	4.95	4.90	4.00	1.80
14	7.59	6.90	17.60	22.00	23.60	20.10	14.80	8.00	4.80	4.75	4.00	1. 50
15	7.45	6.70	17.30	21.80	23.30	19.60	14.20	7.60	4.70	4.65	4.00	1. 50
16	7.30	6.05	17.20	21.60	23. 10	19.40	13.80	7.40	4.60	4.55	4.00	1.80
17	7.30	9.30	17.50	21.40	22.80	19.30	13.50	7.30	4.50	4.46	4.00	2.20
18	7.45	9.10	18.40	20.90	22.60	19.00	14.00	7.20	4.45	4.35	4.00	2.60
19	7.45	8.80	19.50	20.10	22.20	18.40	15.00	7.00	4.40	4.30	4.00	2.50
20	7.50	8.90	19.70	20.20	21.80	17.70	15. 60	6.90	4.40	4.25	4.00	2.30
21	7.40	8.90	19.60	22. 90	21.40	17.20	14.80	7.20	4.30	4.30	4.00	2.25
22	7.40	8.80	19.20	23.80	21.00	16.80	14. 20	8.90	4.30	4.25	4.00	2.70
23	7.50	8.45	19.10	23.80	20. 70	16.40	13.60	9.80	4.30	4.20	4.00	2.80
24	7.50	8.50	19.60	23.20	20.30	15.90	13. 20	9.70	4.40	4.20	4.10	3.00
25	7.50	8.50	19.00	23.20	20.30	16.40	12.50	8.90	4.45	4.10	4.10	3.30
26	7.50	9.00	18.10	23.30	20.30	17.40	12.00	8.35	4.45	4.10	4.00	3.40
27	7.40	9.80	17.40	24.30	22.10	19.50	11.50	7.90	4.45	4.10	3.95	3.40
28	7.30	10.40	16.90	24.90	24.10	19.10	11.00	7.20	4.45	4.15	3.90	3.40
29	7.20		16.60	25.80	25.10	18.60	10.70	6.90	4.50	4.10	3.80	.3. 35
30	7.10		16. 20	26.80	25.30	18.10	10.40	6.60	4.50	4.00	3.70	3.30
31	7.00		16.00		25.00		10.80	6.40		4.00		3.40

1894.

[Gauge, 32.40 miles from Eads Bridge. Zero of gauge, 377.54 fect abc. Memphis datum plane. Gauge read at 8 a. m.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aur.	Sept.	Oct.	Nov.	Dec.
1	3.50	2.00	5. 95	11.70	12.70	17.25	16. 70	9.30	5.00	5. 40	3.95	4.00
2	3.60	2.00	5. 90	11.30	13.40	17.20	16. 60	9.40	4.90	5.10	4.00	4.30
3	3. 70	1.95	5. 90	10.90	14.20	16. 00	16. 20	9.40	4.80	4.80	4.15	4.40
4	3.85	$1.95{ }^{\circ}$	6. 40	10.55	14.50	16. 70	15. 60	9.15	4.75	4.60	4.20	4.70
5	4.10	2. 50	6.95	10.45	14.20	16. 65	15. 40	0.00	4.95	4.50	4.30	5.30
6	4. 20	2.60	8. 70	10.10	15.10	16. 65	15.60	8.75	5.20	4.45	4.40	5.20
7	4.30	2. 60	12.90	10.00	16. 50	16.70	15.90	8.40	5.30	4.30	4.45	5.10
8	4.20	3.45	16. 40	11.10	17.90	17.00	16. 50	8.10	5.40	4.30	4.65	5.00
9	4.00	5. 20	18. 25	11.40	19.30	17.20	14. 70	7.80	5. 95	4.20	4.75	4. 60
10	3.70	6. 20	18.90	11.60	20.00	17.00	14.00	7.60	5. 90	4.15	4.85	4.20
11	3. 60	7.70	18. 60	12.10	20.60	16. 90	13. 60	7.40	5.80	4.20	4.80	4.00
12	3.40	7.30	17.80	12. 20	21.85	16.75	13. 40	7.30	5.80	4.30	4.60	3. 830
13	3.20	6.30	10.80	12.50	20.50	16.70	13.05	7.10	5.80	4.30	4.55	3. 60
14	3.00	6. 60	15.50	12.60	19.50'	16.80	12. 50	6. 90	5.60	4.30	4.50	3.50
15	2.70	4.05	14.45	12.60	18.90	16.80	11.90	6.75	5.70	4.30	4.40	3.80
16	2.90	4.50	13.80	12.35	18.45	16. 65	11.50	6.50	5.85	4.20	4.50	4.00
17	3.00	4.60	13.00	13. 30	17.95	10.60	11. 10	6.30	6.40	4.10	4.50	4.00
18	3.20	6.00.	12.50	15.60	17.40	16.50	10.90	C. 20	7.10	4.00	4.50	3.90
19	3.20	6.35	12.00	17.30	16. 55	16.35	10.75	6.10	7.15	4.00	4.50	3. 90
20	3.50	6. 10	11.60	18. 10	15. 70	10.40	10.65	6.00	6.80	3.95	4.60	3.90
21	3.90	6. 50	11.45	17.00	15.10	16. 40	10. 55	5. 90	6.50	3. 95	4.60	3. 90
22	4.90	5. 70	11.55	15.90	14.60	10.50	10. 50	5.80	6.35	4.00	4.50	3.90
23	5. 50	5. 30	11.65	14.80	14.35	16. 55	10.50	5. 80	6. 30	3.95	4.50	4.00
24	5.80	5.70	11.80	14.10	14.20	16.70	10.35	5.60	6.55	3. 95	4.60	4.00
25	5. 40	6.65	11.80	13.80	14.00	16.70	10.15	5. 30	6.50	4.10	4.65	4.10
26	3.60	5.70	11.75	13.60	13.95	16.71)	9.85	5.40	6.50	4.25	4.50	4.00
27	2.60	5. 80	11.50	13.20	13.75	16.70	9.75	¢. 35	6.75	4.15	4.45	4.00
28	2. 50	5.85	11.40	13. 10	13.70	17.10	9.70	5.30	6.45	4.00	4.30	3.75
29	2.50		12.90	12.60	13.60	17.70	9.30	5.10	6.05	4.00	4.00	3.00
30	2.30		13.00	1\%.40	13.90	17. 20	9. 90	5.10	5.70	3.95	4.00	3.00
31	2.00		12.30		16.30		9.55	5.05		3.95		3.00

Tabulated gauge readings at selected stations between Chain of Rocks and Cairo-Cont'd. WATERS POINT, MO.-Continued.
1895.
[Gauge, 22.40 miles from Eads Bridge. Zaro of gauge, 377.54 feet above Memphis datum plane. Gauge read at 8 a. m.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sopt.	Oct.	Nov.	Doc.
1	2.20	0.30	6.30	8. 00	7.10	9.20	13.40	13.80	9.80	4.80	4. 10	3.70
2	1.30	0.90	7.90	9.50	6.90	9.10	13.70	14.10	10.00	4.70	4. 10	3.80
3	1. 40	1.10	8.05	10. 10	6.80	8.80	13.80	13.50	10.40	4.80	4. 10	3.40
4	1. 20	0.90	8.50	9. 50	6.90	8.50	14. 10	13.10	11.10	4. 90	4.00	3.30
5	110	0.90	8.30	8.70	7.30	8.30	14. 20	12.30	11.20	5.00	4.00	3. 20
6	C 90	0.75	8.10	8.30	7.50	8.50	13.60	11.60	11.60	5. 10	4.00	2. 80
7	1.10	0.70	8.60	7.90	8. 30	8.60	15.30	11.10	11.90	5.10	4.00	2.15
8	1.10	0.75	8.90	7.70	8.50	8.50	17.50	10.0)	12.20	5. 00	4.20	1.80
9	1.20	(a)	8.90	7.40	8. 50	8.30	17.20	10.60	11.70	5.00	4.30	1.60
10	0.90	(a)	8.50	7.45	8.25	8.60	16.90	10.60	11.10	4. 90	4.40	1. 80
11	0.80	(a)	8.15	9. 60	7.70	9. 60	16.10	11.60	10.70	4.80	4.50	1.80
12	0.90	a)	8.00	10.40	7. 40	10.10	15.00	10.10	10.10	5.00	4. 40	1.90
13	-0.30	3s	7.60	10. 30	7.10	10.95	13.30	9.80	9.70	5. 10	4.30	2.00
14	-0.50	a)	7.50	10. 20	7.90	12. 60	12.50	9. 10	9.00	5. 30	4.30	2.20
15	-0.20	(a)	7.50	9.80	7.00	12.75	12.60	8. 40	8. 70	5. 30	4.30	2.30
16	0.20	(a)	7.50	9. 30	7.95	12.90	12. 80	7.90	8.20	5. 30	4.30	2. 40
17	0.90	a)	7.30	8. 90	8.20	13.00	12.60	7. 50	7.70	6. 20	4.30	2. 40
18	1.55	(a)	7.30	8. 50	8.40	13.10	12.40	7. 30	7. 40	5. 20	4. 0^{0}	2. 70
19	2.70	(a)	7.25	8. 40	9.00	$13.30)$	12.30	7. 20	$7.21)$	5.10	4. 20	3.60
20	2.30	(a)	7.10	8. 20	10. 10	13.30	12.80	7.30	7.10	5.0	4.00	11.70
21	2.35	(a)	6.80	8.10	10. 40	12.95	13.30	7. S0	6.90	4. 90	4.00	22.60
22	2.50	(a)	6.60	S. 10	10. 70	13. 10	13.30	8.10	6. 50	4.30	4.00	23.80
23	2.20	(a)	6. 40	8.20	10. 130	13.40	13.70	8.30	6.10	4.70	4.00	23. 70
24	2.20	(a)	6.70	8.10	0.90	13.60	14.00	8.50	(b)	4. i^{0}	4.10	24.00
25	1.90	(a)	6.70	7.90	9. 40	13.50	14.60	8. 10	(b)	4.50	4. 10	23.20
26	1.20	5. 65	7.00	7.50	9.10	13.20	14.20	8.70	(b)	4. 45	4.30	21.50
27	0.40	5. 55	7.85	7.30	8.90	12.90	13.80	9.20	(b)	4. 40	4. 40	20.00
28	0.55	5. 40	7.70	7.30	8.80	12.95	13. 30	9. 40	5.00	4. 40	4.30	19.00
29	-0.40		8.20	7.30	8.90	13.20	12.60	9.70	4.90	4.30	4. 10	18.70
30	0.50		9.15	7.30	8.90	13.40	13.40	10.00	4. 80	4.20	3.95	18. 10
31	0.60		9.00		9.00		13.00	9.90		4. 10		17.20

a Doubtful and not recorded.
o Mind on gauge.

1896.

[Gauge, 22.40 mlles from Eads Bridge. Zero of gauge, 377.54 feet above Memphis datum plane. Gauge read at $8 \mathrm{a} . \mathrm{m}$.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Deo.
1	16.20	Б. 75	9.40	9.20	14.30	24. 80	17.00	14.20	9.30	8.35	5. 40	6. 80
2	15.20	6.10	10.00	8.70	14.70	24.30	17.30	14. 40	9.00	8.00	5. 50	6. 70
3	14.20	7.10	10.20	8. 30	14.75	24.60	17.50	14.60	8.00	7.70	5. 90	6. 75
4	13.10	7.80	9.90	8.00	14.75	24.90	17.50	14.90	8. 20	7.40	6. 80	7.00
5	11.50	8.20	9.50	7.70	14.80	24.80	18. 10	15. 10	7.95	7. 30	7. 70	7.00
6	10.50	8. 30	9.30	7.50	14.75	24. 00	18.10	15. 20	7.70	7.30	8.00	6. 60
7	9.90	8. 50	9.00	7.30	14.75	24. 65	17.60	15. 20	7.10	7.10	9.90	6. 10
8	9.00	8.70	8.70	7.00	14.75	24. 10	17.20	15. 10	7.10	7.00	10.00	5. 80
9	8.40	8. 50	8.40	7.00	14.00	23.90	17.50	14.80	6.95	6.90	9. 40	5. 50
10	7.70	8. 30	8. 20	7.30	15. 20	23.00	17.50	14. 20	6.70	6. 80	8. 90	5. 30
11	7.20	8.00	8.00	10.10	16. 40	23. 40	16.90	13. 60	6. 60	6. 70	8. 40	5. 10
12	6.80	7.70	7.85	13.30	15. 60	22. 10	15. 90	13.10	6. 40	6.80	8. 30	4. 90
13	6.60	8. 30	7.55	14.20	15. 40	22.00	15. 20	12. 50	6.30	6.90	8.10	5. 10
14	6.10	10.30	T. 35	14.00	15.00	20.70	14.80	12. 30	6. 30	6.90	7.80	5. 40
15	6.30	12. 10	7.25	13.50	14.75	19.00	14.20	11.90	6. 50	7.00	7.60	- 5.90
18	6.30	11.50	7.00	13.20	14.40	17.75	13. 60	11. 60	6.80	7.30	7.50	6. 30
17	6. 20	11.00	6.80	13.00	14.50	17. 20	13.30	11. 10	6.80	7.30	7.60	6. 80
18	C 10	10.60	6.50	12. 60	14.40	18. 20	13.30	10. 70	6.90	7.10	7.60	7.40
19	6. 10	10. 10	6. 20	12.10	16.30	18. 60	13. 40	10.60	7.30	6. 80	7.70	8. 10
20	6.10	9. 40	6.20	11.40	20.80	18.80	13.80	10.70	7.90	6.70	7. 80	8. 50
21	6.00	8.30	6.00	11. 20	23.80	18.60	- 15.40	11.60	8.90	6.50	7.70	8. 70
22	5. 80)	7.50	6.20	10.90	25. 20	18. 35	19.90	12.20	9.90	6. 40	7.60	8. 60
23	5.80	7.00	6.40	10.60	25. 80	17.90	21.50	12.90	10.70	6.20	7.40	8. 30
24	6.10	6. 60	7.00	10.40	26.80	17.10	21.10	13.00	10.81)	6. 10	7.30	8. 30
25	6. 50	6. 40	7.90	10.3!	27. 20	17.00	- 20.10	12. 40	10.30	6.00	7.20	8. 20
26	6. 60	6. 80	8.90	-10.45	27.70	16. 70	- 18.80	12. 10	10.00	5.90	- 7.15	O8.10
27	6. 10	7.20	9.50	10.90	27.30	16.70	17.70	11.50	9.75	5. 70	7.10	7.90
28	6.81	8. 30	8.80	11.60	27.60	17.00	- 16.80	11.30	9. 40	5. 60	7.10	7. 00
29	6. 70	9.00	8.90	12. 10	27.40	17.60	- 16.00	10. 10	9. 10	5. 51)	7.10	7. 20
30	6. 60		9.20	13.20	26.70	17.20	15. 30	10. 20	8.80	5. 411	6.90	-7.10
81	6.60		9. 60		25.50		14. 80	9.80		3. 40		7.30

Tabulated gauge readings at selected stations between Chain of Rocks and Cairo-Cont'd. WATERS POINT, MO.-Continued.
1897.
[Gauge, 22.40 miles from Eads Bridge. Zero of gauge, 377.54 feet above Memphis daturn plane. Gauge read at 8 a. m.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1	7.30	Ice.	13.00	23. 30	27.30	14. 10	20.00	-13.30	7.70	5. 10	4.30	4.50
2	7.30	Ice.	12.00)	a 25.40	27. 70	13. 60	19.40	13.00	7. 40	5. 00	4.30	4. 30
3	7.60	Ice.	12. 80	26.10	27.60	13. 80	19.70	12.80	7. 30	5. 00	4. 40	4. 00
4	18. 30	Ice.	13. 30	26. 80	23. 40	14. 00	20.20	12. 40	7. 00	4. 90	4.30	3. 80
5	23.60	Ico.	16. 00	26. 70	26.80	14.80	20. 20	12.10	6. 80	4. 90	4. 30	3. 70
6	24. 20	7.90	20.80	26.20	26. 10	15. 20	19.30	12.00	6.70	4. 90	4. 40	2. 80
7	24.50	8. 20	22. 60	26. 20	25. 20	15. 60	19.00	11. 80	6.70	4.80	4. 50	
8	23.90	8.60	22. 80	26.10	24.20	15. 70	18. 60	11.70	6.60	4.70	4. (1)	
9	21.00	9.10	22.10	26.60	23. 20	15.70	18.80	11.60	6.60	4. 70	4.90	
10	18. 40	10.20	a 21.60	27.10	22. 40	15. 40	18. 60	12.00	6. 50	4. 60	5.10	
11	15.90	11.10	19.80	27. 60	21. 60	15. 20	17. 60	11.10)	6.50)	4. ©0	5. 20	
12	13.90	11.50	19.30	27. 40	30.80	14.90	16. 80	11.30	6. 30	4. 50	5.20	
13	12.60	11. 40	18. 90	26. 00	20. 00	14. 50	16. 30	11.10	6.10	4. 50	5. 20	
14	11.40	12.50	18. 30	26. 20	19.30	14.30	15.30	10.90	6. 00	4.40	5. 10	2. 30
15	10.90	12.60	17.70	25. 40	18.60	13.90	14.60	10.90	5. 80	4. 40	5. 10	2. 50
16	10.60	13.20	17.00	24.80	18.20	13.80	14.10	10.80	5. 60	4. 30	5. 30	2. 80
17	10.40	13.50	16. 70	24.50	17.50	13.80	13.70	10.70	5. 50	4. 20	5. 20	3. 00
18	10.40	13.20	16. 90	24.50	16.90	14.00	- 13.70	10. 60	5. 40	4.20	5.00	2. 80
19	11.90	12.80	17.20	24. 40	16. 50	14.10	- 13.90	10. 40	5. 30	4. 20	4.80)	2. 20
20	13.50	12.60	17.60	24. 40	16.00	13.90	13.80	10.30	5.20	4. 10	4.70	1.30
21	14.20	12. 50	18. 40	24. ©0	15.80	13.80	13. 60	10.10	5. 10	4.10	4.60	1.30
22	14.30	13.60	18.90	24.70	15.00	13.90	13.10	10.00	5.10	4.00	4. 60	0.90
23	14.40	14.90	19.10	24.90	14. 10	14.70	12. 80	9.90	5.10	4.00	4.50	0. 90
24	14.20	15. 60	19.50	25.10	14.30	15. 40	12.50	9.70	5. 20	4.00	4.30	0. 70
25	13.80	-15.60	19.70	24. 90	14.20	15. 50	13.00	9.50	5. 30	4.00	4. 20	0. 80
26	12.40	15. 20	20.30	24.60	14.40	16.30	14.30	9.30	5. 40	4.00	1.4)	0. 90
27	11. 40	14.80	21. 70	24. 30	14.80	17.10	16. 30	8. 90	5. 40	4.10	4. 0	1.30
28	10.10	13.90	22. 20	24.90	14.80	a 17.10	16.70	8.60	5. 30	4. 10	4. 010	1. 90
29	8. 70		22. 40	25. 50	14.79	18. 20	15.80	8.40	5. 20	4. 20	4.5)	2. 40
30	Ice.		- 22.00	26.60	15.00	19.90	14. 50	8.20	5. 10	4. 20	4. 50	2. 70
81	Ice.		21.80		14.90		13. 60	8.00		4. 20		3. 10

- Reading changed one-half foot or more. b Changed less than one-half foot.

1898.

[Gange, 22.40 miles from Eads Bridge. Zero of gange, 377.54 feet above Memphis datum plane. Gauge read at $8 \mathrm{a} . \mathrm{m}$.)

- Reading shanged one-half foot or more.
- Reading doubtful.
- Changed less than one-half loot.
H. Doc. 50, 61-1—11*

Tabulated gauge readings at selected stations between Chain of Rocks and cairo-Cont'd.
WATERS POINT, MO.-Continued.
1899.
[Gauge, 22.40 miles from Eads Bridge. Zero of gauge, 377.54 feet above Memphis datum plane. Gauge read it 8 a.m.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	Sune.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1	7.50	1.70	15.00	12.90	23.70	21.50	19.60	13.40	8.00	5.80	4.90	6.00
2	6.50	1.90	14.30	12.80	23.70	21.60	19.50	13.60	8.10	5.60	4. 80	5. 80
3	5.70	2.50	13.30	12.20	23.50	22.50	19.70	13.60	7.90	5.50	5. 00	5.70
4	5.40	2.90	12.90	12.00	22.40	22.60	20.40	13.30	7.70	5.40	5.30	5. 70
5	5.40	3.80	12.20	12.10	20.80	22.70	21.00	12.90	7.50	5.30	5. 40	560
8	4.90	6.60	12.10	13. 00	19.70	22.70	21.20	13.00	7.40	- 5.20	a 5.60	5. 60
7	5.00	8.40	12. 20	13.50	19. 20	22.50	21.50	12.80	7.20	5.10	5. 80	5. 50
8	5. 50	8.10	11. 80	13.40	18.70	21.80	21.70	12.30	7.10	5.00	6.00	5.40
9	5.30	7.50	11.10	13.30	18.60	$21: 40$	21.60	12.20	7.00	4.90	6. 20	5. 40
10	4.90	7.50	11.10	13.50	18.60	21.40	21.50	13.70	7.00	4.70	6. 40	5. 40
11	5.00	7.40	11.20	13.70	19.30	21.40	21.90	15. 20	7.20	4.70	6. 60	5. 30
12	5.00	7.10	11.50	14.40	19.90	21.50	22.10	15.40	a 7.30	4.70	6. 80	5. 30
13	5.20	7.30	11.50	16.00	20.40	22.60	21.80	14.80	7.30	4.60	6.80	6. 30
14	5.90	7.50	12.00	16.10	20.60	23.20	21.20	14.60	7.20	4.60	6.90	6. 30
15	5.40	7.60	12.60	15. 30	20.40	22.90	20.60	a 14.30	a 7.10	4.50	7.00	5. 50
16	5.70	7.70	14.70	15.00	19.90	21.80	20.00	13.70	7.00	4.40	7.00	5. 40
17	6.90	7.80	15.70	14.70	19.20	21.10	19.50	12.80	6.90	4.50	6.90	4.90
18	5.90	7.70	16.30	14.70	18.70	21.10	19.30	12.20	7.00	4.50	6.90	4.70
19	5.80	7.40	16.70	14.80	17.90	21.10	19, 10	11.80	7.10	4.50	690	4.70
20	5.50	7.60	17.90	15.20	17.50	21.00	19.00	11.30	7.20	4.50	6.90	5.50
21	5.60	7.50	18.70	16.30	18.10,	20.80	18.00	11.00	7.10	4.40	6.80	5. 60
22	5.50	5.70	18.80	16.90	18.80	20.50	18.00	10.60	6.80	4.30	6.70	5. 10
23	5.40	5.20	18.40	19.40	20.60	19.90	17. 40	10.10	6.70	4.20	7.00	4.70
24	5.40	4.50	17.80	22.30	22.05	19.30	16.70	9.60	6.50	4.20	7.20	4. 20
25	5.40	4.80	17.10	23.50	22.80	18.80	16.30	9.20	6. 40	4.10	7.20	4.00
28	5.40	7.00	16. 20	24.30	23.40	18.50	15.80	8.90	6.30	4.10	7.00	3. 60
27	5. 40	10.10	15.20	24. 40	23.30	18.60	15.20	8.60	6.20	4.10	6.60	3. 10
28	5. 30	14.00	14.40	23.90	22.90	18.90	14.70	8.50	6.10	4.40	6.40	2.50
29	4.80		13.60	23.50	22.20	19. 20	14.30	8.30	6.00	4.70	6.20	2. 10
30	4.00		13.00	23. 60	21.70	19.50	13.90	8.10	5.90	5.20	6. 10	${ }^{1.30}$
31	2.70		12. 60		21.60		13.60	8.00		5.10		0.80

e Changed less than one-half foot.
1900.
[Gauge, 22.40 miles from Eads Bridge. Zero of gage, 377.54 feet above Memphis datum plane. Gange read at $8 \mathrm{a} . \mathrm{m}$.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1	-0.10	3.60	7.30	12. 60	15.20	12.80	11.30	11.30	9.85	10.15	12.60	10.
2	-0.10	3.30	7.30	13. 20	14.85	12. 60	11.35	10.70	9.95	10.65	12.00	9.50
3	1.50	2. 70	7.00	13. 40	15. 00	12.65	11.25	10.35	10.00	11. 65	11.50	9.00
4	2.30	2.20	6. 50	$a 13.40$	15. 10	12.35	11. 20	10.00	10.00	12.65	11.50	8.60
5	3.70	2.00	6. 00	a 13. 65	14.95	11.95	11.30	9.60	10.00	13.00	11.70	8.30
6	4.00	2.50	9. 40	14.00	15. 10	11.65	11.20	9.05	10.10	12.65	12.00	8.00
7	3.50	2. 60	15. 30	a 14. 80	15.30	11.35	10.95	8.60	9. 90	12. 25	a 12.80	7.70
8	3.30	3. ¢0)	17.80	a 15. 40	15.60	11.10	10.80	8.10	9. 25	12. 30	13.30	7.50
9	3.30	6.10	18.00	15. 60	15.80	11.05	10.45	7.70	8.70	12.65	13.30	7.30
10	3.70	8.00	18. 40	15.30	15.60	10.85	10.50	7.35	8.30	12.80	12.90	7.20
11	4.00	8.20	19. 50	15. 00	15.30	10.60	10.30	7.00	7.80	12.10	12. 55	7.00
12	4.00	7.50	20.00	15.10	15.00	10.30	10.30	6. 65	7.50	11.30	12.30	6. 90
13	3.70	7.30	21.00	15. 80	15. 50	10. 50	10.45	6.30	7.20	10.65	12.30	6. 70
14	3.70	7.00	21.70	17.00	15.95	11.30	10.20	6.00	6.95	10.30	12.05	6. 40
15	3.70	6. © 0	21. 90	17.60	15. 25	13.85	9.80	5. 80	6. 80	10.00	11. 70	6.20
16	3. 60	6. 50	22.00	17.00	14.30	13.40	9.60	5. 6.5	6. 70	9.95	11. 50	Q. 00
17	3. 60	6. 80	21. fin	16.20	13.75	12.20	10.00	5. 50	6.50	9.80	11. 45	6. 75
18	3.80	6.80	21.20	15.30	13.45	11.50	9.90	5.55	6.30	9.80	11.40	K. 50
19	4.50	6. 00	20:30	14.70	13.70	11. 10	9. 60	6.20	6.20	9.80	11.80	5.20
20	6. 80	6. 00	19.20	14.70	13.70	11.00	9. 40	7.70	6.35	10.05	11.70	6. 00
21	8.00	8. 40	18. 10	15. 00	13.65	11. 10	9.30	8.70	6.80	10.20	11.75	4.70
22	7.50	8.10	17.30	15. 40	13. 65	12.35	9.90	9.15	6.90	10.60	11.90	4. 50
2	6.80	a 8.90	16.00	15.60	13. 6.5	13.75	11.15	9.25	7.35	11.15	11.85	4.35
24	6.30	9.90	16. 40	16.00	13. 70	14.30	12.20	9.20	7.60	1160	11.90	4.35
25	6.20	9.50	15. 70	16. 30	13.45	14.30	12.80	9.10	7.70	1185	12. 00	4.25
26	6. 20	8.70	15.30	16. 80	12.95	14.30	13.30	9.05	7.75	12.10	12.10	4.20
27	6.00	8.10	15.00	16. 90	12. 65	14. 00	13. 10	9.00	7.85	12.10	11.90	4.25
28	6. 00	7.60	14. 50	16.60	12.25	13.35	12.60	9.00	8.20	12. 10	11. 60	4. 20
29	5. 30		14.00	16.10	12.20	12.35	12.20	8.90	9.00	12. 10	11.30	4. 10
30	4.50		13. 40	15.70	12.85	11.70	11.80	8.80	9.60	12. 25	10.85	3. 80
31	3. 80		13.00		13.00		11.55	9.		12.40		3.00

a Changed less than one-half foot.

Tabulated gauge readings at selected stations between Chain of Rocks and Cairo-Cont'd.
WATERS POINT, MO.--Continued.
1901.

【Gauge, 22.40 miles from Eads Bridge. Zero of gauge, 377.54 feet above Memphls datum plane. Gauge read at $8 \mathrm{~s} . \mathrm{m}$.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	Junc.	July.	Aug.	Sept.	Oot.	Nov.	Dec.
1	3.60	4.85	4.95	17.60	14.90	9.10	13.50	8.25	4.45	4.00	4.60	3.60
2	3.60	4.60	4.70	17.80	14.60	9.05	13.00	8. 40	4.35	3.90	4.50	3. 55
3	3.30	4. 40	4.30	17.85	14.20	9.60	12.30	8. 45	4. 20	3.75	4. $40{ }^{\prime}$	3. 45
4	3.00	4.65	4. 40	18.00	13.90	11.20	11.71	8.35	4. 10	3.60	4.30	3. 40
5	2.70	4. 60	4.75	18. 20	13.60	11.20	11. 20	8.25	4.00	3.65	4. 20	3.30
6	2.30	4. 50	5. 30	18.60	13. 40	11.90	10.80	8.05	3.90	3.70	4.00	3.20
7	2.15	4.45	5.55	18. 80	13.05	12. 10	10. 50	7. (i)	3.80	3.75	4.00	3. 20
8	2.10	3.90	6. 10	19.00	12.70	12. 40	10. 20	7.30	3.75	3. 80	3.95	3.20
9	2.30	3.25	6.90	19.45	12.60	12.70	10.30	7.05	3.65	3.95	3.90	3.35
10	2.90	2.70	8.50	20. 50	12.30	12.45	11. 10	6.90	3.70	4.00	3.90	3.30
11	3.35	2.70	12.10	21.00	a 12.00	12.25	11. 50	6.70	3.55	3.95	3.90	3.15
12	4. 60	3.30	16.95	21.10	11.75	12.10	11.10	6. 60	3.60	4.00	4. 10	3.05
13	5. 40	3.30	16.90	21. 30	11.60	12.05	10. 50	6.50	3.55	4.10	4. 10	3. 20
14	5. 50	3.35	17.00	21.40	11.40	12.20	10. 20	6.40	3.50	4.10	4.05	3. 60
15	5.95	3.30	16.60	21. 50	11.20	12.90	10.00	6. 30	3.45	3.90	4.00	3.15
16	5.85	3. 40	16.20	21. 10	10.90	13.50	10.00	6.20	3. 40	3.95	4.00	3.09
17	5.70	3. 50	16.00	21.30	10.70	13.30	10.00	6.05	3.30	4.05	4.00	2.25
18	5.85	3. 65	15.90	22. 00	10.50	12.90	9.95	5.95	3.35	4.20	3.95	1.35
19	5.90	3.90	15.70	22.20	10. 30	12. 40	9.95	5. 90	3. 50	4.45	3. 90	1.45
20	5.60	4. 20	15.65	21.50	10. 10	12. 15	10.00	5.75	3.80	4. 130	3.90	b 1.55
21	5.40	4.00	15. 50	20.30	9.80	12. 10	10. 40	5.60	4. 60	4.80	3.90	${ }^{\text {b } 2.60}$
22	5.30	3.75	16.10	19.40	9.50	12. 10	10.65	5. 50	5. 50	4.80	3.90	${ }^{\text {b } 2.70}$
23	5.45	3.75	17.00	18.80	9.30	12. 45	10.20	5. 50	5.55	4.75	3.00	b 3.50
24	6. 50	3.80	17.50	18. 20	9.30	13.20	9.70	5. 40	5.20	4.70	3.90	o 4. 10
25	5.50	4.10	17. 95	17. 50	9.00	13.80	9. 40	5.30	4.90	4. 60	3.85	b 4. 4)
26	5.25	4.70	18.20	17.00	9.30	14.00	9.00	5.20	4.65	4.50	3.85	b 5.00
27	5.20	5. 20	18. 10	16. 50	10.05	14. 20	8.80	5.05	4. 45	4. 50	3.75	o 5.30
28	5.20	6. 25	17.70	16.05	10.00	14. 80	8. (0)	4.95	4.30	4.50	3.70	b 4. 65
29	5. 10		17.50	15. 60	9.70	14.60	8.40	4. 80	4.20	4.55	3.70	b4.45
30	5.10		17.30	15.25	a 9.50	14. 10	8.20	4.70	4.10	4.60	3.60	b 3.70
31	5.10		17.35		9.30		8.20	4.55		4. 60		b 3.4)

a Interpolated-no reading.
b Doubtful on account of ico.
1902.
[Gauge, 22.40 mlles from Eads Bridge. Zero of gauge, 377.54 feet above Memphis datum plane. Gauge reall at $8 \mathrm{a} . \mathrm{m}$.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dee.
1	a 3.50	a 2.25	4.20	10.10	8.25	16.90	21.50	20.00	18.70	15. 10	10.35	13.60
2	a 3.40	a 3.75	5.30	10.70	8.00	16. 60	22.40	20.10	18.00	14.90	9.90	13.20
3	03.40	a 4.50	4.90	10.80	9.70	17.70	22.80	19.30	17.60	14.90	9.55	12.85
4	a 2.70	a 4.05	6.30	10.80	10.90	18. 5.5	22.80	18. 50	17.80	15. 70	9.15	12.40
5	a 2.20	a 4.40	6.50	10.60	10.45	18. 40	22. 40	18.10	18.30	16. 40	0.05	12.00
6	a 2.25	$a 4.10$	6.00	10.70	9.80	18.15	21.60	17.75	18.00	16.80	9.15	12.70
7	a 2.85	04.55	5.90	11.80	8.90	17.80	20.80	17.50	17.30	17.50	9.80	12.75
8	a 3.40	a 4.70	6.55	12.00	8. 10	17.15	20.30	17. 15	16.30	18.45	10.00	13.0 .3
9	a 3.55	a 4.60	7.70	11.30	7.70	16.70	20.30	17.10	15. 30	19.10	10.35	12.90
10	a 3.50	a 4.30	8.60	10.60	7.90	17.00	20.20	16.70	14. 50	19.10	10.95	12.25
11	3.35	$a 4.40$	8.70	10.15	9.25	17.60	18.70	16. 20	13.95	18. 30	11.40	11.45
12	2. 60	a 4. 40	8.60	9.90	10.15	18.45	19.60	15. 70	13.50	17.50	11.20	10.50
13	2.40	a 4.60	9.10	9.40	10. 70	18.45	20.40	15. 40	12.95	16.70	10.70	10.65
14	2.05	a 4.45	10.55	9.10	11.30	18.70	21. 60	15.35	12.25	15.85	10.10	11.15
15	1. 70	a 4.35	11.30	8.85	11.30	19.60	22. 60	14. 15	11. 65	15. 10	9.85	11.20
16	1.90	a4.40	12.30	8. 60	11.10	19.65	23.10	14. 35	11.05	14.40	9.55	10.60
17	2.10	a 4.55	13.00	8.35	11.00	19.30	23. 50	13.80	10.50	14.10	9. 50	9. 60
18	2.30	a 4.50	12.65	8.20	11.00	19.00	23.80	13.75	10.10	14.10	9.70	9.45
19	2.30	a 4.50	12. 10	8.25	11.10	18.70	24. 20	14.05	95	14.20	10.50	9.45
20	2.30	a 4.30	11.40	8.20	11.70	18.50	24.25	14.35	0.35	14.50	11.70	9. 90
21	2.30	a 4.25	10.35	7.70	11.60	18. 10	24. 10	15. 55	S. 80	14.65	12.45	10. 40
22	2.35	$a 4.35$	9.50	7.20)	11.20	17.60	23.85	16.35	8.35	15. 20	12.75	11.30
23	2.35	a4.25	9.00	7.50	11.00	17.40	24.25	16.70	8.05	15.60	12.60	11.90
24	2.30	a 4. 10	8.60	8.60	11. 30	17.50	24.60	16. 80	7.85	15.60	12. 35	12.55
25	2.30	a 3.80	8.20	8. 65	12.30	17.20	24. 80	16.80	7.95	15. 40	12.15	13. 50
26	2.15	4.00	7.90	8.20	12.95	17. 21	24. 50	16.85	10. 40	15.15	12.15	13. 85
27	1.75	4. 40	7.00	7.50	13. 70	17.50	24.65	17.10	11.80	14.40	12.35	13.50
28	1.95	3.80	8. 30	7.10	15. 40	18.00	2.4. 00	17.9.5	12.70	13.20	12. 70	13.10
29	1.30		8. 70	7.55	17.40	19. s0	23.30	18.70	13. 10	12.10	12.90	12.35
30	. 90		9.30	8.10	17.50	20. 30	-22.40	19.20	14.60	11.40	13.50	11.20
81	1. 50		9.50		17.20		21.50	19.00		10.80		9.85

Tabulated gauge resdings at selected stations between Chain of Rocks and Cairo--Cont'd.

WATERS POINT, MO.-ContInued.
1903.
[Gauge, 22.40 miles fron Eiads Mrldge. Zero of gauge, 377.54 feet above Mermphls datum plaze. Gauge road at 8 a. m.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	Jume.	July.	Aug.	Sept	Oot.	Nov.	Deo.
1	8.60	10.10	15.00	18.65	16.90	24. 80	18. 50	16.60	16.00	15. 60	14.10	6. 10
2	8.15	9.65	16. 20	18. 40	16. 50	26.75	18.70	15.05	17.40	16.60	13.95	5. 95
3	8. 10	9.45	15.30	18.10	16.30	28.00	18. 10	14.60	18.10	15.70	13.80	6. (i)
4	8.30	10.80	15.90	18.00	16.10	29.00	17.40	14.85	18.10	16. 80	13.60	5. 30
5	8.60	14.30	16.95	18. 65	15.80	30.00	16.80	14.00	17.85	16.05	13.40	5.00
6	8.95	15.45	17.20	19.60	15.50	30.90	16. 25	13.60	17.26	16. 30	13.35	4.60
7	9.40	14.60	17.80	20.10	15.30	32. 20	15. 80	14. 20	16.60	16. 50	13.60	4.80
8	9.05	13.70	19.40	20.30	15.20	32.80	15.60	15. 15	16.00	16. 95	14.00	4. 15
9	8.80	12.80	22.50	20.05	15.20	32.98	15.60	15. 50	16.30	18. 10	- 14.10	4. 40
10	8.15	11.90	23.50)	19. 50	15.30	33.50	15.65	15. 45	15.70	19.05	13.70	4. 25
11	¢ 8. 00	11.00	23.80	19.40	15. 20	33.60	15.65	15.70	15.60	19.90	13.30	4.00
12	b 7.70	10.80	23.35	20.35	15.00)	33. 50	15. 50	15.60	16. 40	19.70	13.10	3. 80
13	6. B 0	11.20)	22.75	21.50	14.80	33. 20	15.00	16. 50	18.10	19.40	12.70	3.65
14	5.85	11.50	22.35	21.90	14.55	32. 50	14.60	16.70	18,70	19.10	12.25	2.70
15	5. 80	11.35	22.50	22.10	14.35	31.50	14.65	15.70	18.60	18.80	11.80	c 2.30
16	5.70	11.30	22.30	22.00	14.30	30. 20	15. 45	16.30	18.95	18.35	11.60	c 2.00
17	6. 00	10.60	21.50	21.80	15.40	28.90	16.30	15.80)	19.40	17.80	11.25	c 1.40
18	i. 50	9.70	21.70	22.20	17.50	27.60	17.35	15. 70	18.80	17.30	10.00	c 1. 40
19	7.30	9. 20	21.65	22.10	18.70	26.25	17.90	16.10	18.70	16.80	10.40	1.80
20	7.90	8.95	21.35	21.50	19.20	25.00	17.70	16.15	18.70	16.40	9. 95	2.00
21	8.00	8. 45 !	22.20	21.10	19.00	24.30	17.10	16. 30	18.35	16.00	9.55	2. 20
22	7.75	8. 50)	22. 60	21.30	18.60	23.75	17.00	16. 30	17. 55	15.60'	8.25	2.70
23	7.70	8. $\% 5$	22.30	20.95	18. 40	23.00	17.05	16.90	16.80	15. 25	8.90	3.00
24	7. 5.5	8. $\mathrm{ifj}^{\text {a }}$	21.90	20.30	18.25	22.50	17.20	15.25	16. 20	15.05	8. 65	3.50
25	7.60	8.80	21.70	19.20	18.40	22.15	17.45	14.70	15.60	15.00	8.30	4.15
26	7.10	8.90	21.30	19.20	19.60	21.85	18.25	14.40	15. 25	14.80	7.90	4. 50
27	6. 8i5	9. 40	20.90	18.65	21.60	21.25	18.55	14.10	15. 20	14.60	7.45	4. 30
28	8.10	12.50	20. 30	18.10	22.20	20.25	17.80	14. 10	15. 30	14.50	7.10	4.00
28	10.30		19.85	17.65	22.10	19.30	17.30	14.30	15.50)	14. 40	6.70	4. 20
30	10.35		19.30	17.25	22.30	18.75	16.90	14.90	15.50	14.30	6.40	4. 55
31	10.10		18.95		23.00		16.30	15. 60		14.20		4.80

a Changed less than one-half foot.
b Reading changed one-half foot or mors.
c Deubtful on account of ice.
1904.
[Gauga, 22.40 miles from Eads Bridge. Zero of gauge, 377.54 feet abovo Momphis datum plane. Gauge read at $8 \mathrm{\varepsilon} . \mathrm{m}$.

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Deo.
1	5.30)	7. 80	7.45	22. 80	30. 10	21.00	21. 80	12. 40	8.10	11.35	9.80	5. 20
2	5.25	6. 80	7. 20	22. 40	29.70	22.00	21. 10	12.20	7.75	11.00	9.70	5. 00
3	5. (x)	6. 40	7.10	22. 20	29.15	a 22.10	20. 50	11.70	7. 45	10.80	9. 0^{10}	4. 90
4	4. (i)	6. 30	7.40	21.60	28.50	21. 50	20.05	11.40	7. 40	10. 30	9. 15	4.80
5	4.05	6. 25	7.40	21.00	27.40	22. 00	20.00	11.40	7.90	9.70	9. 20	4.70
6	4.05	6. 4.5	8.20	20.60	26.20	24.30	19.60	11.20	7.95	9. 00	9.10	4. 60
7	4. 10	7.00	8.80	19.90	25. 10	25.50	19.00	10.75	7. 60	8.90	9.00	4. 35
8	4.10	7.30	8.95	19.30	24.05	25.70	18. 65	10.25	7. 10	8.80	8.85	4.10
9	3. 90	7. 60	0.50	19. 10	23.70	25.10	20.10	9. 65	6.95	8. 50	8.70	3. 95
10	3.75	8. 10	9. 80	20. 10	23.70	24.25	22.80	0.20	7.00	8.20	8.15	3.95
11	3.85	8.60	10.10	20.80	23.20	23.50	24.10	8.90	7. 20	8.10	8.10	3.95
12	3.75	9.10	10.00	21.20	22.70	22.90	24.80	8.50	7.10	7.95	8.50)	3. 70
13	3. 80	9. 40	11.10	21.40	22.00	22. 20	25. 00	8.25	6.90	7.70	8.35	3. 60
14	3.80	9. 60	11.20	21.25	21.20	21.85	24. 40	8.15	0.90	7.45	8. 20	3. 00
15	4.30	9. 90	11.10	21.10	20.50	21.80	23. 30	8.25	6.80	7. 20	8.05	2. 50
16	4.30	9.70	11.00	21.10	19.90	22.35	21.70	8. 25	6. 70	7. 10	7.90	2. 20
17	4.35	9.15	11.10	20.90	19.50	22. 60	20.05	8. 60	6.70	7.00	7.75	2. 00
18	4. (0)	8.40	11.55	21.70	19.60	22.30	19.45	8. 50	6. 80	6.90	7.50	a. 50
18	4. 90	8. 10	12.00	22. 20	19.90	22.45	19. 25	8.50	8.00	6.90	7.35	al. 10
20	4.90	8.30	12. 20	22.00	20.20	22.30	18.90	9.60	9. 60	6.83	7.15	a. 00
21	5. 50	8.10	12.35	21.60	19.70	22. 65	18. 50	10.90	10.90	6. 80	6.95	a 1.00
22	8.70	7.80	12.45	21.80	19.10	22. 65	17.60	11.10	11.40	6.90	6.70	-. 90
23	12.10	7.40	13.95	22.05	18.60	22.60	16. 65	11.15	10.80	7.00	6. 50	a. 80
24	14.50	7. 40	16. 30	22. 60	18.00	21.70	16. 00	11.80	9.00	7.20	6. 30	a 1.15
25	14.20	7. 60	18.35	25. 35	17.60	21.00	15.90	11.70	8. 60	7.45	6. 10	- 1.40
26	13. 60	7.75	18.95	28. 20	17.10	20.10	- 16.90	11.90	10.00	7.75	o. 90	c 1.60
27	12.80	8.05	19.00	29.50	16.90	19.65	16. 55	12.10	10.80	8.10	5.70	2.20
28	11.70	8. 00	21. 80	30. 20	17.20	19.50	14.70	11.30	11.00	8. 45	5.60	270
29	10.71)	7. 70	23. 30	30. 60	17.20	20. 20	14.00	10.30	10.75	8.85	6. 40	1.60
30	9.75		23.50	30. 40	17.50	21.35	13. 40	9.30	11.10	8. 40	5. 30	1.25
31	8.75		22.80		19.00		12. 00	8.60		9.75		1.30

Tabulated gauge readings at selected stations between Chain of Rocks and C'airo-Cont'd.
WATERS POIN'T, MO.-Continued.
190\%.
[Gauge, 22.40 miles from Eads Bridge. Zero of gange, 377.54 feet above Momphis datum plane. Gauge read at 8 a. m.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1	0.50	9.10	16.80	16.90	17.00	17.90	21.00	18. 80	11.30	13.75	11.80	9. 50
2	. 70	8. 80	17.05	17.70	16. 40	17.60	21.00	19.49	11. 15	13.05	11.58	9.75
3	1.60	8. 25	17.10	17.55)	15. 10	17.60	21.00	19.75	10.60	12. 30	11.70	9. 55
4	2. 70	7.05	16.80	17.35	14.85	17.90	21.20	20.00	10.20	11.90	11.70	9.40
5	2.50	8.35	17.90	17.20	14.40	18. 50	22.30	19.20	9.90	11. 65	11.80	8. 05
6	2.50	8. 50	17.60	16. 70	13. 60	19.10	22.85	18.30	9.65	11. 20	12.30	8.45
7	2.70	8.50	16.90	16. 10	12.60	18.95	23.30	17. 50	9.70	10.60	13.05	7.90
8	2. 20	8.45	16. 80	15. 50	12. 20	18.30	23. 20	16. 70	9.80	10. 10	13.28	7.30
9	2.00	8.25	16.80	15.00	11.40	17.75	22.80	15.95	9.80	10.10	12.80	6. 70
10	2.05	8.20	16.60	14.50	11.20	17.30	22.50	15. 40	9.60	9. 35	12.49	6. 00
11	1.45	7.90	16.45	14.20	11. 10	17.00	22. 40	15.15	9.60	9.10	12.20	5. 50
12	1.35	- 7.90	16.10	14.00	12.00	17.05	22. 60	14.60	10.30	8.80	12.20	5. 20
13	1.25	e 8. 50	15.60	13.90	11. 70	17.90	23. 10	14.00	11.70	8. 50	12.45	5. 00
14	. 75	a 8.60	14.80	13.80	12. 30	18.70	23.65	13.60	11.50	8.25	12.30	5. 10
15	a. 70	-8.70	13.80	13.70	13. 70	19.30	24.05	13.20	10. 60	8.00	11.70	5. 20
16	a 3. 60	-8.70	13.20	13.75	15. 70	19.60	23.75	12.35	10.30	7.75	10.95	b. 20
17	a 3.60	- 8.80	12.90	13.90	17. 50	19.40	22.80	12.00	12.90	7.50	10.20	5. 20
18	- 5.00	c 8.70	12.55	13.95	1830	19.00	21.30	11.70	21.70	8.70	9.80	5. 20
19	a 6.40	a 8. 60	12. 40	13.60	18. 65	18. 50	20.00	11.90	25.30	15. 60	9.40	5. 30
20	-8.10	e 8.40	12.25	b 13.40	19.60	18.90	19.10	12.30	27.45	16.00	9.40	5. 35
21	- 7.90	a 8.30	12.00	13.20	19.50	19.30	18. 50	12.80	23.30	14. 10	9.95	5. ${ }^{\text {c }}$ (1)
22	c 8.25	8.40	12.20	13.00	18.80	19.15	17.90	13.00	28. 20	13.90	$\bullet 9.70$	5.10
23	e8. 40	8. 55	13.10	13.00	18. 20	18.90	17.60	14. 10	27.40	13.60	9.20	5. ${ }^{\text {c }}$ (1)
24	a 8.45	8.80	14.00	13. 40	17.00	18.90	17.60	16.50	25.30	13.30	8.70	5. 60
25	-8.60	9.50	14.30	13.80	17.45	19.30	17.90	17.50	22.90	13. 10	8. 60	5. 41
26	7.45	11.10	14.70	14.20	17.20	19.85	18. 45	16.90	20.80	13.45	8. 50	5. 21
27	7.15	12.80	14.95	14.80	17.10	20.10	18.60	16. 30	19.30	15. 20	8.40	5. 010
28	8.40	15. 85	15.30	15. 50	17.25	20.10	17. 50	16.10	17.40	14. 40	8.25	5. (k)
29	8.00		16.00	15. 75	17.40	20.30	16.80	14.90	15.75	13. 30	8.40	[.) ${ }^{\text {a }} 10$
30	8.85		16. 40	16.6a	c 17.70	20.70	16. 45	13. 10	14.60	12.70	9.00	5. 81
31	8. 90		16. 50		18.30		17.70	12. 20		12.25		6. 10

- Doubtiful on account of ice. b Changed less than one-half foot. c Reading changed one-half foot or more.

1906.

[Gauge, 22.40 miles Irom Eads Bridge. Zero of gauge, 377.54 feet above Memphls datum plane. Qauge read at $8 \mathrm{a} . \mathrm{m}$.]

Day.	Jan.	Feb.	Mar.	Apt.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1	6.30	13.30	20.60	23.70	18.90	12.95	17.65	9.90	9. 80	11.50	5.65	8.70
2	6.30	13.70	21.10	23.35	18. 70	13.50	17.60	9.70	9.25	12.00	6.30	8. 90
3	6. 50	13.30	21.30	22.70	18.70	14.30	17.75	9.95	9.00	12.25	6. 65	9.30
4	7.60	12.50	20.70	22.00	18.80	14.70	17.80	9.95	8.90	12.10	6.95	9.4)
5	12.20	11.70.	a 19.70	22.00	18. 60	15. 40	17.60	9.50	8. 60	11.80	7.10	9. 50
6	14.80	10.90	18.80	22.00	18.60	15.40	17. 10	9.40	8.50	10.80	7.10	9. 80
7	14.35	10. 20	17.05	21.70	19.20	15. 80	16. 80	9.20	8. 40	9.95	7.20	10. 20
8	13. 40	0.25	17. 50	21.60	19.70	16.50	16. 50	0.90	8.35	9.40	7.30	10.30
9	12.16	8. 45	17.35	21.90	19.30	17.20	16. 10	9.75	8.35	9.00	7.45	10.00
10	10.60	8.10	17.30	22. 20	18.50	17.70	15. 60	9.80	8.30	8.65	7. 60	9. (i)
11	9. 20	7.70	17.00	22.00	17.80	17.80	15.00	10.30	8.40	8.30	7. 70	9.25
12	8.30	7.45	16. 60	21. 60	17.10	17.60	14.50	10.35	8.50	8.00	7.75	9.10
13	7.70	7.35	16.30	21.50	16.70	17.05	-14.10	10.90	8. 45	7.70	7.70	8. 90
14	7.35	7.60	15.80	22.70	10. 20	16.85	13.95	11.55	8.35	7.55	7.70	8. (i)
15	7.10	7.75	15. 40	23.80	15. 65	16.75	13. 50	12.10	8.20	7.30	7.75	8.49
16	7.10	7.85	14.90	23.50	15. 10	16. 50	13. 30	12.20	8.10	7.20	7.80	8.15
17	6.80	7.00	14. 10	22.90	14.40	16. 10	13. 20	11.90	8.10	7.10	7.90	7.80
18	6.40	8.05	13. 10	22.55	13.90	16.95	12.80	11.30	7.95	7.00	8.10	7.30
19	6. 40	8.40	13.10	22.30	13. 10	16.00	12.30	10.75	8.15	6.80	8.10	6.71
20	6.60	8.80	12.40	21.80	13.10	16. 40	12.00	10.80	8.45	8. 60	8.05	6.05
21	7.00	9.10	11.80	21.50	12.70	17.25	11.70	11.00	8.10	6.45	8.70	5. 85
22	9. 10	9.30	11.20	21.10	12. 40	18.00	11. 60	10.75	8.30	6.30	0.70	6. 80
23	10.65	10.05	10.90	20.70	12. 5.0	18.65	11.60	10.40	8.30	6. 10	9.95	6. 40
24	12.40	12.60	11.00	20. 30	12. 10	19.05	11.90	9.90	8.65	6.00	0.60	4.70
25	13.20	15.70	11.30	20.00	12.00	19.40	12.80	8.40	0.80	6. 90	9.10	4. 20
26	12. 40	17.70	11.60	19.80	11.90	18.75	13. 40	0.50	10.30	5.60	8.90	3.70
27	12.20	10. 30	15. 60	19.60	11.85	18.20	12.80	11.00	10. 50	5. 60	8.70	3.40
23	11.95	20.00	20. 60	19.40	11.90	17.50	12. 10	12.20	10.80	5. 40	8.70	3.10
29	11.90		22.40	19.20	12.10	17.70	11. 60	11.90	11.10	6. 10	8.70	3.10
30	12.10		23.20	19.00	11.90	17.80	10.80	10.90	11.20	5.35	8.55	3.60
31	12.60		23.90		12.10		10.30	10.30		5. 35		4. 40

Tabulated gauge readings at selected stations between Chain of Rocks and Cairo-Cont'd.
WATERS POINT, MO.-Continued.
1307.
[Gauge, 22.40 milles from Eads Bridge. Zero of gauge, 377.54 feet above Memphis datum plane. Gauge read at $8 \mathrm{a} . \mathrm{m}$. .]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Deo.
1	5.0	15. 4	14.0	15.3	16.8	13.55	21.0	23.0	12.1	8.35	6.4	5.65
2	5. 7	14.9	13.8	15.8	17.35	14.2	20.4	21.9	12.0	8.4	6.4	5.6
3	6.4	14.3	13.4	15.9	17.4	15.0	20.05	20.6	12.0	8.6	6.4	5.6
4	7.25	13.35	13.0	15.7	17.2	17.0	19.3	19.6	12.0	9.3	6.2	5.5
5	S. 45	12.35	12.8	15.5	16.7	19.25	18.5	18.9	11.9	9.9	6.1	5.4
6	9.4	11.2	12.6	15.6	16.3	19.55	17.75	18.3	11.8	10.2	6.1	5.3
7	9.8	9.9	12.6	15. 35	16.2	19.4	17.6	17.9	11.6	10.3	6. 0	5.2
8	9.8	8.5	12.4	15. 2	17.0	18.8	17.8	17.6	11.45	10.4	5. 9	5.0
9	9.7	7.65	12.0	15.3	18.1	18.4	18. 1	17.5	11.0	10.8	6. 0	4.9
10	9.6	7.0	11.7	15.5	18.5	18.4	18.1	17.2	10.5	11.1	5. 95	4.85
11	9.6	7.0	11.7	15.5	18.3	18.8	18.1	16.9	10.0	11.4	5.9	4.85
12	9.45	7.2	12.4	15.8	17.1	19.2	18.0	16.2	9.6	11.5	5.8	4.7
13	9.5	8.4	14.05	16.9	16.2	20.4	18. 2	15.7	9.25	11.5	5. 6	4.5
14	9.7	9.0	16. 7	17.15	15.3	21.1	18.6	15.4	9.0	11.1	5.5	4.5
15	10.35	10.4	17.5	17.1	15.3	20.8	19.4	15.0	8.8	10.6	5. 5	4.6
16	11.1	10.55	17. 1	17.0	17.0	21.45	19.5	14.9	8.5	10.2	5.5	4. 65
17	12.4	10.3	16.1	16.9	19.1	20.8	20.3	14.6	8.3	9.8	5.5	4.8
18	14.6	10.5	a 15. 6	16.9	19.6	19.9	21.5	14.2	8.0	9.35	5.45	4.95
19	17.5	11.2	15.4	17.35	19.0	19. 15	22.4	14.7	7.9	9.0	5.43	5.05
20	20. 4	11.1	15.3	17.7	17.8	18.65	22.6	15.55	7.5	8.7	5.4	6.0
21	23.5	10.7	15.7	18.4	16.8	18.5	23.0	16.0	7.3	8.4	5.7	4.8
22	23.9	10.5	15.2	18.5	15.8	18.3	23.4	15.9	7.1	8.1	5. 6	4.5
23	24.0	11.2	14.4	18.2	14.7	18.3	24.1	15.8	7.2	7.9	5. 6	4.5
24	23.8	12.3	13.9	18.3	13.9	18.7	24.65	15.65	7.5	7.6	5. 6	4.7
25	22.8	13.4	13.5	18.6	13.3	20.2	25.0	15.5	7.75	7.4	5.5	4.7
26	21.5	14.05	13.4	18. 05	12.7	21.0	24.95	15.9	7.9	7.3	5.5	4.6
27	19.9	14.15	13.2	17.7	12.2	22.0	24.55	15.0	8.1	7.2	5.5	4.7
28	18.5	14. 1	13.2	17.0	13.0	22.2	24.0	13.5	8.15	7.0	5.6	4.65
29	17.3		13.2	16. 2	13.4	21.9	23.75	12.9	8.30	6.8	5.6	4.5
30	16.5		14.0	16.15	13.3	21.5	23.5	12.5	8.35	6.6	5.7	4.3
31	15.9		14.6		13.55		23.6	12.2		6.45		4.4

Reading changed ono-hall foot or more.
1908.
[Gauge, 22.40 miles from Eads Bridge. Zero of gauge, 377.54 feet above Memphis datum plane. Gauge read at 8 a. m.]

D8y.	Jan.	Frob.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov	Dec.
1	4.55	3.30	15. 40	13.25	15.40	25.40	27.20					
2	4.70	2.85	15.25	13.10	14.80	25.80	27.05					
3	4.80	2.00	15.50	13.15	14.30	26.25	27.20					
4	4.80	a 1.90	15.80	13.10	14.10	27.10	27.50					
5	4.70	2.30	16.00	13.10	15.10	27.50	27.65					
6	4.60	2.80	16.30	13.00	16.20	27.50	27.65					
7	4.60	2.65	16.80	13.00	17.40	27.60	27.50					
8	4.50	3.10	16.70	13.20	18.00	27.60	26.70					
9	4.30	3.40	17.70	14.30	18.50	27.50	25.60					
10	4.20	3.80	19.30	16.60	18.75	27.55	24.80					
11	4.15	4.00	19.60	18.10	19:20	27.65	24.10					
12	1.60	4.55	19.40	19.00	19.25	27.80	23.90					
13	5.50	4.80	19.30	19.30	18.50	28.20	23.70					
14	6.10	5.10	19.00	18.90	17.90	28.70	23.50					
15	5. 60	7.65	18.60	18.90	18.10	29.10	22.80					
16	5.15	11.70	18.10	18.20	19.75	29.80	21.00					
17	4.75	14. 40	17.50	17.70	21.65	30.55	21.00					
18	4.50	14.50	17.05	16.90	22.20	31.05	20.50					
19	4.50	14.70	10.70	16.10	22.80	31.20	20.30					
20	4.30	15.20	16.30	15.15	22.80	31.20	20.10					
21	3.95	15.55	16.00	14.60	22.10	31,10	20.70					
22	3.90	14.90	15.60	14.00	21.80	30.95	20.70					
23	4.10	14.30	15.20	13.90	21.70	30.70	20.25					
24	4.70	13.90	14.80	14.00	21.50	30.40	19.70					
25	4.65	13.45	14.35	15.10	21.00	30.00	19.20					
26	4.60	13.50	14.00	15. 40	20.90	29.70	18.80					
27	5.00	14.50	13.70	15.80	21.80	29.35	18.65					
28	4.80	15.70	13.50	16. 40	23.04	23.90	18.65					
29	4.50	15.70	13.50	16.70	23.60	28.30	18.65					
30	4.10		13.70	16.00	23.80	27.70	18.15					
31	3.70		13.70		24.80		17.75					

Tabulated gauge readings at selected stations between Chain of Rocks and Cairo-Cont'd. BRICKEYS MILL, MO.
1891.
[Gauge 45.60 miles from Eads Bridge. Zero of guage 364.84 feet above Momphls datum plane. Gauge read at \& a.m.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1										4.45	4.50	3.90
2										4.30	4.45	3.50
3										4.30	4.40	3.25
4										4.15	4.35	2.95
5										4.10	4.30	3.05
6										4.10	4.30	3.15
7										4.05	4.25	3.25
8										4.05	4.30	3. 50
9										4.05	4.35	3.70
10										4.05	4.40	3.65
11										4.25	4.50	3.25
12										4.60	4.50	3.20
13										4.80	4.40	3. 20
14										$\begin{aligned} & 4.00 \\ & 5.05 \end{aligned}$	4.35	(a)
$\begin{aligned} & 15 \\ & \hline \end{aligned}$										5.35	4.35	3. 50
16										5.60	4.35	3. 65
17										5.65	$\begin{aligned} & \text { 4. } 40 \\ & 4.40 \end{aligned}$	3.85
18										5.70	$\begin{aligned} & 4.50 \\ & 4.50 \end{aligned}$	3.95
19										5.60	$\begin{aligned} & 2.50 \\ & 4.50 \end{aligned}$	4.20
20										5.55	$\begin{aligned} & 4.60 \\ & 4.65 \end{aligned}$	4.20
21										5.45	4.50	4.40
22										5. 30	4.40	4.50
23										5.20	4.70	4.50
24									5.00	5. 20	4.85	4.75
25									4.90	5.05	6. 05	4.85
26									4.80	5.00	5. 45	4.95
27									4.75	4.90	5.05	(a) 00
28									4.60	4.80	4.80 4.45	(a)
29									4.55 4.50	4.75 4.75	4.45 4.35	4.80
$\begin{aligned} & 30 \\ & 31 \end{aligned}$									4.50	4.75 4.65	4.35	4.75 4.70
31										4.65	4.70

a High wind.
1892.
[Gauge 45.60 miles from Eads Brldge. Zero of gauge 364.84 feet above Memphis datum plans. Gauge read at 8 a. m.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oot.	Nov.	Dec.
1	4.80	6.80	12.30	14.40	18.30	28. 20	23.55	16.20	9. 20	7.00	6. 55	5.30
2	5.05	6.30	12.00	15.15	17.50	28.50	23.70	15.80	9.20	7.00	6.55	5.20
3	5.75	6.60	11.60	15. 35	17.00	28.90	24.10	15. 40	9.10	6.85	6.30	5.10
4	6.75	6, 40	11.20	18.10	16.90	29.50	24.70	15.00	8.90	6.60	6.25	5.00
5	6.80	7.00	11.50	19.35	10.90	30.15	25.50	14.30	8.70	6.60	6.20	4. 95
6	5. 90	7.30	11.60	21.85	18.00	30.20	25.90		8.60	6.55	6. 00	4.95
7	Ice.	9.45	11.40	23.40	20.25	30.00	26.00	13.90	8.50	6.50	5. 90	4.9\%
8	6.00	10.95	11.50	23.75	22.60	29.70	26.05	13.40	8.35	6.40	5.80	5. 11
9	4.75	12.70	12.30	23.75	23.50	29.55	26.25	13.20	8.15	6.35	5.70	5. 60
10	4.30	13. 20	14.80	22.90	24.00	29.20	26.10	13.00	8. 10	6.20	5.60	6. 30
11	3.80	13.20	15.90	21.80	24.70	28.70	25.90	12.80	8.00	6.00	5. 60	6.50
12	3.60	12.75	14. 65	20.30	25.75	28.20	25.70	12.80	8.10		5.65	6. 50
13	Ice.	12.30	15.20		26.70	27.40	25. 50	12. 80	8.50	5.90	5. 70	640
14	Ice.	11.45	14.40	18.30	28.50	27.10	25.35	12.85	8.70	5.85	5.70	6. 30
15	Iee.	10.70	13.50	18. 20	29.70	26.60	25. 40	12.40	8.50	5.85	5. 60	6.00
16	3.20	10. 45	13.00	18. 45	30.20	26.10	25. 35	12.00	8.30	5.85	5. 60	5. M
17	3.25	10.55	12.35	18. 45	30.50	25. 50	24.75	11.90	8.20	5.70	5. 70	5. 50
18	3.53	10.00	11.75	18.70	30.90	24.95	24.40	11.75	8.10	6. 65	6. 80	5.25
19	4.50	9.50	11.50	19.30	31.20	24. 45	24.15	11.50	8.00	5.65		5.10
20	5. 20	9.60	11.20	21.00	31.50	23. 70	23.75	11.20	7.85	5.70	5. 80	5. 00
21	5.40	14. 40	10.80	22.10	31.30	23.35	23.05	11.00	7.80	5. 80	5. 90	4.95
22	5.50	15. 40	10.40	23.20	30.90	22.65	23.30	10.85	7.75	5.85	5. 95	4. 55
23	5.50	14. 40	10.25	23.35	30.70	22.05	2200	10.50	7.70	5.70	5.95	4. 55
24	5. 40	13.00	10.90	22.90	30.45	21.85	21.85	10.20	7.60	5.70	5.90	4. 65
25	5.45	12.00	11.45	22.45	30.35	22.10	2075	10.00	7.50	5.65	5.85	2. 95
26	0.00	11.20	11.60	21.70	30.20	22.50	20.05	9.90	7.40	5.60	5.75	2.95
27	7.60	11.40	11.90	21.00	29.90	22.65	19.30	9.60	7.30	5. 60	5.70	(1)
28	7.55	11.80	11.90	20.20	2940	22.90	18. 40	9.40	7.20	5.70	5. 15	(a)
29	7.35	12.25	11.70	19.50	25. 00	23.30	17.65	9.30	7.10	6.00	6. 50	(a)
30	8. 40		12.05	18, 80	28.00	23.45	16.90	9.20	7.05	6.45	5. 40	2.95
31	7.45		13.10		28.10		16.50	9.05		6. 65	3.35

Tabulated gauge readings at selected stations between Chain of Rocks and Cairo-Cont'd.
BRICKEYS MILI, MO.-Continued,
1893.
[Gauge 45.60 miles from Eads Bridge. Zero of gauge 364.84 feet above Memphis datum plane. Gauge read at \& a.m.]

Day.	Jan.	Feb.	Mar.	Apr.	Mry.	June.	July.	Aug,	Sept.	Oct.	Nov.	Dea.
1	4.00	4.50	10.80	14.40	26.55	23. 50	15. 85	9.50	5.20	3.60	3.40	(a)
2	4.25	4.40	11.50	14.30	27.40	23. 35	15. 60	9.55	4.95	3.65	3.40	(a)
3	4.10	4.20	Wind.	14.20	28.25	23. 70	15. 40	9.85	4.75	3.65	3.50	(a)
4	4.00	4.00	12.00	13.90	28.20	24.00	15.00	9.50	4.65	3.70	3. 60	(a)
5	3.80	3. 90	12.30	13.90	27.65	24.00	15.00	9.05	4.45	3.75	3. 60	(a)
6	3.70	3. 80	11.30	13.30	26.55)	23.35	15. 10	8.50	4.35	3.80	3. 60	(a)
7	3.25	3.85	11.50	13. 70	25. 55	22.40	16.80	8.05	4.20	4.05	3. 60	(a)
8	3.30	3.90	11. 60	14.00	24. 50	22.10	17.60	8.00	4. 10	4.20	3. 60	(a)
9	3.05	4.00	12.00	13.90	23.60	22.30	17.20	7.35	4.20	4.00	3. 60	(a)
10	3.30	4.50	13.60	14.45	23.00	22.10	16.60	7.00	4.20	3.95	3. 60	(a)
11	3.40	4. 50	16. 10	15.00	22.45	21.40	16.00	7.00	4.25	4.10	3. 60	(e)
12	3.60	4. 65	17.20	18.80	22.45	20. 40	15.30	6.90	4.15	4.30	3.55	(a)
13	3.80	4. 85	17.25	20.30	22.75	19.80	15.00	6. 80	4.10	4.35	3.55	c)
14	4.00	4.95	17.20	20.40	22. 65	18.90	14.10	6. 65	4.05	4.20	3.55	(a)
15	4.10	5.00	16.40	20.45	22.50	18.35	13.90	6. 30	4.00	4.00	3.50	(a)
16	4.10	8.80	Wind.	20.20	22.10	18.c0	12.20	6.10	3. 90	3.80	3.55	(a)
17	4.10	10.00	16. 70	20.10	21.90	18.00	12.20	6.10	3. 70	3.65	3.35	(a)
18	4.50	10.50	17.50	19.75	21. 70	17.60	13.00	6. 00	3.50	3.55	3.35	(a)
19	4.70	9. 70	18.70	18.90	21.35	17.00	13.70	5.80	3.35	3.50	3.30	(a)
20	4.90	10.50	18. 65	18.80	20.95	16. 70	14.00	5.75	3.25	3. 60	3.25	a)
21	4.50	10.00	18.40	20.90	20.50	16. 40	13.60	6.05	3.20	3.55	3.25	a)
22	4.45	9. 90	17.95	22.50	20.00	15.90	12.75	7.10	3.25	3.55	3.30	a)
23	4.40	10.10	17.80	22.60	19.65	15.00	12.20	8. 40	3.30	3.50	3.35	(a)
24	4.50	9.10	18. 20	22.20	19.35	15. 40	11.55	8.00	3.35	3.50	3. 10	(a)
25	4.70	8. 90	17.70	21.90	19.20	15.55	11.20	7.60	3.40	3.55	3.35	(a)
26	4.70	9. 90	16.85	22.20	19.10	15.95	10.70	7. 20	3.50	3.55	3.30	(a)
27	4.70	Wind.	16.00	22.90	20.90	17.70	10. 20	6.30	3. 50	3.55	3. 25	(a)
28	4.70	10.10	15.10	23.15	22. 70	17. 65	9.70	6. 20	3.55	3.60	3.15	(a)
29	4.65		15.30	24.55	24.00	17.30	9.55	5. 70	3. 60	3. 55	3.05	(a)
30	4.70		15.00	25.90	24.55	16.75	9. 10	5.50	3. 60	3.50	2.80	(c)
31	4.70		14.60		Wind.		9. 40	5.25		3.40		(a)

- Below gauge.

1894.

[Gauge 45.60 miles from Eads Bridge. Zero of gange 304.84 feet sbove Memphis datum plane. Gange read at 8 a. m.]

Day.	Jan.	Feb.	Mar.	A.pr.	May.	June.	July.	Aug.	Sept.	Oot.	Nov.	Dee.
1	2.70	(c)	5.35	10.90	11.70	16. 55	16. 15	8.55	3.90	4.45	2.75	2.80
2	2.80	(a)	5. 40	10.35	12.20	16.55	15.75	8.60	3.50	4.10	2.75	2.95
3	3.05	(a)	5. 40	10.00	13.35	16. 40	15.60	8.60	3.75	3.80	2.85	3.05
4	3.15	(a)	5.80	9.80	13.65	16.15	15.00	8.30	3.65	3.55	2.90	3.20
5	3.25	(a)	6.20	9.50	13.55	16.00	14.75	8.20	3.90	3.30	2.95	3.75
6	3.65	(a)	7.60	9.00	14.00	16.95	14.75	7.90	4.05	3.25	3.10	3.95
7	3.65	- (a)	11.30	9.05	15.20	16.00	15. 15	7.40	4.30	3.15	3.20	3.85
8	3.85	(a)	15.00	9.20	16.70	16. 40	15.00	7.20	4.70	3.05	3. 40	3.65
9	3.50	4.30	16.90	10.50	18.00	16. 55	14. 20	6.90	4.90	2.95	3.50	3.35
10	3.25	5.50	17.70	11.50	18.85	16.50	13.40	6.70	4.90	2.85	3.55	3.00
11	3.05	6.80	17.50	11.20	19.35	16.45	12.90	6. 50	4.85	2.95	3.45	2.85
12	2.70	6.00	17.00	11.05	20.90	16.30	12.65	6.35	4.90	2.95	3.40	2. 50
13	(a)	5.10	16.95	11.40	19.85	16. 10	12.40	6. 10	4.85	3.05	3.35	2.45
14	(a)	5.00	14.70	11.90	18.85	16.15	11.90	5.90	4.70	3.10	3.30	2. 50
15	(a)	5.00	13.45	11.75	18.20	16.20	11.40	5.70	4.70	3.10	3.25	2. 60
16	(a)	3.80	12.80	11.45	17.65	16.15	10.80	5.50	4.90	2.95	3.25	2. 80
17	(a)	4.00	12.15	12.05	17.30	16.05	10.35	5.20	5.30	2.85	3.25	2.70
18	(a)	4.40	11.40	14.20	16.90	16.00	10.15	5.15	6.00	2.80	3.20	2.65
19	(a)	5.20	11.00	16.00	15.95	15.70	10.00	5.10	6.30	2.78	3.25	2.60
20	2.70	6.00	10.60	17.00	15.10	15.75	9.90	5.00	5.90	2.70	3.20	2.60
21	3.20	5.90	10.45	18.20	14.55	15.75	9.90	4.95	5.50	(a)	3.25	2. 65
22	4.10	4.75	10.45	15.00	14.00	15.85	9.75	4.80	5. 40	(a)	3.25	2. 70
23	4.60	4.55	10.50	14.20	13.65	15.90	9.75	4.75	5.30	(a)	3.20	2.75
24	4.00	4.05	10.70	13.25	13.60	16.00	9.75	4.65	5. 50	a)	3.20	2.75
25	3.15	5.00	10.80	12.80	13.40	16.05	9.40	4.55	5.50	(a)	3.25	2.75
26	2.70	6.30	10.70	12.50	13.30	15.95	9.10	4.40	5.45	2.70	3.20	2.60
27	(a)	6.50	10.50	12.20	13.50	16.00	8.90	4.30	3. 70	2.75	3.20	2.60
28	(c)	5.30	10.40	12.00	13.00	16.30	8.90	4.20	5.55	2. 70	3. 10	2.60
29	(c)		11.05	11.75	12.95	17.05	8.80	4.10	5.20		2. 90	1.80
30	(a)		12.00	11.40	13.10	16.80	9.10	4.05	4.85		2.90	1.60
31	(c)		11.50		16. 40		8.80	4.00		2.75		1.80

Tabulated giuge readings at selected stations between Chain of Rocks and Cairo-Cont'd. BRICKEYS MILL, MO.-Continued.
1895.
[Gange 45.60 milles from Eads Bridge. Zero of gauge 364.84 feat above Momphis datum plane. Gauge read at 8 a.m.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dee.
1	1.50	(a)	5.50	7.55	5.80	7.70	12.00	11.80	8	(b)	(b)	2.00
2	(a)	(a)	6. 20	8.00	(c)	7.60	12.15	12.70	8.6	(b)	(b)	2.0
3	(a)	(a)	6. 50	8. 60	(c)	7.50	12.35	11. 15	8.85	(b)	(b)	1.95
4	(c)	(a)	6. 95	8. 25	(c)	7.35	12. 65	11.70	9.70	(b)	(b)	1.60
5	(a)	(a)	6. 90	7.35	5.80	6. 80	12.90	11.30	9. 80	(b)	(b)	1. 40
6	(a)	2.50	6. 70	7.00	6.05	6.90	12. 50	11. 40	10.10	(b)	(b)	(a)
7	(a)	5. 10	7.00	6. 60	6. 00	7.00	12.05	9.85	10. 40	(b)	(b)	(a)
8	(a)	5. 10	7. 40	6. 25	7.10	6.90 6.75	16.35	9. 60	10.75	(b)	(b)	(a)
$\stackrel{9}{10}$	(a)	3.95 3.95 3.95	7. 40 7.20	6. 00 5. 95	7.00 6.15	6. 75 68.80	16.00 15.70	9.30 9.15	10.50 9.85	(b)	(b)	(a)
11	(a)	3.95	6.90	7.45		7.50	14.00	9.10	9.40	(b)	2.70	(c)
12	(a)	4.05	6.70	8. 80		8.45	13.70	8.90	8.80	(b)	2.70	0.10
13	0.60	4.05	6.60	890	6.15	9.00	12.45	8.55	8.40	(b)	2.50	0.20
14	1.00	3.95	6. 10	8.60	6.30	10.75	11.50	7.85	7.80	(b)	2.50	0.40
15	2.20	5.00	6.20	8.40	6.40	11.15	11.35	7.15	7.20	(b)	2.45	0.45
16	2.60	5.00	6.20	8.05	6. 45	11.35	11. 45	6.70	6.90	(b)	2.40	0.60
17	2.80	4.80	6.00	7.50	6.50	11. 35	11.45	6.25	6.50	(b)	2.40	0.80
18	3.35	4.80	5.95	7.30	6.80	11.35	11.35	6.00	6.10	(b)	2. 40	1.00
19	2.80	4.65	5.90	7.00	7.20	11.50	11.30		5.90	(b)	2.30	2.00
20	2.20	4.35	5. 70	6.75	8.20	11.65	11.05		5.80	(b)	2.30	6. 10
21	1.60	3.95	(d)	6.65	8.75	11. 40	11.45	6.30	(b)	(b)	2.20	20.10
22	1.35	4.15	(d)	6. 65	9.06	11. 40	11.85	6. 60	(b)	(b)	2.20	22.00
23	1.15	4.45	(d)	6. 80	9.20	11.75	11.85	6. 85	(b)	(b)	2.15	22.00
24	1.10	4. 80	(d)	6. 10	8.50	12.00	12.25	6. 70	(b)	(b)	2.25	22.30
25	0.80	3.95	(d)	6. 50	7.00	12.10	13.05	6. 90	(b)	(b)	2.30	21.90
$\stackrel{26}{ }$	0.60	4.05	(d)	6. 15	7.50	11. 75	13.00	7.05	(b)	(b)	2.35	${ }^{20.40}$
27	(a)	4. 45	6.30	6. 00	7. 40	11. 40	12. 70	7.40	(b)	(b)	2. 55	18.18
${ }_{29}^{28}$	(a)	4.05										
$\stackrel{29}{30}$	(a)		6. 7 70 80	5. 90 5. 90	7.25 7.30	11.55 11.85	12.05 12.00	8.15 8.45	(b)	(b)	2.35 2.10	17.20 16.80
31	(a)		7.55		7.50		11.70	8.50	(b)	(0)		15.80

Below gauge.
b Gauge broken.
c Section out of place.
dGauge out of place.
1896.
[Gauge 45.60 miles trom Eads Bridge. Zaro of gauge 364.84 feat above Memphls datum plane. Gango read at $8 \mathrm{a} . \mathrm{m}$.

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sopt.	Oct.	Nov.	Dec.
1	14.80	a 4,20	7. 70	7.70	12.40	23.50	15.80	13.00	7.90	6.60	3.40	c 4.65
2	13.85	4.60	8.25	7.20	12.90	22. 70	16.00	13.05	7. 45	6.15	3. 45	4.55
3	12.60	5.30	8.55	6.90	12.95	23. 05	16. 35	13.15	7.00	5. 80	3. 70	4.50
4	b 11.50	6.25	8:35	6.50	12.95	23. 20	16.40	13.45	6.70	5.60	4.40	4. 70
5	10.40	6. 65	8.00	6. 20	13.00	23. 20	16.80	13. 70	6. 40	5.40	5.50	4.90
6	b9.40	6.75	7.75	6.00	13.00	23.35	16.85	-13.80	6.10	5. 30	6.40	4. 65
7	a 8. 60	6. 95	7.40	5.75	13.05	23. 10	16.50	13.80	5.80	5.25	7.45	4. 05
8	8.00	7. 20	7. 10	5. 60	1% \% 10	22. 70	16.00	13. 75	5.50	5.10	7.85	3. 70
9	7.30	7.05	6.80	5. 50	13.25	22. 45	16. 25	13.35	5.30	5.00)	b 7.40	3.45
10	6.65	6.80	6.60	6. 00	13.45	22.40	16. 30	13.00	5.10	4.90	${ }^{\text {b }} 6.90$	3. 20
11	6.00	6.50	6.45	8.00	13.85	21.90	15.75	12. 30	4.90	4.80	ठ6.40	3. 00
12	5.40	6. 25	a 6.20	11.20	14.00	21.55	14.80	11.75	4.75 ${ }^{\circ}$	4.80	6.15	3. 00
13	5.20	a 6.80	5.90	11.80	14.00	20.80	14.00	11.50	4.60	4.85	5.90	3. 10
14	5.10	8.00	5.80	12.00	13.80	- 19.55	13. 30	a 11.15	4.60	4.90	5.70	3. 40
15	5.00	10. 20	5.60	a 11. 70	13.20	17.90	13. 05	10.50	4.75	4.90	5.55	2. 60
18	5.00	10.10	5.50	11.40	13.00	16. 65	a 12.50	10.30	5.00	5. 15	540	4.00
17	4.90	9.40	5.20	11.15	12.90	16.00	12.25	10.00	5.20	5.15	5.40	4.50
18	4.85	8.90	5.10	10.90	-12.90	16.70	12.25	9.40	5.25	5.10	5.50	5. 00
19	4.85	8. 50	4.80	10.45	14.80	17.40	a 12.30	9.25	5.65	4.80	5.55	5. 70
20	4.80	7.80	4.60	9. 80	18. 40	17.55	13.25	9.35	6.00	4.70	5.55	6. 15
21	4.65	6.90	4.60	b9.70	21.35	17.45	14.05	10. 20	6.35	4.50	5.55	6. 35
22	4.55	6.00	4.80	${ }^{6} 9.60$	22.90	17.20	18.00	10. 75	7.90	4.35	5.60	6. 30
23	4.50	5.50	5.40	9.35	b 23.60	- 17.10	20.05	11.40	8.90	4.25	5.40	6. 20
24	4.75	5.20	5. 80	9.10	24.40	16.00	20.05	11.65	9.15	4.05	5.25	6. 05
25	5.05	5.00	6.20	8.80	25. 00	15.90	19.10	11.15	8. 80	3.95	5. 10	-5.90
26	5.25	5. 10	7.10	8.90	25.70	15.60	17.60	10. 70	8.35	3.85	5. 05	-5.70
27	4.90	6. 55	b 7.70	9. 20	25.50	15. 63	16.50	10.45	8.15	3. 70	5.00	5. 60
28	4.50	6.60	7.40	b9. 70	28. 00	15.85	${ }^{6} 15.70$	9.95	7.80	3.60	4.95	5. 40
29	4.30	7.35	7.30	b 10.40	26.00	16. 30	14.50	9. 30	7.50	3.55	4.75	5. 20
30	4.20		7.55	11.30	25. 20	b 16.20	14.00	8.80	7.00	3.45	4. 70	- 5.10
31	4.10		8.00		24.25		13.45	8.35		2.40		5. 05

Tabulabed gakge readings at selected stations between Chain of Rocks and Cairo-Cont'd.
BRICEEYS MILL, MO.--Centinued.
1897.
[Gauge 55.60 miles from Eads Brdge. Zero of gange 364.84 feet above Memphis datum plane. Gauge read at 8 a. m.]

Day.	Jan.	Fob.	Mar.	Apr.	Mas.	June.	July.	Aug.	Sept.	Oct.	Nov.	Deo.
1	5.10	Ice.	11.40	22.85	26.70	13.30	18.95	11.80	5. 80	3.10	2,00	10
2	5. 10	Ice.	11.00	24.60	27.20	12.65	18.15	a 11.60	5. 60	3.00	2.25	2.00
3	5. 50	Ice.	11.00	20.15	27.15	12.80	18. 35	11. 40	5.30	3. 00	2. 20	1. 70
4	15.00	Ice.	- 11.50	26.45	27.00	12.90	18.80	11.15	5.20	2.90	2.10	1. 50
5	21.40	Ice.	14.50	26.15	26.60	13. 70	18.95	10.75	4.80	2.90	2.00	1.20
6	22.40	5.90	19.10	25.80	25. 95	14.10	18.05	10.50	4.65	2.80	2.05	(b)
7	22.80	6.25	21.05	25.90	25.00	14.60	17.50	10.30	4.60	2.75	2.15	(b)
8	22.50	6.65	21.35	25.80	23.80	14.70	17.15	10.10	4. 55	2.70	2.30	(b)
9	20.00	7.10	21. 00	28.30	22.65	14.75	17.20	9.90	4.65	2.70	2.60	(b)
10	17.40	8.20	20.35	26.80	$\square 21.90$	14. 50	17.10	10.40	4.50	2.70	2.70	
11	14.80	9.15	19.20	27.35	21.20	14. 20	16.30	10.10	4.50	2.65	2.70	(b)
12	12.75	9.85	18.55	27.15	20.25	13.90	15.45	a 9.80	4.35	2.65	2.80	
13	10.95	9.75	18.20	26.65	19.35	13.50	14.90	9.50	4.15	2.55	2. 80	(b)
14	10.05	10.35	17.50	26.00	18.75	13.00	14.00	9.25	4.00	2. 50	2.75	
15	9.30	10.90	16.90	25.30	18.10	12.80	13.30	9.10	3. 80	2.40	2.75	(b)
16	8.95	11.40	18.20	c24.50	17.60	12.70	12.85	9.05 8.00	3. 60	2.35	2.80	
	8.65 8.85	11.70 11.40	16.00 16.10	24.20 24.10	17.00 16.40	12.65 12.65	12.30 12.20	8.90 8.80	3. 3.	2.25 2.15	2.90 2.75	(${ }^{6}$
19	8.80 9.90	11.10	16.65	24.30	15.80	12.75	12.35	8.70 8.70	3.30	2.10	2.65	b
20	11.60	10.70	16.65	24.20	15. 30	12.75	12.45	8.50	3.25	2.05	2.50	b)
21	12.45	10.60	17.30	24:20	14.80	12.55	12.10	8.30	3.20	2.05	2.30	(b)
22	12.65	11.50	18:00	24.30	14.30	13.25	11. 60	8.20	3.10	2.00	2.25	(b)
23	12.85	12.80	18.30	24.50	13.85	13. 40	11.30	8.00	3.10	2.00	2.25	(b)
2	c 12.55	13.50	18.60	24.70	a 13.60	14.40	11.10	7.90	3.05	2.00	2.25	(b)
25	11.90	14.00	18.30	a 24.50	13.55	14.35	11,25	7.60	3.20	2.05	2.25	(b)
28	11.20	13.80	19.50	a 24.30	13. 55	14.90	d 12.60	7.40	3.35	2.05	2.25	(0)
27	10.00	13.20	20.90	23.95	13.90	15.85	d 14.60	7. 10	3.40	2.00	2.25	(b)
28	Ice.	12.40	21.55	24. 25	14.00	15.85	15.00	6. 70	3.35	2.00	2.25	(0)
29	Ice.		21.70	25.00	14.00	16. 60	14.30	6.50	3.30	1.95	2.20	(0)
31	Ice.		21.45	26.10	14.10	18.25	13.00	6. 35	3.20	1.95	2.15	(b)
31	Ice.		21.25		14.00		12. 30	6.10		1.95		(b)

Changed less than one-half foot.

- Below gauge.
r Reading changed one-hall foot or more.
d Interpolated-no reading.

1898.

[Gauge 45.00 miles from Eads Bridge. Zero of gauge 364.84 feet above Memphis datum plane. Gauge read at 8 a. m.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Deo.
1		Ice.	6.70	20.70	13.00	17.20	20.35	10.30	5. 40	5.40		4.50
2		Ice.	6.60	19.65	12.80	16.80	20.35	9.70	5.00	5.05		4. 05
3	(a)	Ice.	6.45	18.40	13.40	16.90	19.95	10.60	4.70	4.80	7.00	b3.75
4	0.40	Ice.	6.30	17.00	15.50	17.55	19.20	11.20	c4. 40	4.40	6.15	-3.25
5	. 50	Ice.	6.15	16.60	17.50	18.00	- 18.20	11.10	c 4.20	4.10	5.70	3.00
6	c. 80	Ice.	6.00	16.30	18.40	18.30	17.60	10.25	4.05	3. 80	5.40	2.60
7	1.30	Ice.	5.95	16.60	18.45	18.30	17.55	9.50	4.00	3.55	5.10	2.40
8	1.60	2.70	5.85	16.65	18.30	17.55	18.30	8.80	4.00	3.45	5.30	2. 20
9	1.80	2.90	5.80	16.10	17.70	16. 80	19.70	8.65	4.55	3.25	5.70	1.90
10	2.05	3.60	6. 70	d 16.10	17.20	16.70	19.90	8.85	5. 50	3.00	c5.80	1.30
11	2.70	3.65	5.70	16.05	16.65	17.05	19.50	8.70	6.60	3.05	c6. 20	
12	3.90	3.90	6.05	15.20	15.80	18.05	19.00	7.95	7.25	c 3.05	6.60	
13	4.60	4.70	7.50	- 14.00	14.95	19.00		7.85	7.25	3.70	6.40	
14	5.20	c 6.40	11.25	c14.90	14.60	19.70		7.90	7.00	3.85	6.20	
15	5.30	7.00	14.30	14.90	14.20	20.10		7.90	6.50	3.45	5.80	
18	5.00	7.05	14.80	15.15	14.00	20.30		8.00	8.00	2. 95	5.50	
17	4.60	7.15	14.95	14.90	15.50	21.55		7.00	6.60	2.70	5.20	
18	4.30	7.20	15.00	14.65	18.85	22.35		7.75	8.15	2.45	4.90	
19	4.05	7.55	14.60	14.30	19.70.	2220		87.70	9.00	2.65	4.80	1.10
20	4.35	8.15	14.60	c 13.80	19.75	21.50		7.65	8.80	6 3.00	4.70	1.60
21	4.65	9.20	15.10	13.20	19.75	20.60		8.80	8.45	b 4.00	4. 40	1. 80
22	5.40	10.10	16.65	12.80	${ }^{5} 21.70$	18.35		9.30	7.25	6.70	4.40	2. 20
23	8.95	9.60	20.40	12.60	23.30	18.05		c 8.00	6.80	7.90	4.65	3.80
24	6.00	8.75	21.80	12.00	-23.70	b 17.60		8.20	6.80	8.20	4.90	5. 10
25	5.80	8.10	21.80	11.75	c23.20	- 17.20		7.30	b 7.40	\%. 00	5.70	6.80
26	5.75	7.65	21.60	12.10	22.20	17.00		7.00	7.40	7.10	6. 50	7.60
27	5.65	7.15	21.21	14.00	21.30	17.30		6. 70	7.20	6. 50	7.40	8.00
28	6.10	6.90	20.75	15.20	20.30	18.70	9.90	6.30	7.00	6.20	7.00	7. 80
29	5.95		20.45	14.60	19.30	19.90	9.30	6.00	8.40	6.00	6.15	7.60
30	5.55		20.70	13.65	18.90	20.40	9.60	5.90	5.60	${ }^{6} 7.90$	5.15	7.15
31	4.90		20.95		18.20		10.60	8.70		8.25		6.60
- Reading clanged one-half foot or more.												

Tabulated gauge readings at selected stations between Chain of Rocks and Cairo-Cont'd.
BRICKEYS MILL, MO.-Continued.
1899.
[Gauge, 45.60 miles from Eads Bridge. Zero of gauge 364.84 feet above Memphis datum plane. Gaugo read at $8 \mathrm{~s} . \mathrm{m}$.

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1	5. 80		13.00	11.80	22.45	20. 30	18. 20	12. 30	6.55	4.30	a 3. 50	4. 30
2	4.80		12.90	11.80	22.40	20. 45	18. 20	12. 40	6.60	4.05	a 3. 40	4. 20
3	4. 00		11.90	11. 35	a 22. 20	21.15	18.40	12. 40	6. 45	4.00	3.50	4. 10
4	3.50		11.50	10. 80	21.45	21. 35	19.00	12. 10	6.25	3.95	3. 70	4. 10
5	3. 40		10.85	11. 00	b 19.85	21.35	19.60	11. 75	a 6.10	3. 85	3. 00	4.00
6			10. 50	11.70	18.80	21.45	19.85	a 11.70	5.95	3. 75	4.05	4.00
7			b 10. 50	12. 30	18. 20	21. 20	b 19.95	a 11. 60	5. 75	3. 60	4.25	3. 90
8			b 10. 25	12. 35	a 17.75	20.70	20. 35	11. 30	5. 55	3. 50	450	3. 85
9			9.50	12. 20	17.50	20.25	20.25	11. 15	5.55	3.40	4.60	3. 80
10			9. 35	12. 25	17.50	20.25	20.20	12. 05	6. 55	3.30	4.70	3.70
11			9. 60	12.40	18. 05	20.25	20.50	13. 60	5. 60	3. 25	4. 80	3.70
12			9.85	12.75	18.70	20.30	20.75	b 14.10	5.75	3. 20	5. 10	3. 65
13			9. 90	14. 50	19.30	21. 10	20.55	13. 45	5. 80	3. 10	5. 20	3.65
14			10. 40	14. 80	19.50	22. 00	20.00	13.30	5.70	3. 05	5.30	3. 70
15			b 11.10	14. 25	19.35	21.80	19.35	13.15	5. 60	3.00	5. 40	3.75
16			13. 10	13. 70	18.85	20.80	18. 65	12. 40	5. 50	2. 90	5. 40	3. 80
17			14. 30	13. 50	18.15	20.00	18.30	11. 60	5. 45	3. 00	5. 30	3.55
18			15. 00	13. 40	a 17.65	19.95	17.95	11. 00	5. 55	3.00	5. 30	3.20
19			15. 45	13. 40	17.00	19,95	17.85	10. 50	5. 65	3. 05	5. 30	3.30
20			16. 70	13. 60	16. 40	19.90	17.65	10.00	a 5. 70	3.05	5. 25	3. 65
21			17.75	14.75	16. 80	19.70	17.35	9.65	a 5. 60	3. 05	5. 20	4.05
22			18.00	15. 50	17.50	19.30	16. 80	9.30	5. 40	3. 00	5. 20	3. 70
23			17.70	17.90	19. 10	18.85	16. 20	8. 80	5.30	290	5. 30	2. S0
24			17.15	20.60	20.60	18.20	a 15.60	8. 20	5. 00	285	5. 50	2.50
25			16. 45	22. 10	21. 50	17.70	16. 10	7.85	4. 85	2.80	5. 55	2. 40
26		3. 90	a 15. 70	22. 90	22. 25	17.30	14. 60	7.50	4. 70	2. 70	5. 30	2. 25
27		6.50	- 14. 60	23. 10	22.25	17.35	14. 10	7. 25	4. 05	2.70	5.05	
28		11.40	13. 60	22. 75	21. 80	17.65	13. 5.5	7.10	4.50	2.90	b 4.70	
29			12. 85	22. 45	21.15	18.00	13. 15	6. 90	4.35	3.20	4.60	
30			12. 10	22.35	20.55	18. 20	12. 70	6.65	4. 35	3.60	4. 55	
31			11. 60		20.35		a 1245	6.55		3. 70		

- Reading changed less than one-half foot.
- Changed one-hall foot or more.

1900.

[Gauge 45.60 miles from Eads Bridge. Zero of gauge 364.84 teot above Memphis datum plane. Gauge read at 8 a. m.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	Junc.	July.	Aug.	Sept.	Oct.	Nov.	Deo.
1		Ice.	Ice.	a 11.75	13.90	11.60	10.20	10.05	8.60	8.65	11.25	9. 10
2		Ice.	Ice.	12. 20	13.45	11.40	10.00	9.65	8.65	9.20	10.70	8.50
3		Ico.	Ice.	12.40	13.35	11.45	10.05	9.25	8.80	9.75	10.30	8. 00
4		Ice.	Ice.	12. 40	13.55	11.30	9. 95	8. 90	8.80	11.00	10. 20	7.50
5		Ice.	Ice.	12.45	13.50	10.90	10.00	8.50	8.80	11.40	10. 35	7.15
6			7.10	12.75	13.40	10.50	9.95	8.05	-8.90	11.25	10.50	6.80
7	1.50	Ice.	11. 70	13.30	13.75	10.15	9.65	7.55	8.85	10.80	11.35	6.50
8	1.75	2.00	15. 60	14.00	14.00	9.95	9.50	7.10	8.20	- 10.80	$\bigcirc 11.85$	6.30
9	2.05	3. 60	10.10	14.35	14.25	9. 90	9. 30	6.70	7.65	11.15	11.90	6.10
10	2.15	5.65	16. 40	14.20	14.05	9.60	9. 30	6. 30	7.35	11. 35	11.60	6.05
11	2.40	6.45	17. 30	13.90	13.90	9.50	9.15	6.00	6.85	11.00	11.25	5.90
12	2.65	6. 00	18. 20	13.80	13.60	8.20	9.05	5.70	6. 60	10.15	11.00	5. 75
13		5.50	a 19.35	14.40	13.80	9.20	9.05	5. 30	6.25	9.60	a 10.85	5. 55
14		5.45	a 20.25	15.30	14.40	9.55	9.00	5. 10	6.00	9.20	10.75	5.35
15		5.00	20.55	16. 20	13. 90	12.30	8. 60	4.90	5.80	8.95	10.60	5.10
16		Ico.	20.65	15.30	13.20	12.20	8.50	4.75	5. 60	8.80	10.35	4.10
17	2.10	Ice.	20.45	15.00	a 12.30	11. 10	8. 60	4. 60	5. 55	8.70	10. 20	4. 70
18	2.30	Ics.	20.05	14.10	12. 10	10.50	8.65	4. 60	5. 40	8.85	10.15	4.50
19	2.80	Ice.	19.25	13.50	12. 20	9.95	8. 50	4.90	5.30	8.70	10.50	4.20
20	4.25	Ice.	18.05	13.35	12.35	9.85	8.20	6. 20	5. 30	8.80	10.50	4.00
21	6. 10	Ice.	17.15	13. 60	12.35	9.80	8.10	7.25	5. 45	9.00	10.50	3.70
22	6.00	6.65	16. 40	14.00	12.35	10.60	8.45	7.90	5. 75	9.35	10.55	3.51
23	5.60	6.50	15.90	14.10	12.25	12.05	9. 60	8.00	6. 20	9.75	10. 65	3. 30
24	-4.90	7.70	15. 45	14.50	b 12, 30	12.85	a 10.70	7.90	6.45	10.20	10.70	3.25
25	4. 60	7.10	14.85	14.80	12.15	13.00	11.60	7.80	6. 60	10.45	10.70	3.10
26	4.50	6.80	14. 35	15.15	11.85	12.95	11.90	8.00	6. 60	10.65	10.80	3.05
37	4.40	Ice.	14.00	15. 25	11.45	12.80	11. 75	7.80	6. 70	10.75	10.70	3. 20
28	4.25	Ice.	13.60	-15.10	11.05	12. 30	11.35	7.80	6. 90	10.85	b 10.40	3. 20
29	4.00		13.00	14.70	10.95	11.35	10.95	7.70	7.40	10.75	10. 10	3.17
30	Ice.		12. 55	14.35	11. 40	10.65	10.55	7.60	8. 20	10.90	9. 6.5	b 3.9 (N
31	Ice.		12.10		11. 80		10.30	8.00		11.00		2. 75

Tabulated gauge readings at selected stations between Chain of Rocks and Cairo-Cont'd.
BRICKEYS MILL, MO.-ContInued.

1804.

[Gauge 45.60 milles from Eads Bridge. Tero of gauge 304.84 feet above Memphis datum plane. Gauge read at $8 \mathrm{a} . \mathrm{m}$. Commenced reading April 1, 1004.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Deo.
1				21.90	29.80	19.70	20.90	12.70	7.60	10.30	a 8.80	(b)
2				21.50	29.40	21.00	c 20, 00	12.30	7. 10	10. 20	c8.75	(b)
3				21.30	${ }^{29} 900$	${ }^{21.30}$	19.70	12.00	6. 80	10.00	c8.60	(b)
4				20. 80	28.20	${ }^{21.00}$	19.40	11. 50	7.00	9.70	a 8.50	(b)
ó				20.20	27.30	-20.00	10.00	11.00	7. 20	9.00	a 8.30	(b)
6				19.70	210.10	c 22.30	${ }^{\text {c } 18.80}$	10. 60	7.30	a 8.50	8. 20	(b)
7				10.10	25. 10	24. 50	c 18. 20	9. 90	6. 00	8.20	8.10	5.47
8				18. 810	23. 80	24. 80	17.80	9.60	6. 40	8.00	8. 00	6.37
10				18.20	23.30	24.40 23 23	18.70 218	9.00	6. 40	7.80	7.80 780	5. 27
10				18.10	23. 20	23.70	21.10	8. 50	6. 30	7.10	7.70	6.17
11				21.10	22.80	22.80	22.90	8. 20	6. 40	7.30	7.60	5. 27
12				20.30	22. 20	${ }_{2}^{22.10}$	23. 70	7.90	¢. 30	7.00	7. 60	6. 17
13 14				20.70	21. 50	${ }^{21.50}$	24. 10	7.70	6. 20	6. 00	7. 40	4. 87
14 15				20.10	20.70		23. 60	7,50	- 0.20	0.70	7.30	4.47
15 16				20.40	10. 00	21.30	$\begin{array}{r}22.80 \\ \text { c21 } \\ \hline 20\end{array}$	7. 60	6. 20	6. 60	7.20	4. 07
118				21). 30	19.40 19.10	- $\begin{array}{r}21.50 \\ \text { a } 21,60\end{array}$	c 21.40 010.80	7.70 7.80	a 0.10 c c.	8. 40	7.10 6.00	3. 17
18				20. 30	19.10 18.70		-10.80 -17.00	7.80 7.00	cor 0.10 $c 815$	0.20 0.10	6.00 0.70	3.3 2.8
19				21.10	10.00	a 21.75	c17.60	7.80	c 7.20	0.00	6.60	2.27
20				21. in	19.40	21.60	- 17,30	8. 60	8.60	5. 00	0. 40	2. 17
21				21.10	10. 10	21.70	a 17.10	9. 50	¢. 60	6. 10	0. 20	2. 27
22				21.10	18. 50	21.90	a 16. 50	10. 20	10.30	6. 10	0.00	2.07
23				21.40	18.10	21.60	15.80	c 10.10	10.00	0.20	5.80	1.97
24				21.80	17.50	21.00	a 15.10	-10. so	9. 10	0.30	5. 60	2.2
25				23.10	16.90	19.40	14.90	10. 80	8. 80	6. 50	5. 60	2. 617
20				27.00	10, 20	10.00	14.90	a 10.10	-9.00	6. 80	(b)	2.47
27				28. 50	16.10	18.00	14.50	11. 20	9.70	7. 10		3. 37
28				220. 80	10.20 10.40		14.00 13.60	10. 40	9.90 9.70	7. 40	(0)	4. 07
29				20.80 20.90	16.40 16.70	19.10 20.30	13. 60 13.20 12.	0. 60	9.70 9.90	7.90 8.20 8.	(${ }^{0}$	2.77 2.27
31					17.70		12.00	8.30		8.70	(3)	2.27

a Readlug changed loss than one-half foot.

[^12]e Reading ohanged oue-half foot or more.
[Gauge 45.60 miles from Eads 13ridge. Zero of gauge 304.84 feet above Memphls datum plane, Gauge read at $8 \mathrm{a} . \mathrm{m}$.]

Day.	Jan.	Feb,	Mar.	Apr.	May.	June.	July .	Aug.	Sept.	Oot.	Nov.	Deo.
1	a 1.4	a 8.4	16.3	15.6	15.8	17.0	19.8	17.1	10.9	13.3	11.1	08.6
2	1.4	-8.0	16.4	16.4	15.3	16.5	19.9	18.1	10.5	12.5	10.7	9.0
3	2.3	7.3	16.6	16.8	14.6	16.6	19.9	18.5	10.0	12.0	10.8	a 8.8
4	3.2	7.1	16.2	16.3	14.0	16.8	20.0	18.8	8.6	11.4	10.8	a 8.7
8	3.5	7.0	17.0	16.2	-13.4	17.4	20.9	18.2	9.0	11.0	11.0	8.1
6	3.4	7.1	¢ 17.4	-16.8	13.0	18.0	21.5	17.8	8.8	10.6	a 11.7	7.6
. 7	43.6	7.2	16.8	15.1	12.0	17.9	22.0	a 16.8	8.7	10.1	12.0	7.2
8	3.4	7.6	16.4	14.8	11.4	17.4	22.0	15.7	9.0	9.8	$\mathrm{a}^{\prime} 12.4$	6.7
9	2.7	7.3	18.0	14.1	10.7	16.8	21.7	15.0	9.0	9.1	11.9	6.3
10	2.5	b 7.3	16.7	13.6	10.3	16.4	21.6	14.3	8.8	8.6	11.6	5.7
11	2.5	6.8	15.4.	13.2	10.2	16.0	21.3	14.2	8.9	8.2	11.4	c 5.0
12	2.1	6.7	15.0	13.1	10.6	16.0	21.4	13.7	9.1	8.0	11.2	c 4.7
13	d 1.9	6.7	14.5	13.0	10.8	16.7	21.7	13.0	10.4	7.8	${ }^{6} 11.5$	c 4.5
14	d 3.6	6.3	13.8	12.8	11.2	17.5	22.4	12.6	10.2	7.7	b 11.3	c4.4
18	d 5.0	5.9	12.9	12.8	12.3	18.2	22.9	12.3	9.8	7.1	10.8	64.4
16	14.0	5.7	12.3	12.6	14.1	18.3	22.8	11.4	9.4	7.3	10.2	1.4
17	3.7	5.5	11.7	12.8	16.0	18.4	22.0	11.1	11.0	7.2	9.7	4.3
18	5.1	6.5	11.6	12.8	17.0	18.1	20.7	- 10.7	19.2	7.4	9.2	4.3
19	06.3	5.4	11.3	12.6	17.4	17.5	19.4	10.8	a 23.0	13.6	9.1	4.3
20	8.0	5.4	11.3	12.3	17.7	17.8	18.6	11.2	25.2	15.3	9.0	4.4
21	8.6	8.6	11.1	12.1	18.5	18.2	18.2	11.7	26.8	13.6	8.9	4.5
22	8.7	5.8	11.3	11.9	- 17.8	18.1	17.2	12.0	27.1	${ }^{\circ} 13.2$	9.2	4.7
23	8.8	a 6.4	811.6	11.8	17.4	17.9	16.7	12.7	26.4	$\bigcirc 12.9$	8.9	4.6
24	8.7	7.1	${ }^{6} 12.6$	12.1	16.9	17.7	16.6	14.8	25.0	12.7	8.7	4.8
25	8.4	7.9	${ }^{6} 13.2$	12.0	18.6	18.1	16.8	a 16.3	23.0	- 12.8	8.6	4.6
28	8.8	8.3	-13.6	13.0	16.1	18.7	17.4	a 16.9	20.6	12.7	8.1	4.4
27	9.8	9.8	13.7	13.5	16.0	18.9	17.0	-16.5	a 18.8	14.3	7.9	4.1
28	8.9	c 14.8	14.0	14.1	16.1	19.0	16.4	15.0	17.1	13.7	7.7	4.1
29	8.1		14.5	14.4	16.3	19.1	18.8	14.1	15.3	12.7	7.6	4.3
30	7.9		14.8	15.1	17.0	19.4	18.2	12.8	14.2	12.0	8.0	4.7
31	8.2		15.4		17.2		16.5	11.1		11.6		6.0

Changed by comparative hydrograph:

- Readlog changed one-half foot or more.

[^13]T'abulated gauge readings at selected stations between Chain of Rocks and Cairo-Cont'd.
BIRICKEYS MILL, MO.-Continued.
1906.
[Oauge 45.60 miles from Eads Bridge. Zoro of gauge 364.84 feet above Memphis datum plane. Gauge read at $8 \mathrm{a} . \mathrm{m}$.

Day.	Jan.	Fob.	Mar.	Apr.	May.	June,	July.	Aug.	Sept.	Oct.	Nov.	Deo.
1	5. 3	11.8	19.1	22.7	17.8	12.0	16.8	0.3	9.1	10.6	4.5	7.5
2	5.3	a 12.1	19.7	22.6	17.7	12.5	16.8	9.0	8.6	10.8	4.9	7.7
3	6.4	a 12.0	20.0	21.9	17.6	13.3	16.8	9.0	68.4	11.1	5. 5	7.0
4	6.4	11.0	19.6	21.2	17.6	13.7	17.0	8.9	as. 2	11.1	5.6	8.2
5	9.8	10.0	18.7	21.0	17.5	14.3	10.7	8.8	8.7	10.8	5.9	8. 3
6	13.3	9.4	17.7	20.8	17.4	14.5	16.3	8.7	7.6	10.0	6.0	8.5
7	13.3	-9.0	$\bigcirc 16.7$	20.7	17.8	14.7	16.0	8.6	7.4	0.0	6.0	9.0
8	c 12.3	8.5	$\bigcirc 16.4$	20.5	18.6	15.4	16.7	9.0	7.4	8.5	6.1	9.2
9	c 11.3	7.8	a 10.2	20.9	18.3	16.3	15.2	0.1	7.3	8.1	6.3	9.0
10	c 9.8	7.3	10.2	20.9	17.7	16.6	14.8	8.9	7.3	7.7	6.4	8.5
11	68.5	7.0	16.0	a 20.8	17.0	16.9	14.2	9.6	7.3	7.4	6.5	8.1
12	7.4	6.7	15.6	20.6	16.4	10.7	13.7	9.7	7.6	7.1	6.6	8.0
13	6.0	6.5	15.2	20.4	15.8	16.2	13.3	9.9	7.6	6.8	6.6	7.8
14	6.3	6.7	14.9	21.4	15.2	15.9	13.2	10.4	7.3	6.6	6.6	7.7
15	6.0	6.7	14.4	22.5	14.8	15. 8	12.8	11.0	7.2	0.3	6.6	7.3
10	5. 9	-. 6.8	14.0	22.5	14.2	15.0	12.5	11.1	7.1	6.2	6.7	7.2
17	6. 8	6.8	13.3	21.0	13.7	16.3	12.4	11. 1	7.0	6.0	6.8	7.0
18	6. 5	7.0	12.9	21.5	13.1	16.0	12.1	10. 5	6.9	5. 8	0.8	a 6.6
19	5.3	7.3	12.4	21.3	12.7	15.1	11.7	10. 1	7.0	5.7	0.9	a 6.1
20	5.3	7.8	11.8	20.9	12.3	15.3	11.1	10.0	7.3	5. 6	7.0	a5. 5
21	6.8	8.1	11.4	20.5	12. 1	16.0	10.9	10.1	7.4	6.5	7.8	\% 5.2
22	8.5	8.3	11.0	20.2	b 11.7	17.0	108	10.0	7.4	5.3	8.7	${ }^{6} 5.2$
23	0.4	8.8	10.3	19.7	11.5	17.0	10.9	9.6	7.6	6.2	8.8	64.9
24	11.0	10.5	10.4	10.3	11.3	18.1	11.1	9.3	7.9	6.1	8.7	84.4
25	12.0	13.7	10.7	10.0	11.2	18.7	11.7	0.1	8.5	5. 0	8.2	${ }^{6} 4.0$
23	11.6	15.8	11.2	18.8	11.1	18.0	12.4	0.1	9.1	4.8	7.8	${ }^{6} 3.6$
27	11.2	17.0	13.5	18.6	11.1	17.0	12.3	0.6	0.3	4.7	7.6	b 3.2
28	10.9	18.4	18.5	18.4	11.1	10.6	11.4	11.3	9.5	4.6	7.8	b 2.0
29	10.8		20.6	18.1	11.1	16.8	10.8	11.1	10.0	4.6	7.5	82.8
30	10.0		22.0	17.9	11.2	17.0	10.0	10.4	10.3	4.5	7.5	83.3
31	11.4		22.8		11.2		9.6	9.7		4.5		83.9

a Reading changed less than one-hall foot. b Reading ohanged dne-half foot or more. c Interpolated-no reading.
1907.
[Gauge 45.60 miles from Eads Bridge. Zero of gauge, 304.84 feet sbove Memphis datum plane. Gaugo read at 8 a. m.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Alig.	Sept.	Oct.	Nov.	Dec.
1	$a 4.3$	14.4	13.2	14.5	16.0	13.2	20.1	22.0	11.6	7.5	5.3	4.4
2	04.9	13.8	13.0	${ }^{6} 15.1$	16.6	13.6	19.5	21.0	11.4	7.4	6.2	4.4
3	b 5.8	13.4	12.8	${ }^{\text {b } 15.3}$	16.8	14.1	19.2	19.6	11.2	7.5	5.1	4.4
4	66.4	(c)	12.3	15.2	16.7	15.6	18.5	18.8	11.2	8.3	5.0	4.3
5	7.1	c)	12.1	15.0	16.2	17.8	17.6	18.1	11.2	8.7	5.0	4.1
6	8.2	c)	12.0	15.1	15.8	18.7	17.0	17.4	11.1	9.1	5.0	4.0
7	8.5	c)	11.9	14. 9	15.6	18.7	16.7	17.0	11.1	9.4	5.0	3.9
8	8.8	c)	11.8	14.8	16.2	18.3	17.0	16.8	10.9	9.4	4.9	3.8
9	8.8	c)	11.3	14.7	17.1	17.5	17.0	10.7	10.5	0.6	4.9	3.6
10	8.5	c)	11.0	14.9	17.7	17.6	17.1	16.5	10.0	10.1	4.9	3.5
11	8.5	c)	10.9	15.0	17.6	17.8	17.2	16.1	0.5	10.4	4.8	3.4
12	8.4	(c)	11.4	15.1	10.9	18.3	17. 1	15.7	9.1	10.5	4.7	3.4
13	8.4	7.5	13.3	15.9	15.8	19.3	17.1	15.1	8.7	10.5	4. 4	3.3
14	8.5	8.1	15.6	$16.6{ }^{\prime}$	14.9	20.1	17.6	14.8	8.3	10.2	4.4	3.2
15	9.3	9.0	16.7	16.5	14.7	19.9	18. 4	14. 4	8.1	9.6	4.4	3.2
16	10.0	9.9	16.6	16. 4	15.6	20.4	18.6	14.3	7.9	9.1	4.4	3.2
17	11.1	9.5	15.5	16.3	18.0	20.1	18.8	14.1	7.8	b8. 6	4. 4	3.4
18	12.1	0.5	15.1	16.2	18.7	19.2	20.3	13.7	7.6	8.2	4. 4	3.5
19	15. 0	10.1	14.8	16.4	18.6	18.6	21.0	14.3	7.2	7.9	4.4	3.6
20	18.6	10.3	14.7	16.9	17.2	17.8	21.1	a 15.0	6.9	7.7	4. 4	3.6
21	21.6	10.0	15.0	17.4	16.4	17.7	21.7	15.3	6.6	7.2	4.4	3.5
22	22.4	0.8	14.8	17.7	16. 4	17.4	22.1	15.2	6.5	7.0	4.3	3.4
23	22.7	10.2	14.0	17.7	14.4	17.3	22.7	15.6	6. 5	6.8	4.3	3.2
24	22. 6	11.3	13.4	17.5	13.6	17.6	23.2	15.0	6.7	6.5	4.3	3.3
25	${ }^{-} 21.8$	12.4	13.1	17.9	13.0	18.8	23. 6	14.8	6.9	6. 2	4.3	3.2
26	20.8	13.1	12.9	17.4	${ }^{\circ} 12.6$	19.9	23.7	15.1	7.1	6.1	4.3	$3: 2$
27	19.0	13.3	12.8	17.0	${ }^{\circ} 12.1$	20.4	23.4	a 14.6	7.3	6. 0	4.3	3.2
28	17.5	13.2	12.7	16.5	812.5	21.1	22.9	13.1	7.4	5.9	4.3	3.2
29	10.6		12.6	15.8	12.9	20.8	22.8	12.4	7.6	5.7	4.3	3.0
30	15. 4		13.3	15.4	12.8	20.5	22.4	12.1	7.6	6.6	4.4	2.8
11	14.9		13.8		13.0		22.4	11.8		5.1	2.0

- Reading changed one half loot or more. b Reading changed less than one-half loot.

Tabulated gauge readings at selected stations between Chain of Rocks and Cairo-Onnt'd. BRICREYE MIIJ, MO.-Continued.
1908.
[Gauge 45.60 mlles from Eads Brldge. Zero of gauge 364.84 feet sbove Momphls datum plane. Gauge read at $8 \mathrm{a} . \mathrm{m}$.]
[Gauge discontinued from February 1 to June 4 and from June 27 to end of year.]

Day.	Jan.	Feb.	Mar.	Apr.	May	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1	3.00											
2	3.20											
3	3.30											
4	3.30											
5	3.30					25.8						
6	3.20					25. 9						
7	3.10					25.0						
8	2.10					20.0						
0 10	2.10					25.9						
10	2.80 2.80					20.0						
11	$\begin{aligned} & 2.80 \\ & 2.80 \\ & 3.10 \end{aligned}$					$\begin{aligned} & 20.0 \\ & 20.0 \end{aligned}$						
12	$\begin{aligned} & 4.00 \\ & 3.10 \\ & 3.80 \end{aligned}$					20.3						
13	3.80 $\text { 4. } 50$					20.8						
14	$\begin{aligned} & 4.50 \\ & 4.00 \\ & 4.00 \end{aligned}$					$\begin{aligned} & 20.0 \\ & 27.0 \end{aligned}$						
15	$\begin{aligned} & \text { 4.00 } \\ & 3.80 \end{aligned}$					27.3						
16	3.80					28.3						
17 18 18	$\begin{aligned} & 3.40 \\ & 3.10 \end{aligned}$					20.1						
18	$\begin{aligned} & 3.10 \\ & 3.00 \end{aligned}$					20.6						
18 20	$\begin{aligned} & 3.00 \\ & 2.90 \end{aligned}$					30.0 30.2						
20	$\begin{aligned} & 2.90 \\ & 2.50 \end{aligned}$					30.2 30.0						
22	2. 40					30.0						
23	2.40					20.7						
24	2.70					20.6						
25	2. 90					29.2						
26	3. 10					28.9						
27	3.10											
$\begin{aligned} & 28 \\ & 29 \end{aligned}$	$\text { 3. } 20$											
29 30	3.10 3.00											
31	2.90											

LTTILLE ROCK, MO.
1894.
[Clauge 56.45 miles from Eads Brldge. Zero of gauge 220.84 feet above Memphis datum plana, Gauge read at 8 a. m.]

Day.	Jan.	Fob.	Mar.	Apr.	May.	June.	July.	Aus.	Sept.	Oot.	Nov.	Deo.
1			143.25	148.00	148. 30	152. 15	152.00	145. 55	141.85	142.25	140.80	140.85
2			143.25	147, 50	148.75	152.30	151.65	145. 65	141.75	142.00	140.80	140, 80
3			143.25	147, 08	140. 05	152.00	151.45	145. 60	141,70	141.75	140.90	140.95
4			143.35	140.95	150,00	161.00	151.05	143.35	141, 70	141.60	141,00	141.00
5			113.85	140.65	150.10	151.75	150,75	145.25	141.85	141,60	141.05	141.30
6			1.14 .00	146.40	150. 45	151.70	150.80	145. 05	141,00	141.10	141, 10	141.70
\ddot{i}			147.70	146. 25	151.40	161.75	151.00	144.80	142. 10	111.30	141.15	141.6)
8			151.20	146.20	152.65	152.00	150.95	144.50	142.10	141.25	141.25	141.40
9			153.00	147.30	153.85	152.20	-160.30	144.20	142.45	141.15	141.35	141.10
10			153.90	148.30	154.65	152.15	149, 00	144.05	142. 65	141.05	141.45	140.85
11			154.05	148. 10	155. 05	162.00	149.20	143.85	142.50	141.10	141.40	140. 6.5
12			1;3. 45	147.85	156.50	151.90	149.00	143.70	142. 50	141.15	141,35	140.50
13			152.45	148.20	155.70	151.85	148.75	143.60	142.50	141, 15	141.25	140.40
14			151.35	148.70	154.70	151.90	148.40	143.45	142.40	141. 20	141.15	140.30
15			150.40	a148. 50	164.10	161, 80	147,85	143.30	142. 35	141.25	141.15	140.35
16			149.70	148.30	153.60	151.80	147,40	143.10	142.45	141.15	141, 10	140. 45
17			141. 20	148.50	153.20	151.85	147. 10	142.90	142.75	141.10	141.05	140.60
18			148. 30	150, 30	162.80	151.75	146, 85	142.80	143. 40	141.00	141.05	140.50
111			148.22	152.30	152.00	151.00	146.70	142.75	143.05	140.85	141.05	140.45
2.1			147.85	153.15	161.20	151.65	140.60	142. 65	143.45	140.90	141. 10	140.45
21			147.60	152.50	150.60	151.60	146, 00	142. 60	143.15	140.85	141.05	140.45
22			147.63	151.45	160.00	151.05	146, 50	142.50	143.00	140.90	141.00	140. 50
33			147.70	150.50	140. 00	151.70	146. 45	142.45	142.90	140.80	141.00	110.50
31			147.80	140.80	149.70	151.80	140.40	142.35	143.00	140.80	141. 20	140.50
25			147.85	140.40	149.60	151.80	146.30	142.30	143. 05	140.90	141.05	140.55
26			147.82	149.15	149.50	151.70	140.00	142,20	142. 05	141. 10	141.00	140.60
27			147.68	142.90	140.40	161.75	145.85	142.10	143.20	141. 05	141.05	Wind.
28			147.50	148.70	149.30	151. 95	146. 75	142.05	143.00	140.85	141.00	140.50
21			148. 50	148.45	140.25	152.65	145. 75	141.05	142.80	140.80	141.00	140.00
30			148.80	148.25	149.25	162.65	140.00	141.00	142. 55	140.75	140.95	139.60
31			148.48		160.95		145.80	141.90		140.75		139.60

Tabulated gauge readings at selected stations between Chain of Rocks and Cairo-Cont'd. LITTLE ROCK, MO.-Continued.
1895.
(Hauge 56.45 miles from Eads Brldge. Zero of gatige 220.84 feet above Memphis datum plane. Gauge read at $8 \mathrm{a} . \mathrm{m}$.

Day.	Jan.	Feb.	Mar.	Apr	May.	June.	July.	Aug.	Sopt.	Oct.	Nov.	Deo.
1	139.6	138. 45	142.00	144.80	143.15	144.75	148.50	148. 60	145. 55	141.30	140. 45	140.00
2	138.90	138, 60	143. 50	144.85	143.00	144.80	148.70	140.30	145.60	141.25	140. 40	
3	138.50	138, 60	143.90	145.55	142.90	144.55	148.85	1.18 .85	146.85	141. 25	140. 40	
4	138.60	138.95	144. 20	145. 45	142.00	144:30	140.00	148.45	146. 40	141.30	140.35	139.70
5	138. 60	140.55	144.35	144.80	143.10	144. 10	149,30	148.00	140.70	141, 45	140. 35	139.60
6	138. 30	141.60	144. 10	144. 25	143.30	144. 10	148.05	147.30	140.90	114.55	140. 25	139. 30
7	138.45	141.80	144.30	143.00	143.80	144. 20	148.90	146.75	147. 15	141,60	140. 25	138. 80
8	138.40	Frozen.	144.70	143.70)	144.20	144.15	152. 20	148.55	147. 15	141. 50	140.30	138, 60
9	138.50	Frozen	144.70	143.60	144. 15	144.10	152. 20	146. 40	147. 35	141. 40	140. 40	138, 30
10	138. 30	Frozen	144. 55	143.35	144.15	144. 10	152,00	146.15	140.75	141.35	140. 65	138, 30
11	138.20	Frozen	144.25	144.40	143.75	144.70	151, 35	146.15	146. 35	141.35	140, 60	138. 40
12	138.15	Frozen	144.00	145, 70	143.35	145. 40	160.40	146,00	145. 95	141,40	140.60	138, 45
13	138.00	Frozen.	14385	145.80	143.40	145.70	149. 10	145. 60	145. 50	141. 50	140, 50	138. 50
14	(a)	142, 25	143.70	145.75	143. 50	147, 30	148. 15	145. 20	145. 10	141, 65	140. 50	138.60
15	(a)	142. 25	143. 45	145. 50	143, 75	147, 85	148, 00	144.70	144.70	141,60	140. 45	138.75
16	137.70	142.20	143.45	145. 10	143.80	148,00	148. 20	144. 25	144,35	141,60	140. 40	138. 80
17	137.90	142. 10	143. 45	144.75	143.80	148.10	148.05	143.85	144. 00	141,65	140. 45	138.85
18	138.40	142.00	143. 40	144. 80	144. 10	148. 25	147, 95	143.40	143, 70	141. 50	140. 40	138.95
19	139.50	141. 90	143. 10	144. 25	144.35	148. 30	147.80	143.25	143.30	141, 45	WIndy.	139. 50
20	139.65	141. 80	143.30	144. 10	145. 10	148.50	147. 95	143.20	143.20	141.35	140. 25	142. 60
21	139. 40	141.70	143.15	143.00	145.70	148. 30	148. 40	143.55	143.00	141. 25	140. 25	1ist. 80
22	139. 40	141, 60	142. 00	143.90	145. 90	148. 15	148. 50	144.00	142.80	141. 10	140.20	157.50
23	139. 10	141,90	142.80	144.00	146. 10	14830	148. 85	144.30	142.40	141.00	140. 20	157. 90
24	139.10	142.00	142.90	144.00	145. 55	148. 65	140. 10	144.20	142.00	140.95	140. 25	158. 20
25	139.10	141. 70	142.90	143.80	145. 10	148.75	149. 50	144.05	141.80	140.00	140.30	158.00
26	138.75	140.55	142. 95	143.65	144.80	148.50	149.50	144. 40	141.80	140.80	140. 10	150. 60
27	138.20	142. 05	143.70	143.40	144.60	148. 15	148.00	144.90	141.60	140.75	140. 60	1.55 .10
28	137. 85	141.80	143.80	143.25	144. 50	148.05	148.80	145. 15	141.50	140.70	1.40. 4	154.00
29	137.75		143.75	143.25	144. 60	148. 20	148.15	145. 35	141.30	140.65	140. 30	153. 50
30	138.25		144. 65	143.25	144. 50	148.40	148. 20	145. 70	141.20	140. 60	140. 20	152.00
31			142.80		144.60		148.35	145. 65		140. 50		152. 20

a About 1 foot below gauge.
1898.
[Gauge, 50.45 millas from Fads Brldge. Zoro of gauge, 220.84 foet above Momphis datum plane, Gauge read at 8 a. m .]

Day.	Jan.	Fob.	Mar	Apr	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Deo.
1	151.30	141.80	144.90	144	140	159.80	152.25	160.00	145.70	144.60	141.60	142.70
2	150. 30	142. 10	145. 40	144. 40	149. 40	158.95	152. 60	149.90	145. 25	144. 20		$1+2.70$
3	149. 50	142.7	145.8	144.		168, 00	152. 70	150.	144. 80		141.90	42.60
	148. 00	143.60	145.65	143.85	140. 50	159.20	152.75	150. 20	144. 50	a143. 70	142. 20	
	147. 40	143.90	145.20	143.60	149. 55	159.20	153.10	150.	144.	143.45	143.30	142.90
6	146.	144.10	145.00	143, 40	149,	159.30	153, 20	150	144.	143.30	144. 20	1+2. 65
7	145. 80	144. 20	144.80	143.20	149.	169.20	152. 08	150.60	143.	143.20	145. 20	142. 20
8	145. 20	144. 40	144.60	143.00	149.	153. 80	152.50	150, 55	143.	143.10	146.60	141, 8
	144. 50	144.3	144.30	142.9	149.70	158.40	162.60	150). 40	143.35	143.00	145. 30	
10	144. 10	144.10	114.10	143.10	149.0	168. 35	152.70	149.	143.15	142.00	144.00	141.40
11	143. 60	143.8	144.00	144.00	150.15	158. 10	152. 30	149. 40	143.00	142.85	144.45	
12	143.10	143. 60	143.80	147. 60	150. 40	157. 00	151.50	148.90	142.80	142.85	144. 20	141.15
13	142.90	144.00	143	148.	150.	151.00	150.90	148.70	142.70	142.00	144.00	141. 10
14	142.70	145. 20	143. 40	148.80	150.	155. 80	150.	148.	142.	142.95	143.80	41.
16	142. 00	140.85	143.20	148. 50	149.70	154. 20	149.80	148.	142.80	142.95	143.60	141
	142.50	147.	143.	148.2	149.	153.00	149. 50	147.	143.00	143.15	143.50	
17	142. 50	148, 6	142.8	148.0	149.5	152.25	149.20	147,	143.20	143.30	143.50	142.30
18	142. 40	146. 10	142.75	147.7	149.	152.70	149.10	146.90	b143:30	1+3.20	143. 50	142.70
19	142. 40	145. 9	142. 50	147.	150.	153. 50	149.20	146.70	143	142.90	143.	143.50
20	142. 35	145.30	142.40	146.8	154.20	163. 60	150.05	146.	143.	142.75	143.60	144.00
21	142.2	144.00	142.30	146.	157.	153. 60	150.80	147.	144.	142.40	143.60	144.10
22	142.15	143.9	142. 40	146.40	158.	153. 40	154.20	148.00	145.	142.30	143. 00	144.15
23	142.	143.2	112.	146.20	159.	153.20	150.	148. 50	140.30	142.15	$\checkmark 143.45$	b144. 10
24	142.40	142.0	143.	146.	160.	152.50	150.40	1.18 .70	146.60	142.20	143. 30	b14.00
25	142. 60	142.70	143.60	145.	101.30	162.30	155. 70	148, 35	146.40	142.15	143. 20	143.90
26	142.75	142.75	-144.30	145.90	181,80	152.00	154.30	148.00	146.00	142.00	143.	6143.75
27	142. 50	143.10	144.80	140.10	161.80	151.90	153.30	147.80	145.85	141. 20	143.20	b1 13.60
28	142.10	143.60	144.00	140.65	162.10	152. 20	152. 10	14\%. 40	145. 50	141.80	143.20	143.40
29	142.00	144. 50	144. 40	147. 20	162.10	152.60	151. (i)	140. 90	145.30	141. 70	143.00	143.30
30	141.90		144. 00	00	161.50	152.6	150. 10	140. 40	144.90	141.70		143.15
31	141.80		145.00		160.70		150. 40	146.00		141.65		143. 10

a Reading changed one-balf foot or more.

Tabuluted gauge readings at sclected stations between Chain of Rocks and Cairo--Conl'd. LITTLE ROCK, MO.-Continued.
1897.
[Gauge, 56.45 miles from Eads Bridge. Zero of gango, 220.84 feot abovo Momphls datum plano. Gauge real at 8 a. m.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Doc.
1	143.10	142. 70	149, 20	168, 00	102.60	150.00	155.80)	140.30	141.30	141. (0)	140.65	140. 80
2	143.15	142.30	148.70	160.70	103, 10	160.30	15i. 30	1140.00	14. 10	141.60	110.70	141). 70
3	143.30	142.00	148. 60	162.30	103. 25	160. 40	165. 30	143.80	14385	141. 14	111. 70	1.10.50
4	150. 10	142.60	140.00	162.00	163.25	160. 50	165.70	148.80	143.65	141. 40	140.70	1.11. 20
5	157.45	143.00	161.50	162.75	162.85	151.15	155. 95	1.18. 60	143. 15	1+11.35)	146. 165	13!. 85
6	158.80	143.90	165.40	162.65	162.30	161.60	155. 20	148.30	143.20	$1 \cdot 11.30$)	140. 815	130. 75
7	169.40	144, 20	157.60	162.45	101.40	151.00	154. 70	148.20	143.05	141.25	1.11. 70	1331. 40
8	159. 30	144.60	158.20	162.45	160. 10	162. 00	154.40	148.00	143.00	141. 20	1119.85	1330.00
9	167. 30	145, 00	167.90	162.00	169.40	162. (X)	164.40	147.00	1.43 .00	141.15	111.10	(1)
10	154.70	145. 40	167.60	103.30	168.60	161.8)	154.40	148. 20	143.00	141.10	141.30	$1{ }^{(6)}$
11	152. 30	146. 70	156, 40	163.85	167.80	161.30	163. (6)	148.10	142.05	141. 10	$1+1.36$	(c)
12	150. 40	147.20	165.00	163. 80	1167. 10	151.30	162.70	147.70	142.80	140. 10	1.11.40	c)
13	148.80	147.40	155. 30	163.30	156. 40	151.00	162.35	147.50	142.05	140. M 0	1.11. 40	c)
14	147.80	147. 50	154.70	162.80	165. 70	160. 70	151.65	147,30	112.45	140, 85	111.40	c)
15	147.15	148. 50	154. 10	162.00	165, 10	160.40	160. 10	1.17.30	142.25	140.75	141.40	(c)
16	146.80	148.70	153, 40	101.30	164. 60	150.20	150. 60	147.20	142.15	140. 70	1.11.40	(c)
17	146.50	149. 15	153. 10	160.80	151. 10	150. 20	160. 10	147.10	1.12.00	140. 15.5	141.60	(c)
18	146. 60	149.00	153.35	160.60	a163.55	160. 20	149.00	177.00	141.85	1.10. (i)	111.10	c)
19	147.30	148, 70	154, 00	160. 35	163.00	150.40	140.00	1416. (1)	141.80	140. 65	1.11.15	c)
20	148.80	148. 40	163.80	160. 50	162, 60	150. 40	160.00	143.80	111.75	140. 60	1.11. (1)	c)
21°	149.70	148.60	154, 30	160, 50	162. 20	160. 20	140. 70	140. (6)	141.05	140.50	110.05	c)
22	150.00	149.00	154, 90	100. 50	151,70	160. 10	140. 35	146.60	141.6	140. 60	1.10.00	c)
23	150.30	150. 10	165. 10	100. 65	161.35	160.80	148.00	146. 40	141. 60	140.45	1.10 .85	c)
24	a150. 20	181. 10	165. 40	160.80	161,00	161.70	148.05	1.41 .25	141. 65	140.45	1.10. 60	c)
25	140. 00	161. 30	155.60	160.80	160,00	161, 80	1.18.70	146.10	1.41.70	140. 40	140.80	c)
28	149.10	151,00	160. 05	180. 60	151. 00	152, 15	1.10 .70	145.80	111.85	140, 40	1.10.00	(c)
27	147.85	150. 70	167.30	160. 10	161, 35	163. 10	151.00	145, 60	141. (6)	140.45	140.00	(c)
28	146. 60	150.00	158. 05	160. 30	161,45	162.80	152. 10	145, 30	1.11.80	140. 50	1.40 .00	$d 137.50$
29	145. 65		158.10	161.00	161. 40	163.70	152.00	115.00	141, 70	140. 50	140.00	d138.21
30			167.90	161. 80	151.40	165. 30	160.90	1.11.80	141.06	1.10. 50	140.60	d138.901
31			167.70		1a151.60		150. 10	144. 60		140.50		d130.20

1898.

[Gange, 56.45 miles from Eads Bridge. Zero of galige, 220.84 fent nhove Momphis datum plano. Gauge read at 8 a. m.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	Juno.	July.	Aug.	Sopt.	Oot.	Nov.	Deo.
1	139. 40	143. 10	144.90	157.90	150, 60	154.00	156. 40	148.20	143.70	143.80	140.00	142.70
2	130. 70	142.60	144.80	150.00	150. 30	153.60	150. 10	1.17.76)	143. 30	143.30	1.15, 30	142. 20
3	130. 80	141, 90	144.70	155. 75	150.80	153, 00	160, 25	148.30	143.00	143.00	14.4, (\%)	141.75
4	139.30	141. 20	144. 50	154. 50	162.70	154.20	155. 60	149.00	$1+2.80$	142, 70	144. 00	141,30
5	139.16	140.80	144. 35	a154.00	154. © 0	154. 05	164.70	148. 95	142.60	122.40	143. 60	141, 00
6	130.40	140.05	144.20	163.60	155. 50	155,00	154. 20	148. 20	1+2. 40	142.10	113. 30	140. 50
7	139.85	140.50	144.05	153, 00	165. 70	154.00	154. 30	1.17 .50	142.30	141.80	1+3: 20	110.35
8	140. 25	140.00	143. 95	153. 60	155. 35	154. 25	155. 30	140. ${ }^{\text {m }}$	142.35	141.60	143. 45	140.15
9	140.45	141.60	143. 85	153. 20	155. 00	153. 60	150.10	140.75	142.80	141. 50	$1+3.80$	139.60
10	140.80	142.00	143.80	163.20	154, 35	153. 40	156. 25	1+10. 05	143. 65	141.30	143.90	139.20
11	141. 10	112.20	113.70	153. 10	153. 75	153. 65	155.90	140.80	144.50	141.20	144. 10	139.00
12	14240	142. 20	144.00	152. 60	153. 00	154.45	165. 55	140.10	146. 40	141.30	141.40	138.80
13	143. 20	142. 00	145.50	152.10	152. 20	155. 30	154. 30	145. 80	145. 50	141.80	144. 30	139.10
14	143.80	144.40	148.60	162.00	151, 80	156. 00	153. 30	1.16. 00	145. 30	142.10	144.00	139.00
15	143, 95	145. 20	151. 80	152.00	151. 0	156. 35	152. 55	140. 10	144, 80	141.70	143. 70	138.90
16	143.80	145. 50	152. 60	152.30	151.30	156, 50	151, 80	140.10	144.40	141. 20	143.35	139.00
17	143. 50	145. 50	162.70	152.10	152.70	157. 55	150.00	140. 10	144.80	141.00	143. 10	139.40
18	143. 20	145. 65	152.80	151. 60	165. 50	158. 45	150. 20	145. 90	140. 20	140.70	$1+2.00$	139.70
19	142.90	145. 80	152. 40	151, 10	150. 50	168, 30	140.70	145. 80	147. 10	140, 85	142.80	139.80
20	143. 20	146.40	152.20	150. 60	166. 00	157.70	149.30	146.80	147,00	141.60	142.70	140,00
21	143.30	147. 40	152.60	150. 15	160. 45	156.80	148.00	146. 05	146.40	143.00	112.50	140.10
22	144.00	148.20	154.00	149.70	168. 30	165.70	148. 20	147.30	145.80	144.80	142.50	140.30
23	144.60	147.80	157. 10	149.60	169.80	154.80	148.50	147.00	145. 10	146.00	142.70	111. 80
24	144. 05	147.00	159.00	149.30	160. 20	154. 20	148, 10	141625	144.00	110.40	$1+2.85$	133. 60
25	144. 40	140.30	159.10	149.30	159.60	153.60	147. (i)	145.55	145. 60	140.20	143.75	145.00
26	144. 40	145.90	158.70	149.00	16805	163. 45	147.70	1.15.20	145. 55	145.70	144.40	145.70
27	144. 45	145. 50	158. 50	161. 20	167.80	163.75	147.00	141.00	145. 40	145. 10	145. 40	148.00
28	144.75	145. 15	158.20	152. 60	151. 90	165.00	147. 80	14.t. 50	145. 20	144. ${ }^{\text {io }}$	145. 20	145.90
29	144. ${ }^{0} 10$		157.80	162.00	161. 00	156. 0	147. 45	144.30	144.70	115. 20	144. 40	145. 55
30	144. 10		157.90	151.20	155.70	150. 40	147.45	144. 15	144.10	140.10	143.50	145.30
21	14.		168. 10		15		148. 10	(140. 50		144.90

- Changed less than ono-half foot.

Tabulated gauge readings at selected stations between Chain of Rocks and Cairo--Cont'd. LITTI, E ROCK, MO.-COntInued.
1890.
\{Gauge, 56.45 miles from Eads Bridge. Zoro of gainge, 220.84 feet abovo Memphls datum plane. Gauge read at $8 \mathrm{a} . \mathrm{m}$.

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Alig.	Sopt.	Oct.	Nov.	Dec.
1	144.00	137.00°	150. 40	148.90	168.06	160.80	155. 10	140.95	144.80	142.60	141.80	142.70
2	143.00	136.05	a160. 60	149. 10	158.70	156. (69	155. 10	150.00	144,80	142. in	141.70	142.65
3	142. 20	136i. 97	a140.80	148.60	168.60	167.60	155. 30	150.05	144.80	142.40	141.75	142.65
4	141.80	139.50	149.10	148.20	15\%,80	167.70	155. 70	149.80	144.60	142.30	142.00	142, i0)
5	141.70	142.60	148.60	148.20	150.35	157.75	151.2is	149. 00	144. 45	112.20	142.15	1.12. 40
6	141.45	144. 10	148.20	148.80	165. 30	167.80	154.60	140. 80	144:30	$142.10-$	142.30	142. 40
7	141.10	145. (h)	148. 20	140. 50	154.70	4157.70	15xi. 70	140.40	144.10	142. (6)	142.60	142.30
8	141.50	146. 20	148.00	149. 50	154. 25	157.25	156.90	140.09	144.00	141.80	1.12 .80	1.42.20
9	141.70	144.60	147.30	149.30	164.00	1anisis	15×1.95	148.75	143.00	1111.70	142.00	142.10
10	141.10	145, 00	147.10	140.40	164.10	1:2i. 85	166.80	149.60	143.00	111.60	143.10	142. 10
11	141.10	146.00	147.30	149.60	154.00	156.85	167.10	150.00	144.00	141.60	143.25	112. 10
12	141.30	144.00	147. 50	149.80	155. 20	15×1.00	157.30	151,40	144.20	141. 50	143.40	142.05
13	141.30	144.70	147.60	151.30	155. 70	167.60	157.20	150.90	144.20	141.45	143.45	142.10
14	142.10	144. 90	147.80	181.80	155.00	159.40	156.70	150.70	144. 10	141. 10	143.50	142. 10
16	141.00	145. 10	148.40	151.20	155.00	158.35	15¢i, 10	150.60	144,00	141.25	143.65	142.20
16	141.80	14t. 30	150.00	160.60	165. 60	167. 50	165.60	150. 05	143.00	141.15	143.70	142.20
17	142.00	145. 50	151.30	150. 50	164.85	159.80	165. 20	140.40	143.85	141.25	143.60	141,90
18	142.10	145. 55	151.00	150. 45	154.40	156.60	154.90	148.80	143.80	141.25	143.50	141. 80
19	142.00	145. 10	152.30	150.45	153.75	150.60	154.76	148.30	143.00	141.45	143.55	1.41.50)
20	141.85	145. 60	153.30	150.60	153.30	$1 \mathrm{iff}$.	154.70	1118.00	144. 10	141.35	113.55	$141.91)$
21	141.80	144.00	154.20	151.80	153, 65	1516. 40	154. 40	147.60	144.00	141.30	143.50)	142. 10
22	141.80	143.40	164.60	152.20	154. 20	186.10	153.90	1.47 .30	143.80	141.20	143. 50	142.10
23	141.75	141.80	154. 25	163.90	155.70	155.70	1:3.35	143.85	143. 60	141.10	143. 65	141. 120
24	141.70	140.70	163.70	168, 80	156.00	155.20	6152, 90	1.13. 40	143.40	141.00)	143.80	(14. 1 i
25	141.80	141.80	153.00	168.10	157, 80	154.75	152. 50	1.16.00	143.25	141.00	143. 30	1.10.91)
26	141.80	143.15	152.30	158.95	158. 50	154.45	152.05	14.70	143.10	140.95	133.81)	1.41.20
27	141.75	144.30	151.60	159.30	158.60	154. 40	151.80	1 1.15. 15	143.100	1.40 .05	1+3. 51	139.81)
28	141.60	148.80	150.90	169.05	168.25	154. 50	151.00	1.6. 30	$1+2.90$	141.20	143. 15	138.30
29.	141.30		150.00	168.70	157.70	164.00	150.60	14.10	142, 81)	141.50	143.00	138.90
80	140.60		149.35	158.60	157.20	155. 10	6150.30	$1 \mathrm{fis}, 00$	142.70	141. 35	142.85	138.25
21	139.30		148.00		150.05		150.10	14.180		142. 10		137.80

a Reading changed one-hall foot or mort.
© Changed less than one-half foot.

1900.

[Gauge, 86.45 miles from Eads Bridge. Zaro of gange, 220.34 feet above Memphis datum plane. Gauge read at $8 \mathrm{a} . \mathrm{m} .1$

Day.	Jan,	Feb.	Mar.	Apr.	May.	June	July.	Aug.	Sept.	Oet.	Nov.	Dec.
1	136.70	139.70.	143.80	140. 40	151.20	140.10	147.80	117. 15	145. 90	143,00	14.3.35	141, 50
2	136.20	138.00	143.80	149, 80	150. 70	188.80	1.47. 51)	117.10	146. 10	141. 15	148.010	145. 910
3	136.80	133. 40	143.75	150.00	150. 70	148.80	117.81)	1.16. 70	113. 20	147. (1)	147.50	14is. 50
4	137.20	138. 10	1,43. 50	150, 00	150.90	148.75	147. 60	146. 41	1414.20	148.11)	117.35	145. 06
5	$13 \% .90$	133. 10	143.80	180.00	150. 00	1.18. 40	147.50	1.46, 10	146. 20	148.50)	147.010	144.70
6	140.50	138. 20	115. 40	150.30	150.70	148.10	177.50	145. 70	1.16.35	148.4)	117.155	144. ${ }^{10}$
7	139.81)	138. 70	140.30	150.75	151.00)	147.80	$1+7.30$	145.30	146.25	148.00	118.20	144. 10
8	139.50	139.70	152.70	151.35	151.40	1.17.130	177.20	144.90)	145.75	147.95	148.80	143. 90
9	139.90	141.90	153. 10	151.80	151.60	147.50	146.00	144. 50	145, 20)	148. 20	1 18.95	143. 80
10	140.30	143.80	163.40	151.65	151. 40	147.40	140.80	144.20	[44.90)	148. 45	148.70	143, (4)
11	140.60	144.80	154. 10	151.45	151.20	117.30	143.70	143.00		148.10	148. 110	143. 50
12	140.80	144. 40	154.90	151.25	151.00	146.09)	140.55	143.60	144.25	9147.30	148.15	143.35
13	140.60	144.00	155.70	151.85	151.00	1413.85	1415.70	1+3.30	143:00	b 1416.80	148.00	143.25
14	140.50	143.90	156.60	152. 40	151,70	147.30	141.60	143.00	143. 70)	146.40	1+7.919)	143. 00
15	140. 50	143. 40	157.00	153. 30	151.30	149.60	1413. 35	142.80	143. 65	146. 20	147.70	$1+2.75$
16	140.50)	143. 20	157.05	153. 00	150.60	149.70	146.00	142.05	1.43. 40	140.05	147.50	142.65
17	140.35	142.90	157.05	152.35	149.90	148.81)	140. 20	142.50	143.30	145.95	1.17, 35	1.12.30
18	140.50	142.90	150.65	151.60	149.50	148.10	1 13.30	142. 45	143. 10	145.95	147.35	142.10
19	140.90	142. 40	156.00	151.00	149, 60	147. 14)	146. 05	112.70	142.90)	145. 05	147.15	141.85
20	142.40	142. 40	155.10	150.65	149.30	147. 40	145. 80	143.00	143.00	1413. 10	147. 60	1+1, (1)
21	144.30	142.60	151.10	151.00	149.70	147.31)	145. 75	141. 90	143. 10	143.30	1+7. (k)	111.40
22	144.35	al 43.90	153.40	151.30	149.60	148.100	145. 05	145. 45	143.40	1.46. 60	147, 75	141.20
23	143.70	144.80)	153.00	151. 45	140. 60	149. 40	1.11.80	14is. 6)	143.80	146. 00	117.80	141. (1)
24	143. 10	145.90	152.60	151.80	149.60	151. 20	148.00	145. 60	144.05	147. 30	1.17.85	140.95
25	142.00	145. 60	152.20	152.00	149. \%)	151). 40	148.80	145. 50	144.15	147.180	1.17.95	140.85
26	142.00	145. 10	151.75	152. 40	149.30	151). 30	14!3. 05	142, 630	144. 15	147.80	147.90	140.75
27	142.90	144.80	151.45	152. 55	148,90	150. 10	149. 10	145. 30	144.25	147. (1)	147.85	141). 75
28	142.80	144. 50	151. 10	152. 40	148.60	149.70	148.65	145. 10	14.40	148. (K)	117.18	140.80
29	142.30		150. (50	152.00	1.48. 40	148.80	1.18 .30	145. 35	144. 90	1.17 .90	147.10	1.10 .75
30	141.40		150. 20	151.70	148.80	148.30	147.90	145. 20	145. 30	148.00	147.10	140. 50
11	140.50		149.80		149.30		147.05	145.40		148.10		140.35

* Reading čhanged one-hall foot or more.
o Changed less than one-half loot.
H. Doc. 50, 61-1-12

T'abulated gauge readings at selected stations between Chain of Rocks and Cai: o-Cont'd. II'I'ILAE ROCK, MO.-Contlnued.
1901.
[Gauge, 56.45 miles from Eads Bridge. Zero of gaugo, 220.84 feot above Memphis datum plano. Gauge read at 8 a. m. .

Day.	Jan.	Feb.	Mar	Apr.	May.	June	July	Aug.	Sopt.	Oct.	Nov.	Deo.
1	140.	141.35	141	15	150	145.	140			140	140	139.70
2	139.45	141.10	141,25	152.80	150.00	145.20	148.	144.30	140.	140.10	140,65	139.65
3	1330, so	141.00	140.90	152.85	140.80	145. 30	148.10	144.40	140.35	130.95	140. 55	139.60
4	1331. 50	1.11.00	1.40 .80	152.90	140.60	146.50	147.60	144.30	140. 20	139.85	140.45	139,55
5	131. 20	141. 10	140. 05	153.10	149.20	147.20	147.10	144.20	1.10.10	139.	140.35	139.45
6	138. 05	140.95	141.50	153.25	149.00	147. 35	146.70	144. 10	140.	139.	140.15	139.40
7	135.76	141. 10	141.80	153.55	148.75	1.17 .50	146.40	143.75	139.	139.00	140.00	139. 30
8	138. 55	:40, 85	142.1才	163.75	1.88 .50	1.17.75	146.25	143.40	130. 85	139.	140.00	a139, 30
9	138.70	139.00	142.85	154.05	148.30	148. 05	146.	143.1	139.75	140.	140.00	139. 40
10	133.20	130.40	144.30	154.80	148.10	147. 95	146. 50	142.0	139.70	140.1	140.00	139.40
11	130.70	139.10	140.70	155. 50	147.01)	147.75	147. 15	142.	139.70	140.15	140.05	139.30
12	140.45	139.45	150.40	165.75	147.70	147.	140. 05	142.	139.	140.20	140.15	139.20
13	141.60	139.70	151.6)	155, 95	147. 50	147, 50	140.45	142, 55	130.	140.25	140, 20	129, 30
14	141.00	139.75	152.10	156. $10-$	147. 40	147.	146. 10	142.	${ }^{139}$	140. 30	140,20	139.90
15	1.12. 20	139.80	151.80	156. 10	147. 20	148.00	145. 05	112.35	139,	140.	140.10	139,60
16	142.30	139.85	151.60	155. 95	140. 05	148, 65	145.85	142.30	136.	140.10	140.10	130. 10
17	142.30	139.00	151.30	155.85	146.70	148.70	145.	142		140.15	140. 10	138, 60
18	142.20	$1 \cdot 10.05$	151.10	1515, 60	146. 60	148.	145.	142.00	130.	140.	140.10	138. 10
19	142.30	140.20	151.00	150.00	146. 50	148.	145, 80	141.95	139,	140.50	140.00	136,40
20	142.15	140.60	150.80	150. 50	146.30	1.47 .80	146.80	141.85	139.75	140.70	140.00	135.40
21	142.00	140.60	150.75	165.50	140.00	147.65	146.00	141,70	140,30	140.85	130. 95	136. 10
22	141,75	140.30	150.05	154.60	145.80	147.7	140.35	141, 05	141.30	140, 00	140.00	137.00
23	141.85	1410. 15	151. 80	163.00	146. 60	117.85	146, 20	141. 60	141.70	140.90	140.00	137, 10
24	141.05	140.05	152. 30	163.20	145. 55	148.35	146.70	141, 60	141.50	140.85	140.00	137. 60
25	141.05	140. 30	152.70	152.70	145.35	148.00	146.40	141.40	141.20	140.75	140.00	130.60
20	111.80 111	140.70	153.05	152.15	145.25	149.20	145. 00	141.30	140.00'	140.65	${ }^{139.95}$	136.90
27	141.05	141.40	153.05;	151.70	145.05	140.40	144.80	141.20	140.70	140. 65	139.85	133. 90
28	141. 60	141.60	163	151.30	146. 10	149.60	144. (i)	1.41.10	140.50	140.65	139.80	138. 20
29	141.55		1id2. (i)	150.90	145.80	149.80	144. 40	1140.05	140.40	140.65	139.70	137.60
30	1.11 .55		152. 50	150.60	145. 60	149.60	114.20	${ }^{1} 140.85$	140.30	140.65	139.70	137.60
31	141		152.10		14		144.15	140.75		140.70		137.60

- Changed less than one-half foot.

1002.

[Gauge, 56.15 miles from Eais Brlige. Zoro of gauge, 220,84 feet above Memphis datum plane. Gauge readat $8 \mathrm{a} . \mathrm{m}$.)

)ay	Jan	Fob.	Mar.	Apr.	May.	June	July.	Aug.	Sept.	Oct.	Nov.	Deo.
1	137.	136, 50	140.	145.	1.44.	151.	155	166.	153	150.30	116.40	
2	137. 80	1360. 60	111.20	146. 40	143.85	151.05	156.85	155. 30	153.40	150.30	146. 05	148.70
3	1337.01	130.10	141.35	1.16 .70	144, 60	152.10	157.30		152.00	150.20	145.70	148. 50
4	138. (0)	136. 30	141.70	146.70	146. 20	153.20	157.60	153.75	152,90	150.70	145. 35	148. 20
5	137.50	135.90	142.70	146. 60	146.35	153.30	157, 35	153.20	153.40	151. 40	145.15	148. 10
0	137.30	1.10. 40	142.10	140. 50	145. 75	153.10	153.75	152.85	153.35	151.70	145.10	148. 30
7	137.50	140.30	1.12 .10	147, 10	145. 10	152.80	156.00	152. ${ }^{10}$	152.70	152.40	145.5	148.30
8	138.0i)	110.70	142. 40	147. (i0	144. 25	162.30	155.60	152.60	152.10	153.20	145.	148.45
9	138.51)	1.10.30	143.30	147.20	143.80	151.70	155. 20	152.30	151.00	154. 10	146.	148.45
10	138.80	140.15	144. 30	146.50	143:70	151.70	155.30	152.00	150, 20	154. 20	140. ${ }^{10}$	148.00
11	139. (0)	139.05	1.14. 70	140.10	144.55	152, 20	151.05	151.55	149.60	153.70	147.10	147.40
12	138.95	140.20	1.14. 55	145.80	145.50	163. (0)	104. 00	151.10	149.10	152.90	147.10	146. 70
13	138, 65	140. 10	14.75	145.40	140.05	153.30	154.95	150.75	148. 65	152. 20	146.	140.70
14	138. 40	140.10	145. 70	145.10	143. 60	153.30	150.00	150.65	148. 05	151.40	140.	146. 00
15	137.40	139.00	146.70	144.85	146.75	154.00	150.90	150.45 .	147.60	150.70	145.	147. 10
16	137.80	$1 \cdot 10.00$	147.45	14.65	146.70	154.40	157.60	149.90	147.00	150. 10	145	146.85
17	138. 10	110.35	148.30	144. 45	146.	154.10	158.10	140.35		149.65	145	145.95
18	138.40	1.40 .40	148.20	14.1. 20	146.50	153.85	158.50	149.20	a140. 20	140.60	145	145.60
19	138.50	140. 40	147,80	1.4.15	146. 50	163. 55	158:	149.45	145.70	149. 60	146. 10	145.60
20	138. 60	110. 20	1+7. 20	144. 15	147.00	153.35	158.95	140.60	145.40	149.80	147.00	
21	138. 50	140.20	146.45	143.80	147.10	153.10	128.85	150. 30	144.	119.95	147.80	146. 30
22	138.60	140.30	145.70	143. 40	1.10,85	152.65	158.61	151.30	144.45)	150.35	148.30	140.60
23	138.	1.10.35	145. 20	1+3,30	146. 55	152.30	158.70	151.70	144.20	150.80	148.20	147. 50
24	138.10)	140.25	$1+4.80$	144.05	146. 05	152.30	-159.10	151.95	143.95	150. 90	148.	148.00
25	138, 55	139. (x)	1.14.46	144.60	147.60	152. 25	159.35	151. 95	143.95	150.80	147.90	148. 30
26	13845	140. 30	144.10	144.20	118.15	152.10	150.41	151.05	145.60	1.30. 65	147.80	140.10
27	133.00	140.30	144. 10	143.70	148. 65	152.30	159.40	152.30	147.10	150. 15	147.90	149.20
28	137.60	140.20	144. 40	143. 40	140.70	152. 00	159. 10	152. 70	148.00	148.15	148.10	148.60
29	133i. 00		145. (0)	1.13.33	151.80	151.05,	158.30	153.45	148.85	148.15	148.30	148.00
30	136. 70		115.30	1-4.0	1i2. 50	15.60	157.50		149.70	1.17. 40	1.18.70	147. 20
31	136. 20		146.50		152.30		150.70	154. 10		140.80		146. 00

Tabulated gauge readings at selected stations between Chain of Rocks and Cairo-Cont'd.
LI'I'LE ROCK, MO.-Continued.
1903.
[Cange, 56.45 miles from Eads Bridge. Zero of gauge, 220.84 feet above Memphis datum plano. Gauge read at $8 \mathrm{a} . \mathrm{m}$.

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sop	Oct.	Nov.	Dec.
1	145.0	145.8	140.75	163.05	152.80	159.10	155	152.20	152.00	152.00	150.70	143. 90
2	144. 25	145.10	150. 45	1523. ©0	162.60	161.00	155.16	161.10	1523. 00	162,00	160. 55	143.20
3	144. 19	115.30	150. 60	153. 40	152. 30	162.30	154. 80	151.00	154. 10	152. 10	150.40	142.010
4	141.15	140.00	160.95	163. 25	152.10	163. 50	164. 20	151. 10	164. 20	152, 15	160.20	142.10)
5	144. 0	148. 40	152. 20	153. 40	161.80	164. 60	153.65	150.75	154.15	152.30	160.00	142.:0
6	147:75	150.60	152. 50	154.30	151.65	165.70	163.05	150.20	153.65	152. 60	149.00	142.00
	144. 80	150.40	162.00	165.00	151.40	166.70	159.55	160.30	153.00	152.00	160.00	141. (10)
8	144.85	149.35	154.20	155. 45	151.20	167.70	15\%. 30	151.20	162. 60	153. 20	160). 40	141.50
9	144.75	148.70	150. 80	165. 35	161.15	168.05	166.30	151.70	162.30	154. 10	160. 55	141, 70
10	144.60	147.00	168. 40	164. 10	161.25	168. 60	1:2,30	151.75	152. 10	155. 10	160.35	141, 45
11	144. 10	147.05	158.80	164. 65	161.25	169.15	162.30	151.00	161.70	156.00	160.00	141.30
12	143.30	146.60	168.80	155. 00	161. 10	1699.30	162,30	162,00	152. 20	156.20	149.80	141.05
13	142. 60	146.80	158.25	160.00	160. 00	169.30	151.70	151.70	153.70	165.90	149. 50	140.75
14	141. 60	147.20	167.80	156.80	150.70	160. 00	151,35	162.00	164.70	165.60	149.00	140. 20
15	141.30	147.20	167.75	157.16	160.50	168.30	151.30	151.00	164.90	155.35	148. 0	a139. 40
16	141.20	147. 10	167.80	157.30	100-35	167.20	151.70	162. 40	155.00	164.90	148. 30	a139. 50
17	141. 40	146.60	157.15	167. 20	150.80	186.20	152.40	$10^{2} 2.20$	155.70	154. 50	148. 10	a) 40.10
18	141.90	145.70	150.90	167.35	152.65	104.90	153.30	151.05	105.30	153].90	147.70	al41. 10
19	142. 40	145.00	167.00	157.35	163.00	163.40	153.00	152. 20	155.00	153. 10	147.40	al41.00
20	143.00	144. 50	150.70	167.15	154.60	162.00	154.00	152.35	155.00	162.00	147.00	als0, 60
21	143.30	144. 10	157.15	160.60	164. 60	160.00	153.60	152.45	154.85	162.60	146.60	a140.05
22	143.10	144.00	167.80	160.70	15.4 .30	160.20	153.30	162. 60	154.20	152.10	140. 40	139.05
23	143.00	144. 10	157.70	156. 60	154.00	160.50	153.30	152. 20	153.40	151.80	146. 10	140.15
24	142.05	144. 25	167.30	150. 10	163.80	158.00	1633.35	151.70	152. 60	161.50	145.75	140. 60
25	142.85	144.45	167.15	155. 50	163.85	158.60	163.50	151.10	152.10	151.40	146. 45	141, 05
26	142.75	144.65	15x]. 80	165.00	164. 60	158.25	154.00	110.80	151.70	151.30	145. 10	141.30
27	142.75	145. 20	168. 40	154. 50	156.30	157.80	164. 60	150.60	151.50	151. 20	144.80	1.11.15
28	143. 40	146.	165.80	154.00	157.25	156.90	16.1.30	160.40	151.60	151.00	144. 40	141.05
29	145. 60		155. 35	153. 60	157.40	156) (6)	153. 40	1:0. 25	151.75	$150.90{ }^{\prime}$	144.00	141. 14
30	146. 10		164. 70	153.30	157.60	155.40	153.30	160.90	151.85	100. 80	143.65	141.40
31	145.0		164.30		157.00		152. 60	151.60		150. 75		141. (i)

- Doubtful on account of ico.

1904.

[Gauge, 56.45 mlles from Fiads Bridge. Zero of gaygo, 220.84 feet above Memphls datum plane. Gaugr read at 8 a. m. .

Day.	J8n.	Fob.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oot.	Nov.	Dee.
1	142. 05	145.00	144. 40	150.70	160.80	156.75	158.10	149.80	145.70	148. 40	146, 80	142.53
2	142. 40	144. 20	144. 10	169.35	166.50	158.10	157. 50	149.50	145. 30	148.30	146.70	142. 11
3	142.10	143. 40	143.00	159. 10	1603. 10	158.70	157. 10	141. 10	145.00	147.80	143.60	112. 2 i
4	141.80	143.25	144. 10	158.65	165. 10	158. 50	156.70	148.80	144.80	147.70	143. 50	14!2:0
5	141.20	143.15	144, 20	158.00	164.70	158. 10	156. 50	148.70	145. 20	147. 10	146.30	1.12, 05
6	1+1), 90	143.30	144.60	157.50	163.50	1(i0) 00	156.30	1.18.50	145. 40	146.60	1.f6. 20	1.11. 18 i
7	140.90	143.70	145. 40	156.85	162. 40	161. 10	155, 70	148.20	145. 10	146.20	146.00	141.s\%
8	141.00	144. 20	145.15	160.20	161.15	161.00	155.20	147.80	144, 80	146.10	$1+5.90$	141. 1 i
9	141.00	144. 40	145.00	155.70	100.50	161.70	156, 30	147.20	144.45	145.85	145. 30	$1+1.33$
10	140.90	14t. 80	146. 40	156.20	1(6). 30	160. 00	158. 40	146.80	144.35	145. 50	145. 70	141.10
11	140.90	145.20	146. 60	157.20	150.05	1(x). 15	160.00	146.50	144. 50	145.40	1.15.60	$1+1.3{ }^{\prime \prime}$
12	140.90	145.80	147.30	157.50	159.35	159.10	160.00	146.10	144. 55	145. 20	140. 50	141.20
13	140.80	140.10	147.70	157.80	15S. 80	15S. 80	161.30	145.85	144. 40	145.00	145. 40	$1+1.10$
14	140.90	146.25	117.80	157.80	157.90	158.30	161.00	145, 15	144.40	144.80	145. 30	140. 71
15	141.00	146. ${ }^{10} 0$	147.75	157.50	157. 15	128.15	160.00	146.00	144.25	144.60	145.15	140. 111
16	141. 35	146.70	147.00	157.50	156. 60	158. 50	158.70	145.75	144.15	144. 40	145.00	139. 71
17	141.45	146. 20	147, 00	157.30	156. 10	158.70	157,00	145.05	144. 10	144.30	144.85	139. 31
18	141.45	145.60	147.90	157.70	155.90	158.70	153.00	146.00	144.15	144.30	14.70	139.10
19	141.80	145. 20	148.40	158.50	150.20	160. 10	155.60	140. 10	145.20	14. 20	144. 50	138.15
20	141.80	$1+5.00$	148.70	158.60	151. 60	158.70	155. 40	146. 60	146.85	144.10	1.14. 30	1:38. 310
21	142. 10	145.10	148.85	158.10	156.40	158.80	155. 20	147.70	147.65	144. 10	144. 10	138. 11
22	144. 30	14.00	149.00	158.00	105.80	108.99)	154.50	148.50)	148.60	144.15	143. 95	138.2i
23	147.40	14.1 .60	149.75	158.10	155.30	159.10	153.60	148.30	148.20	144. 25	143. 70	138.20
24	150.60	144,30	151.30	158.70	154.75	158. 40	153.00	148.80	147.30	144. 10	143.55	135.35
25	151.00	144. 40	152.65	110.80	154.30	157.80	152. 70	149.00	147.10	144.60	143.30	1835. 41
26	150.30	144. 45	154.50	$1 \mathrm{li3}$.	154.00	156, 85	152. 65	148.80	147.00	144.90	143.20	135, ind
27	140.80	14.4.80	.150. 20	16i5. 30	153.70	156.10	152.50	1.10 .30	147.70	145. 20	143.00	139. in
28	148.90	144.90	157. 50	11:0.30	-153.70	156. 00	151.90	148.85	148. 10	145. 40	142.85	110. 21
29	147.80	14.65	169.60	163. 80	153. 90	10ti. 40	101.20	147.00	147.90	145.70	142.70	139.14
30	147.00		1(x). 30	146.90	153.95	157. 40	150.70	$1+7.00$	148.00	146, 20	142.60	138. 11
31	145.90		159.00		154.90		150.20	146.25		146.65		137.s

Tabulated gauge readings at selected stations between Chain of Rocks and Cairo--Cont'd.

LITPLE ROCK, MO.-ContInued.

1908.

[Gauge, 56.45 miles from Eads Bridge. Zero of gauge, 220.84 feet above Memphis datum plane. Gauge read at \&a. m.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oot.	Nov.	Deo.
1	138.00	145.70	153.90	162. 60	153.20	163.90	156.80	154.80	148.50	151. 20	149. 20	140,70
2	137.00	145.70	154.05	153. 60	152.70	153. 55	157.00	155. 45	147.95	150, 60	148.80	147.20
3	138. 40	144.80	154.05	153.70	162, 20	153. 45	157.15	155.90	147.05	140.00	148.00	147. 20
4	139.70	144. 30	163,75	153. 40	151.50	153.70	157.15	156.30	147. 40	140. 40	148.90	147.00
5	1.10.15	144.30	154.45	163.35	151.10	154.15	158.00	165.70	147. 10	1.19.00	149.00	146. 70
6	130, 05	144. 50	154.60	163.00	150.70	154.80	168.70	105.00	140.85	148.70	149.55	140.20
7	110,20	144. 60	164.00	162. 40	149.70	154.90	169.10	164. 20	146.80	148. 20	149.05	145.80
8	133.00	144.50	153.70	161.90	140.10	154.50	159.30	163.50	146.85	147.70	160. 35	145.25
9	139. 40	144.35	153.50	151. 40	148.50	153.90	169,00	152.70	146.85	147. 20	160. 10	144.70
10	139. 50	144.35	163.15	151, 10	148. 10	153. 40	158.00	152, 20	146.80	140.90	149.75	144.10
11	139.15	144. 10	152.90	150.80	147.60	163.20	158.70	151.90	146.75	140,65	149.65	143.50
12	138. 50	144.00	162.60	150. 65	148. 50	162.90	168.05	151. 50	140, 05	146. 45	149.40	143.20
13	a138. 60	143.70	162. 20	150,35	148.50	163. 50	150.10	160.00	148.05	140.20	149.50	143.05
14	al43.10	143. 20	151.60	150. 25	149.70	164.30	159,60	150. 60	148.55	145.90	149.60	143.00
15	al42.70	143.00	160.70	150, 25	149.70	164.90	160.00	150,25	147.85	145.70	149.10	143. 10
16	$a \leq 42.00$	143. 20	149.90	150.25	151.60	155.30	160,00	149.60	147, 40	145. 50	148. 50	143, 10
17	al.41. 40	143.20	149.50	150. 40	163. 10	155. 30	159.30	149.10	149. 40	145.30	147.80	143. 05
18	141.70	143.30	149.25	150. 40	164. 10	165.00	158,00	148. 00	155. 50	145,40	147.30	143,00
19	143.10	143. 30	149.10	150.30	164. 45	154.60	156.80	148.70	160.10	160, 60	147,00	143.05
20	144.50	143.30	148. 95	150,00	165. 20	154. 55	155.70	149, 00	162, 10	163. 30	147.00	143.10
21	145. 40	143.30	148.70	149,80	155. 00	165.00	155.90	140, 60	163.40	151. 05	147.20	143.20
22	145.75	143.40	148.70	140.60	155.00	165,05	154.80	149.70	163.80	151.10	147.60	143.35
23	146. 00	143.90	140.30	149. 50	164.30	154.85	154.20	150.50	163.60	150. 95	1.17 .00	143.30
24	146. 20	14. 20	150.10	1190.70	163.90	154.70	154.00	162.10	162.10	160.75	146. 40	113.30
25	145. 109	144.70	150.70	160. 20	163.65	164.95	154.10	163.00	1\%0. 20	160. 135	146. 20	143. 20
20	1.15.10	145.50	150.05	150. 60	163. 25	165.60	154.70	153.60	168.10	160, 65	1.16. 10	143.00
27	144. 10	146.20	151. 20	151.00	163.05	165.80	155.00	153.20	150.40	162. 10	145.05	142.85
28	144.80	161.	161.60	151. 70	153.15	155, 00	154.30	152.80	154.80	161.00	145.75	1.12.75
29	145. 60		152.00	162.10	153.30	154, 10	153.40	152.00	163.10	150.90	145.75	143.00
30	145. 70		152. 60	152. 50	163. 85	160.35	153.00	150. 70	152.00	150.20	140.25	1.13. 45
31	145. tio $^{\text {a }}$		152.65		164.15		153.60	149.50		149.70		143.70

a Doubtful on account of low.

1908.

[Gauge, 56.45 miles from Eads Brldge. Zero of gange, 220.84 foet above Memphis datum plane. Gauge read at 8 a. m.]

Dny	J8n.	-Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oot.	Nov.	De0.
1	143.95	150.55	156. 70	150, 70	154.90	149.75	163,85	147.50	147.35	148. 60	143.30	115.90
2	14.00	150. 00	167.20	160.40	151.80	150. 20	153.70	147,30	146.90	148.80	143.70	140.00
3	1.14. 10	150.80	167. 60	169.00	154.70	160.85	163.80	147.30	146. 0	140.20	144. 10	148, 30
	145. 10	160. 30	157. 20	168. 40	154, 75	161.15	163.95	147.45	148.60	140. 10	144.30	140,50
5	1.18.00	140.50	150.30	158.20	164.75	151.76	163.70	147.20	140.20	148,00	144.60	140.55
6	151.40	148.80	165. 40	168.25	151.65	151.00	163.35	146.90	146.05	148.30	144. 65	140, 75
7	151.65	148.20	154. 60	158, 10	151.80	162.10	163.10	146,80	146, 00	147. 40	144.60	147. 10
8	150.00	147.40	164. 10	167. 00	165. 10	152.55	162, 75	147.30	145.90	146.00	144.70	147. 50
9	149.90	146. 50	163.80	168.05	165. 48	153.35	162, 50	1.17.35	145.00	140. 50	144.80	147. 20
10	148.70	145,90	153.80	168. 20	164.80	153.70	162.10	147, 20	146,90	140.20	144,9	140,95
11	147.30	145.60	153.60	158.10	154, 15	163.90	151,60	147.60	145,90	145.90	145.00	140.60
12	1.16. 10	145. 20	153.35	167, 80	154.15	153.85	161.20	147, 60	146. 05	145.60	145.10	140.40
13	145.50	145.00	163.05	157.60	133, 15	163.40	160.90	148.00	146,00	145. 40	145.10	140. 20
14	145.10	145. 30	162. 70	158.10	152, 60	163.10	160.80	148. 46	145.90	145. 15	145. 10	146.90
15	1.11 .70	145. 45	152.40	169.30	152.30	163.00	150.60	148.05	145.80	145.00	145.05	145.90
16	114.60	145. 60	162.00	159. 40	151. 00	162.65	150.30	149.25	145.70	144.90	145. 10	145.70
17	144. 50	145.60	151. 40	168.00	151. 40	152.50	160.20	149.10	145.65	144.80	145. 30	145. 40
18	144.15	145. 70	150.00	168.45	150.90	152.25	149.90	148.70	145, 60	144.70	145, 40	145. 05
19	144.00	145.90	160.60	168.25	150.65	152.30	149.60	148.20	145. 60	144. 55 j	145, 40	144.60
20	144.15	146. 20	160.10	157.90	150.30	163. 45	149.25	148.00	145.85	144, 40	145, 40	144.00
21	144. 50	146. 60	149.60	167.65	150.00	153.05	149.00	148. 15	145.90	144. 20	146.30	143.70
22	147.20	146.80	149.20	167.25	1.49 .70	153.80	148. 80	148.10	145.80	144.10	147, 10	143: 60
23	148.00	147. 25	148. 80	166.80	149. 50	154.40	148.80	147.80	145.80	144,00	147. 20	$1+3.35$
24	140.40	148.80	148.80.	156. 50	149:35	154.00	148.85	147.45	145.00	143.90	147.15	142.90
25	150.60	151.70	140.00	166. 10	149.20	155.30	149.60	147.00	140.70	143.80	140, 65	142.50
26	150.10	163. 60	149.30	155.80	149.15	165.00	150.20	146.00	147. 50	143.65	140.30	14'2. 10
27	1.49 .80	165. 25	161.10	155. 65	149.10	164. 10	150.10	147.60	147.05	143. 60	146.10	141.70
28	149.85	150.00	155.50	156. 45	149.05	153. 60	149. 40	149.00	147.85	143. 40	146.00	141.45
29	149.45	18.0	167. 10	155. 20	149.20	163.75	149.05	149.15	148. 25	143.35	145.95	141.40
30	149.60		158.70	165. 05	149.15	153.90	148. 35	148.40	148. 55	143.30	145.	141.60
31	160.00		169.70		149.10		147.80	147.80		143.25		142.30

Tabulated gauge readings at selected stations between Chain of Rocks and Cairo-Cont'd. LI'ITLE ROCK, MO.--Continued.
1807.

〔Gainge, 56.45 miles from Eads Bridge. Zero of gange, 220.84 feet above Memphis datum plane. Gauge read at $8 \mathrm{a} . \mathrm{m} .1$

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	sept.	Oot.	Nov.	Dec.
1	142.7	152.05	150.55	151,3	152.6	160.4	156.0	158.7	140.5	145.9	144.1	143.1
2	143.3	151.65	160.45	151,9	163.35	150.7	156.1	157.9	140.4	145.9	144.2	143.15
3	144.2	151.0	150.2	152,05	153. 41	151.1	165, 75	151.8	140.3	144.0	144.1	143.05
4	144.8	160.4	140.0	152.0	163.45	152.25	155.2	155.8	149,25	146.6	143.0	143.0
5	145.5	149.5	149.6	151.8	163.1	154.25	154.5	165.1	140.25	147.1	143.8	142.9
6	140.5	148.7	149.5	151.8	162. 65	165.1	163.9	154.0	140.15	147.4	143.8	142.8
7	146.95	147.7	149.45	151.7	162.5	165.1	153.6	154.2	140.05	147.6	143.75	142.7
8	147.1	146.1	140.35	151.5	152.8	154, 75	163.75	154.0	148.9	147.6	143.05	142.0
9	147.1	146.6	140.0	151, 45	153.9	154.3	153.9	163.9	148.6	147.75	143, 0	142.45
10	147.0	145.2	148.7	151.6	154.35	154.3	154.0	153.75	148.2	148.1	143.05	142.4
11	147.0	145.1	148.0	151.7	154.45	154.5	154.0	163.5	147.8	148.4	143.0	142.35
12	146.9	145.2	140.0	151.8	163.7	164.7	163.9	153.1	147.4	148.5	143.5	142.25
13	146.8	145.65	151.0	152.4	152.7	155.7	163.0	152.5	147.1	148.5	143.35	142.1
14	140.9	140.2	162.5	153.2	152.05	150.5	164.2	152.35	146.8	148.3	143.3	142.05
18	147.5	147.2	163.7	153.3	151.85	150.5	164.7	152.0	140.8	147.9	143.2	142.05
16	148.2	147.8	153.7	163.1	162.4	156.8	165.0	151.8	146.4	147.5	143.2	142.1
17	149.0	147.55	162.75	152,85	154.4	156.8	165,4	151.05	146.2	147.1	143.2	142.2
18	150.5	147.55	152.35	152.8	155.2	155.9	150.4	161.3	146.05	146,8	143.2	142,3
19	162.0	148.0	152.1	$15^{2} 3.0$	165.05	155.25	167.3	151,4	145.7	140.45	143.15	142.4
20	155.3	148.2	151.9	163, 4	164. 15	164.7	167.7	152,05	145.5	143, 20	143, 1	142.4
21	158.5	147.05	162.1	163.0	153.25	154. 45	168,05	152.6	145.3	145.9	143, 15	142.3
22	159.5	147.15	162.05	164.3	162.4	154.2	158.5	162.5	145, 1	145. 05	143, 25	142.1
23	159.85	148.0	151.3	154,3	151.55	154.15	169.0	163.0	145.05	116.5	143.2	142.0
24	159.85	148.75	150.8	164.15	150.85	164.2	159.0	152.5	145.2	145.2	143.15	112.2
25	159.4	140.75	160.45	154. 45	160.4	165.1	100,0	152.3	146.4	145.0	143.1	142.1
20	158.0	160.45	150.2	154,15	149.85	158.2	160.2	162.4	145, 65	144.11	143.1	112.1
27	166.55	150.7	150.1	163.8	140.35	150.8	160.0	162.3	145.7	144.85	143.05	142.05
28	155.1	150.05	150.0	163.35	149.6	157.45	169.6	150.05	145.8	144.7	143.15	142.15
29	153.8		140.9	152.55	160.1	157.3	169.4	1(0). 25	145.0	144.5	143.2	142.0
30	153.0		160.3	162.35	150.1	157.0	169.0	140.85	145.95	144.3	143.2	141.8
31	152.4		160.8		150.15		169.0	140.6		144. 15		141.85

1908.

[Gauge, 50.45 miles from Eads Bridge. Zero of gauge, 220.84 feat above Memphls datum plane. Gauge read at $8 \mathrm{a} . \mathrm{m}$.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1	141.90	140.70	151.90	160.10	151.95	100.80	103. 10					
2	142, 00	140.50	161.70	140.80	161.40	160. 90	162.80					
3	142. 10	134.00	151.80	140.80	151. 100	101.30	162. 80					
4	142. 10	139.70	152.20	149.80	150. 70	161.05	11i3. 05					
5	142.05	140.06	'152. 40	149.80	151.00	162.50	1633. 20					
6	141.05	140.30	152. 55	149.70	152.30	162.55	163.20					
7	141.90	140.20	153.00	149.70	153.00	162.55	103.20					
8	141.85	140.35	153. 15	150.10	154. 30	162, 65	162.75					
θ	141.75	140.70	163.80	150.80	154.70	162, 63	161.85					
10	141, 10	141.00	154.00	162. 10	155. 10	162,05	160. 05					
11	1.11. 10	141.20	155.50	154.00	155,50)	162, 70	160.30					
12	142, 10	141.50	155. 45	164.70	155. 00	162.80	159.00					
13	142. 40	141.90	155.40	165. 20	155. 60	1633. 20	150. 70					
14	143.10	142.20	155.10	154.90	155.00	163.50	159.50					
15	143.10	144.20	154.90	154.80	154.75	163.95	159.00)					
16	142.60	147.00	154.55	154.50	155, 45	164.65	158.30					
17	142.20	150.30	154.10	154.00	157. 10	165. 30	157.80)					
18	142.00	150.80	153.70	153.40	157. 00	165. S0	150.80					
19	141.80	161.00	153.30	152.70	168. 40	1(6). 10	1513. 00					
20	141.75	151.20	153.00	151,80	158. 50	160.30	151i. 65					
21	141.50	151.70	152.60	161. 20	158.10	160.30	Litis. 80					
22	141.3i;	151.40	152.30	150.70	157. 50	168.25	150.00					
23	141.40	150.90	151.90	150.50	157.50	166. 10	156i. 105					
21	141.70	150.60	151.60	150.70	157.35	106, 00	1513. 15					
25	142.00	150.30	151.10	151. 60	156.05	105.60	165.65					
20	141. 90	150. 20	150). 70	151.70	156. 70	105. 40	155.35					
27	142.05	150.80	150. 45	152.30	157.20	16 ja .10	155. 05					
28	142.05	151.80	150.25	152.50	158.20	164. 85	165.00					
29	141.90	152. 20	150. 20	152, 05	158.90	164.20	155.00					
80	141.60		150. 20	162.65	150. 20	163. 60	154.70					
81	141, 30		150.40		159.70		104.35					

Tabulated gauge readings at selected stations between Chain of Rocks and Caire-Cont'd.

RED ROCK, MO.

1896.

[Gauge, 89.20 miles from Eads Bridge. Zero of galige, 335.84 feet above Memphis datum plane. Gauge read at 8 3. m.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	Juno.	July.	Aug.	Sopt.	Oot.	Nov.	Deo.
1												0.90
2										6. 80
3												6. 60
5												6. 65
6												6. 60
												6. 20
8												5. 70
10												5.45 5.20
11												4.25
12												4.90
13												4.90
												5.10
16												5. 60
17												
18												6.40
												7.05
20												7.60
												7. 91
22												8. 7.05
23												7.05
25												7.85 7.70
20											7.00	7.75
27												7.50
28												7.25
29											7.05	7.0
30 31											7.05	8.9
31									6.8

1897.

[Gauge, 89.20 miles from Eads Bridge. Zero of gauge, 335.84 feet above Memphis datum plane. Gauge read at $8 \mathrm{a} . \mathrm{m}$.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Alug.	Sept.	Oct.	Nov.	Deo.
1	6.85										4.85	
2	6.75										4.85	4.85
3	0.95										4.90	4.75
												4.40
5											4.75	4. 00
6											4.70	3. 55
7											4.80	3. 10
8											$\begin{aligned} & 4.00 \\ & 4.90 \end{aligned}$	2. 80
9											$\begin{aligned} & \text { 5. } 40 \end{aligned}$	$\text { - } 1.80$
10											$\begin{aligned} & 8.30 \\ & 5.40 \end{aligned}$	$\begin{aligned} & \text { a } 1.50 \end{aligned}$
11											$\begin{aligned} & 5.75 \\ & 6.55 \end{aligned}$	$\begin{aligned} & \mathrm{a} 1.90 \end{aligned}$
12											$\text { 5. } 60$	≤ 2.00
13											$\text { 5. } 60$	$+2.10$
14											5.55	2. 50
15											$\text { 5. } 50$	2.70
10											5.60	3.00
17											5. 60	3.40
18											$\text { 5. } 60$	3.50
19											5.40	3.10
20											5. 30	42.40
21											8.10	$\begin{array}{r} 1.70 \end{array}$
22											$\text { 5. } 05$	$\text { - 1. } 60$
23											$\text { 5. } 00$	-1.35
24											5.00	1.15
25											$\text { 5: } 00$	a. 80
20											5.00	$\text { -. } 70$
27											5.00	a1.20
28											$\text { 5. } 00$	$\text { a } 1.95$
29											$\text { 5. } 00$	2.40
30											5. 5. 00	3.00
81												

Tabulated gauge readings at selected stations between Chain of Rocks and Cairo-mCont'd.
RED ROCK, MO.-ContInted.
1898.
[Gauge, 89.20 miles from Eads Bridge. Zero of gauge, 335.84 feet abovo Memphis datum plane. Gauge read at $8 \mathrm{a} . \mathrm{m}$.]

Day.	Jan.	Feb.	Mar.	Apr,	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1	3.25	8. 20	9.60	25.50	16.00	20.40	22.15	12.90	8.15	8.60	a 10.70	7.00
2	3. 40	7.75	9.35	24.70	15. 20	19.65	22.25	12. 50	7.80	8.20	10.10	6.90
3	a 3.60	6.90	- 9.15	23.50	15.70	10.50	22.10	12.90	7. 60	7.80	9.25	6. 40
4	3.80	6.25	9.00	22.00	17.50	19.00	21.40	13. 70	7.30	7.35	8. 60	5. 90
5	3.40	5.80	8.75	21. 40	19.90	20. 40	20.50	13. 80	6. 95	7.15	8.15	5. 40
6	3.60	5. 60	8. 60	20.50	21. 20	20. 80	19.70	13. 20	6.90	7.00	7.8)	5. 20
7	3.75	5.25	8. 40	20. 30	21.70	20.90	19. 40	12. 50	6.80	6. 80	7. 65	6. 00
8	4. 20	5. 30	8. 30	20.10	21.50	20. 40	20. 60	12. 20	6.75	6.50	7. 70	4. 70
9	4.70	5. 50	8.15	19.70	21.00	19.50	22.10	12. 30	7.00	0.20	8.05	4. 10
10	5.25	6.10	8. 10	19.40	20. 50	19.00	21.90	11.75	7.65	5.90	8. 20	4. 10
11	5.60	6.50	8. 10	19.20	10.00	18, 90	21.60	11.55	8. 40	5.85	8.30	3.30
12	6. 65	7.10	8.75	18. 80	19.20	10.60	b 21.20	10.00	9. 40	6. 80	8.70	2.60
13	7. 80	7.30	11.40	18.20	18.30	20. 60	20. 10	10.40	0.00	6. 00	8.90	2. (i)
14	8. 10	8. 40	12.80	17.70	17. 40	21.60	18. 00	10. 30	0.70	6. 50	8. 80	2. 20
15	9.10	9.80	16.35	17.70	17.30	22.10	17.00	10. 50	9.30	6. 40	8.85	1. 0
16	8. 80	10.15	17.80	17.00	16. 60	22.35	17.00	10. 40	8.85	0.00	8.25	2.00
17	8. 40	10.35	18. 20	17.85	17.20	23.20	10,00	10.50	8.70	5. 70	8. 00	3.30
18	8. 20	10.40	18.35	17. 40	20.20	24.40	15.10	10. 30	0.00	5.40	7.70	4. 40
19	7.80	10.50	18. 20	16. 75	21.90	24. 60	14. 40	10. 20	11.00	5.45	7.40	4. 00
20	8.30	11.10	18.10	18.00	22.60	24.00	13.00	10.00	11.45	6. 80	7.30	4.90
21	8. 50	11. 60	18. 60	15. 50	22.60	23.30	13.40	10.56	11.00	6. 80	7.10	4.25
22	8. 60	12. 70	10.80	15.00	23. 80	22.10	13.20	11.40	10.40	8.50	7.10	4.50
23	9. 70	12.80	22.70	14. 50	25.85	20.90	12.95	11.50	9.70	10.05	7. 10	5. 60
24	9.80	12.20	25. 135	14.30	20.60	20.00	12. 40	11.00	9.30	10.80	7.20	7. 50
25	9, 60	11.40	20.00	14. 20	26. 20	10. 40	12.00	10.15	9.50	11.00	7.80	9. 10
26	9.25	10.85	25. 70	14.40	25. 40	18.90	11.00	9.70	0.90	10.50	8. (0)	10.20
27	9.30	10.40	25. 70	15.50	24. 10	19.50	12. 20	9.30	0.80	9.00	9.70	10. 70
28	9.50	9.95	26.00	17.50	23. 00	20.00	12. 20	0.00	0. 70	0.20	10. 00	10.80
29	9. 70		25. 30	17. (0)	22. 45	21.50	12. 20	8.70	9. 30	0.30	0.40	10.50
30	9.25		25. 20	16. 85	22.00	22.00	11.80	8.50	a 8.80	10. 20	8.40	10.10
31	8.80		25:50		21.25		12.25	8.10		10. 00		0.70

a Changed less than one-half foot.
b Reading changed one-hall foot or more.
1809.
[Gauge, 89.20 miles from Eads Bridge. Zero of gauge, 335.84 feet above Memphis ddtum plane. Gauge real at $8 \mathrm{a} . \mathrm{m}$.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1	8.00	5.00	15. 50	14.30	25.00	22.80	20.30	14.70	9. 10	7.10	B. 50	7.30
2	7.90	5. 60	16. 35	14.40	25.00	22.70	20. 30	14. 60	0.15	7.00	6.20	7.20
3	7.00	0. 00	15. 70	14. 20	25.00	2310	20.40	14.50	9. 15	6. 00	0.20	7.10
4	6. 30	0.60	15, 00	13.70	24. 50	423.50	20.80	14. 40	9.00	6.80	6. 40	6.90
6	0. 10	6. 60	14. 50	13.60	23.30	23.70	21.40	14. 10	8.80	6. 70	6.70	6.85
6	6. 10	7.00	14.00	14.00	22.00	23.80	21.80	13.90	8.70	B. 60	6.80	6.80
7	5.80	7.30	13.80	14.60	21. 10	23.85	22.05	13.90	8. 50	6. 50	7.00	6. 70
8	5.85	7.35	13. 60	14.85	20. 60	23.50	22.30	13.50	8. 35	6. 40	7.20	6. 60
9	6.25	7.40	13.00	14.65	20. 10	22.00	22. 40	13.20	8. 30	B. 25	7.40	6.55
10	0.10	7.30	12.50	14.65	20. 10	22.70	22. 40	13.60	8. 25	6.10	7.55	6. 50
11	5.80	7.60	12.50	14.70	20. 70	22. 60	22, 40	14.90	8. 30	6. 00	7.70	6. 50
12	5.80	7.70	12.70	14.80	21.20	22.60	22. 80	15.80	8. 40	5.95	7.85	6. 50
13	5.80	7.60	12.80	15.90	21.80	23.00	22.00	15.80)	8.50	5.90	8. 00	6. 50
14	6. 90	7. 00	12.80	17.10	22.00	24. 10	22.50	15.50	8.50	5.90	8.10	6. 50
15	7. 50	7.80	13.20.	16.80	22.00	24.30	22.00	15. 30	8.40	5. 80	8.20	6. 50
16	7.10	8.00	14.30	16.15	21.80	23.80	21. 40	15.00	8.30	5.75	8.20	6.50
17	7.10	8.30	16. 10	15.80	21.20	22.60	20.90	14.20	8.20	5.80	8.15	0.50
18	7.25	8. 50	17.00	15.70	20.50	22.30	20. 40	13.50	8.20	5. 80	8. 10	6. 10
19	7.25	8. 60	17.60	15.70	19.90	22.30	20.10	13. 00	8.20	5. 85	8. 10	6. 00
20	7.10	9.00	18. 30	15.75	19.50	22.20	20.00	12.50	8.40	5.90	8. 10	6. 10
21	6. 05	6. 90	19.40	16. 35	19.10	22.05	19.70	12.10	8. 40	5. 80	8. 10	6. 70
22	6. 95	6. 30	20.00	17.30	19.70	21.80	18. 30	11.80	a 8.20	5. 75	7. 90	6. 71
23	6. 90	5. 50	20.00	18.30	20.70	21. 40	18.70	11.40	8. 00	5. 65	8.10	6. 50
24	6.80	4.65	19.50	21.30	22.30	20.75	18.00	10.90	7.90	5. 60	8.25	6. 10
25	6.80	3.90	18. 90	23.50	23.40	20. 10	17.60	10.55	7.70	5.50	8.40	5. 50
26	6. 80	7.90	18.20	24.70	24.20	10.70	17.10	10. 20	7.60	5. 50	8.40	5. 010
27	6. 60	9.00	17.40	25.3.3	24.70	19.50	16.50	0.90	7.50	5.50	810	4. 50
28	6. 60	12.40	16. 60	25. 40	24.50	19.6)	16. 00	9.80	C 7.40	i. 70	7.71)	400
29	6. 30		15. 80	25.00	24.00	19.80	15. 50	9.80	a 7.30	5.85	7. 50	3. 310
30	6.80		15.20	24.80	23.40	20.10	15. 30	9. 40	7.20	6.30	7. 40	3. 00
31	5.00		14.50		22. 00		14.80	9.20		6. 60		2.60

T'abuluted gauge readings at selected stations between Chain of Rocks and Cairo-Cont'd.
IRED ROCK, MO.-Contlnued.
1000.
[Gauge, 80.20 milles from Eads Brldge. Zero of gaune, 335.84 feot above Memphis datum plene. Gauge read at 8 a. m.]

Day.	Jan.	Feh.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Deo.
1	1.80	4.60	8.70	14.20	10.40	a 14.30	13.20	12.35	10.30	10.40	13.10	11.75
2	1.60	3.80	8.30	14.10	15.90	13.80	12.80	12.00	10.60	10.00	13.10	11.10
3	2.10		8.20	14.50	15.00	13.70	12,70	11. 60	b 10.70	11.30	12,60	10.45
4	2.60	6.00	8.20	14. ${ }^{(10}$	16.70	13.70	12.60	11.20	10.80	12.30	12.20	0.65
5	3.00	3.80	8.40	14.60	15.80	13.50	12. 60	10.85	10.80	13.20	12.20	9. 810
0	3. 50	3. 40	0.70	14.80	15.70	13.30	12,60	10.45	10.80	13.30	12.40	0.10
7	5.010	3.00	12.80	16.20	16.00	12.95	12.60	10.00	10.90	13.00	12.75	8.80
8	5.35	3.10	17.40	16.80	16. 40	12.60	12.20	9, 60	10.05	12,70	13.60	8.50
9	4.80	6.50	18.70	16.40	16.70	12.45	11.80	9,00	10.00	12.90	14.00	8.30
10	4.70	7.60	10.10	16. 60	16.70	12.40	11.60	8.60	0.10	13.20	13.80	8.05
11	4.00	0.00	19.70	16.40	16.50	12.30	11.40	- 8.30	9.05	13.20	13.60	7.05
12	6. 10	9.30	20.00	16.00	10.30	11.00	11.20	8.00	8.70	12.50	13.20	7.80
13	5.10	8.90	21.6	16.20	119. 00	11.75	11.20	7,60	8. 40	11.80	13.00	7. ${ }^{\text {c }}$)
14	4.90	8.70	22.60	16.00	16. 60	11.90	11.20	7.30	8.10	11.30	12.80	7.40
15	4.90	8.50	23.00	18,00)	16.60	13.60	11.00	7.00	7.85	11.00	12.70	7.15
16	4.00	8.00	23.20	18.30	15.80	14.100	10.70	6.80	7.70	10.80	12.40	6.80
17	4.75	7.50	23.30	17.80	16.10	14.30	10.70	0.70	7.50	10.60	12,20	8, 71
18	4.80	7.60	23.00	16.80	14. 60	13.60	10.90	0.65	7.40	10.55	12.20	6. 610
19	6.00	7.10	22. 40	16.00	14. 45	12.80	10.80	0.65	7.30	10.65	12,40	6.20)
20	6.00	7.25	21. 40	15.60	14.50	12.60	10. 50	7.45	7.20	10.05	12.60	b. (M)
21	8.00	7.25	20.30	15. (0)	14.60	12.40	10. 30	8.70	7.30	10.80	12,60	6. 70
22	8.80	7.80	19. 40	16.00	b 14.40	12.70	10.60	0.10	7.40	11.15	12,60	6. [x)
23	8.40	10,30	18.70	10.30	14.40	13.90	11.10	0.10	7.00	11.40	12.80	5. 51
24	7.70	10.10	18.30	10.70	14.40	15.00	12.20	10.10	8.30	11.85	13.10	6. 24
25	7.40	10. S 0	17.80	16.90	14.40	16.70	13.30	10.00	8.40	12.20	12.00	6.10
20	7.20	10. 00	17.20	17.30	14.00	15.60	14.00	10.05	8.60	12. 60	12,90	6. $0^{(1)}$
27	7.20	0.10	16.80	17. 30	13.70	15.40	14.00)	0.05	8.70	12.70	12.00	4.95
28	7.10	0.20	16. 40	17. (i)	13.50	10.00	13.80	0.90	8.80	12.75	12.80	6.00
20	6.90		16, S0	17.20	13.10	14. 50	13.50	0,100	9.10	12.75	12.65	6.00
30	6.30		15.20	16.80	13.30	13.70	13.00	0.75	0.80	12.80	12.30	4.85
31	6.50		14.70		13.80		12.60	0.76		12.90		4.6

a lleading changed onc-hallsfontatimore.
\checkmark Changed less than one-half foot.
1901.
[Gaugo, 89.20 miles from Eads Brldge. Zero of gauge, 335.84 feet abovo Memphls datum plane. Qauge read at $8 \mathrm{a} . \mathrm{m}$.

Day,	Jen.	Feb,	Mar.	Apr.	May.	June.	July.	Aug.	Sopt.	Oct.	Nov.	Dec.
1	4. 40	5,70	6.00	18. 60	10.50	10.60	14.80	9.20	5.70	6.30	6.80	4.60
2	4.30	6. 50	5.70	18. s0	16.10	10. 60	14.35	0.30	5.50	6.10	5.70	4. 65
3	4.400	5. 40	5,50	10.00	15.75	10. 60	13. 50	0.40	6. 40	5.00	6. (1)	4.611
4	3.85	a 6.30	6. 20	10. 00	15. 50	11.25	13.20	9. 50	6.30	4.85	6.60	4. 1is
5	3.50	6. 80	5.10	10. 20	15.10	12,50	12.70	0.40	6. 20	4.75	5. 60	4.35
0	3.30	6. 40	5.60	19.60	14.00	12.85	12. 20	0.20	36.10	4.70	6. 10	4. 25
7	3. (k)	6. 30	6.10	10.70	14.60	13.05	11.80	9.00	6. 00	4.80	6.10	4.211
8	2.80	6. 30	6. 40	10.00	14.30	13,30	11.50	8. 65	4.85	4.85	6. 05	4.15
9	2.80	4.80	7. (X)	20. 20	14. 00	13.10	11. 10	8.30	4.80	4.00	5. 05	4.15
10	3.20	a 4. 20	8. 40	20.75	13.00	13.70	11.60	8.05	4.70	6. 00	5. 00	4.311
11	3. 70	3.50	10.00	21.70	13. 60	13. 50	12.00	7.90	4.70	6. 10	6. 00	4.25
12	4. 20	3. 50	14. 50	22.10	13.30	13.25	12. 10	7.75	4.70	6. 30	6.10	4.115
13	5. 60	3.00	17.20	22. 30	13.15	13.10	11.00	7.60	4.70	6. 30	5. 25	4.:11
14	0.20	4.00	18.00	22. 60	13.00	13. 10	11.60)	7.60	4. 00	6.30	6. 25	4.710
15	6. 50	4.00	18.10	22, 60	12. 80	13, 40	11.20	7.40	4. 80	6.30	6.10	4.711
10	6.90	4.10	17.80	22. 50	1.2. 50	14.00	11.10	7.30	4.45	6.20	6.05	4.10
17	6. ${ }^{0} 0$	4. 20	17.50	22. 30	12.30	14. 40	11.00	7.20	4.40	6. 15	6. 05	3.910
18	a 0) 6.0	4.30	17.30	23.00	12. 10	14, 20	10.95	7.110	4.30	6. 20	5.05	3. 10
19	6. 80	4. 45	17.20	23, 50	11.90	13.80	10.05	7.00	4.40	6. 50	6. 00	0. 411
20	6.70	4. 60	17.00	23. 30	11.80	13.30	10.05	6. M	4. 60	5. 60	4.95	4. 51)
21	0.65	4.90	10. 00	22.50	11.60	13.15	11.10	6.80	4.90	6. 80	4.00	4.00)
22	6.30	4.80	16.90	21, 60	11.20	13.10	11. 40	6.70	6. 80	b. 00	4.90	4. 00
23	6.20	a4. 50	17. 16	20.80	11.00	13. 10	11.60	0.70	8. 60	5. 90	4.00	4. (i)
24	6. 30	4.30	18. 40	20, 20	10.00	13. 10	11.10	6. 60	6.60	5.00	4.00	5. 11
25	6.25	c 4.45	18.90	19.50	10.70	14. 30	10.70	6. 50	B. 30	b. 80	4.10	(i. 10
28	0. 25	4. 80	19.30	18.80	10. 60	1.4. 70	10.60	6. 40	6. 00	5.70	4. 90	6. 40
27	(1.05	5.50	10. 40	18.20	10.00	14.00	10.00	6.20	6.70	5. 65	4.85	3. 311
28	0. 10	0.10	10.25	17.70	11.40	16. 20	9.80	B. 10	5. 60	5.65	4.75	3.20
29	6. 90		10.00	17.30	11.30	16. 40	9.60	6.00	6. 40	6.65	4.70	3. 411
30	5.80		18.85	10.85	11.00	15. 40	9. 40	b. 90	b. 40	6. 85	4.65	3. 111
31	5. 80		18.50		10.80		0.20	5.85		5.70		3. 20

Tabulated gauge readinys at selected stations betveen Chain of Rocks and Cairo--('ont'd. RED ROCK, MO.-Continued.
1902.
[Gauge, 89.20 miles from Fads Bridge. Zero of gange, 335.84 feet above Memphis datum plane. Gauge readat 8 a. ili.)

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Deo.
1	3. 30	a 0.90	5.70	11.40	Q. 50	18.00	21.70	23.00	20.20	15.70	11.80	14. 20
2	3.30	a. 40	(6. 20	12.00	0.30	17.00	22.85	22.10	19.75	15.80	11.40	14.30
3	3.25	a. 40	6. 90	12.45	0.40	17.60	24.70	21.35	19.10	15. 65	11. 10	14.15
1	a 3.25	a . 30	0.90	12.60	11.00	18.80	24. 60	20.50)	18.80	16.00	10.80	13.80
5	2.40	a . 60	8.00	12. 50	11.80	10.40	24.10	10. \% 0	19.10	10.60	10. 85	13. 50
6	2.20	$a .00$	7.90	12.35	11.30	10.20	23.70	19. 40	10.50	17.15	10.40	13.60
7	2.20	a . 50	7. 60	12.40	10.00	10.00	22.90	19.(1)	19.00	17.70	10.65	13.70
8	2. i_{0}	a . 80	7.60	13.00	10.10	18.60	22.50	18.80)	18.20	18. 60	11.10	13.80
9	3.10	a 1.70	8. 20	13.00	ก. 40	17.00	21.90	18. ${ }^{\text {(1) }}$	17.15	10.60	11.25	13.90
10	3. 40	a 1.60	9.30	12. 40	8.00	17.60	21.80	18. 20	16. 10	20.10	11.70	13.60
11	3. 60	1. 50	10.10	11.80	0.20	17.90	21.70	17.80	15. 40	19.80	12.30	13.10
12	3. 50	1.30	10.15	11.30	10.35	18.70	21.20	17.20	14.80	19.00	12.60	12.20
13	3.40	1. 10	10.00	11.10	11.20	19.40	21.20	16.80	14.30	18.10	12.30	11.90
14	3.10	1.90	10.70	10.70	11.70	10.40	21.90	16.60	13.80	17.35	11.30	12,30
15	2.60	2.10	11.90	10.40	12.10	19.85	23. 10	16.40	13.15	16. 40	11.40	12.60
16	2.30	2.00	12.155	10.10	12.10	20. 50	24.05	10.00	12.60	15.70)	11.10	12.00
17	2.50	2.00	13.65	9.90	12.00	20. 56	24.60	16. 40	12.00	15.15	10.90	12.00
18	2.16	2. (i)	-13.00	9.7)	11.00	20.30	26. 00	15. 10	12.00	14.90	10.85	11.30
19	3.10	2.60	13.60	9. 50	11.90	19:90	25. 40	15. 20	11.40	14.90	11.10	11.10
20	3.10	2. 10	13, 60	0.55	12.20	10.70	25.70	16.35	10.90	16.00	11.90	11.30
21	3.20	2. $\mathrm{i}_{0} 0$	12.30	9. 40	12.50)	10. 60	25.65	16.70	10.60	16.30	12.m)	11.00
22	3.20	2.80	11.50	8. 90	12.50	19.00	25. 40	16.00	10.10	16. 50	13.70	12.30
23	3. 20	2.80	10.80	8. 56	12.10	18. 60	25. 40	17.100	9.75	18.00	13. 60	12.05
24	3.20	2.80	0.90	8. 8 (0	12.10	18.30	25.60	17.85	0. 60	16, 30	13. 60	13.40
25	3.10	2.80	0.70	9, 85	12.80	18.30	26.00	17.00	0. 50	13. 25	13. 40	14.00
26	3.10	2. 10	0.60	8. 80	13.65	18. 20	26.16	17.95	10.15	1i. 10	13.20	14. 50
27	3.00	3.15	9. $0^{(0)}$	8.20	14.00	18.20	20.15	18.30	12.00	15.80	13. 20	14.50
28	2.60	6. 40	9.90	8.80	14.75	18.50	26.00	18.70	13.10	16.00	13. 40	14.20
29	1.70		11.50	8.90	16.50	19.6)	25. 40	10.20	13.80	13.85	13.60	13.15
30	1.00		11.75	8.00	18. 10	21.20	24.60	19.90	14.80	12.90	13.80	13.05
31	a . 10		11.50		18.20		23.60	20.30		12.20		12.20

- Doubtful on account ofice.

1903.

[Gauge 80.20 mlles from Eals Bridge. Zero of gaype, 335.84 fcet above Memphis datum plane. Gauge read at $8 \mathrm{a} . \mathrm{m}$. .

Day.	Jan.	Feb.	Mar.	Apr.	Mny.	June.	July.	Aug.	Sopt.	Oot.	Nov.	Deo.
1	11,20	11.80	14,75	20.50	19. (1)	25.30	21.00	17.70	17.20	17.16	15.70	8. 30
2	10.30	11.70	16.20	20.20	18.60)	27.40	21,00	17.00	17.80	17.20	16, 60	8.10
3	10. (6	11.30	16. 40	10.80	18.20	20.30	20.70	16.50	10.30	17.20	16. 40	7.90
4	10.00	11.50	10.70	10.60	18.00	30.70	20.00	16.20	19.80	17.20	15.30	7.55
5	10. 10	13.10	17.80	11. 50	17.60	31.00	111. 20	10.40	19.70	17.40	15.10	7.30
0	10. 40	16.80	18.50	20. 60	17.20	33.20	18.50	15.70	19.40	17.00	15.00	7.10
7	10.70	16.60	10.00	21.50	17.00	31.40	18.00	15.30	18.70	18. (X)	14.90	8.80
8	10. 50	16.70	20. 50	22.20	10.85	35.60	17.50	16.10	18.00	18.30)	15.20	6. 70
0	10.60	14.95	23. (0)	22,30	10.70	30.40	17.40	18.90	17.70	18.80	15.50	6. 60
10	10.30	14.15	25.20	21.90	16.70	30.90	17.50	17.00	17.00	20.00	15. 50	6.40
11	0.80	13.40	20.20	21.40	16.80	37.60	17.50	17.10	17.20	21.20	15.30	6.10
12	9.20	12.80	20.50	21.40	16.70	38.30	17.40	17.30	17.30	21.70	15.00	5.80
13	8. 40	12.015	20.00	22.80	10.60	38.60	17.10	17.10	18.50	21.65	14.60	5. 60
14	a 8.00	13. 10	25. 40	23, 60	10.35	38.180	16.60	17.40	19.90	21.20	14.20	${ }^{6} 5.40$
15	a 7.60	13.45	25. 20	24.00	16.10	38.20	10.50	17.20	20.40	20.00	13.75	b 3.90
16	a 7.10	c 13.70)	25. 30	24.30	15.80	37.30	10.80	17.60	20.40	20.50	13.40	${ }^{6} 3.20$
17	a 7.10	13.20	25. 10	24.30	16,00	30.00	c 17.30	17.70	21.00	19.85	13.00	${ }^{6} 2.85$
18	a 7.20	12.40	24.60	24.20	17.40	34.30	18.50	17.30	21.10	19.20	d 12.80	b2.40
19	a 7.80	11.60	24. 40	24.00	10.30	32. 310	10.30	17.50	20.50	18.70	12.50	b 2.60
20	a 8.30	11.80	24, 40	24,40	20.60	30.40	19.70	17.70	20.60	18.30	12.20	b 3.70
21	8. 8.5	10.50	24.40	23, 80	20.80	28.70	10.30	17.80	20.40	17.80	11.80	${ }^{6} 4.00$
22	8.80	10.20	25. (0)	23.50	20.50	27.50	18.80	17.90	19.80	17.40	d 11.50	b4. 55
23	8. 60	10.30	25.30	23. 50	20, 10	20. 70	18.70	17.80	19.00	17.00	11.30	-4.00
24	8.00	10.30	24.90	23.10	10.80	25.80	18.00	17.30	18.20	16.70	11.00	6. 30
25	8.40	10. 40	24. 00	22.60	19.75	25.10	10.00	16.65	17. 60	16.50	10.80	6. 65
26	8.40	10. 60	24. 30	21.05	20.25	24.70	19.30	16.30	17.10	16. 40	10.50	6.20
27	8.10	11.10	23.70	21.40	21.90	24.30	20.20	16.10	16.75	16.20	10, 10	6.30
28	8.50	12.20	23.20	20.50	23.50	23.40	20.10	15.80	16.70	16.10	9.70	6. 10
28	10. 40		22.60	10.00	24.00	22.30	10.60	15. 30	16.90	16. 00	8.00	6. 10
30	:1.70		21.80	19.50	24.00	21.30	18.90	16. 00	17.00	15.90	8.60	6. 30
31	11.80		21.30		24.30		18.40	10.70		15.80		6, 60

[^14]c Realing changed one-half font or more.
dChanged less than one-hall foot.

Tabulated gauge readings at selected stations between Chain of Rocks and Cairo-Cont'd.
RED ROCK, MO.--Continued.
1904.
[Oauge, 89.20 miles from Eads Bridge. Zero of gauge, 335.84 feat above Memphis datum plane. Gauge read al 8 a.m.]

Day.	Jan.	Fob.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1	a 7.00	11.20	10. 40	27.60	35.20	21.30	23.20	14.90	10.95	13.10	11,55	7.75
2	7.40	10.50	10.00	27.30	34.80	23.00	23.30	14.60	10.45	13.35	11.60	7.60
3	7.20	9.50	9.60	27.00	34.40	25.00	2260	14.05	10.05	13.00	11.45	7.50
4	7.00	0.20	9.10	26.50	3380	25.00	22.10	13.75	9.90	12.80	11.35	7.40
5	6.60	10. 40	9.30	25. 80	32.90	23.70	21.80	13.55	9.90	12.30	11.20	7.30
6	6. 10	9.30	9.50	25. 10	31.70	25.70	21.60	1335	10.05	11.70	11.10	7.20
7	6. 00	9.50	10.30	24. 40	30.30	27.50	21.10	13.00	10.05	11.20	11.00	7.05
8	6.10	10. 20	10.70	23.00	28.90	28.40	20.50	12.70	9.80	11.00	10.85	6. 80
9	6.15	10. 40	10.00	22.30	27.70	28.50	21.20	12.20	9.50	10.75	10.70	0. 610
10	б. 90	10. 60	11. 40	22. 20	27.20	27.80	23.00	11.05	9. 50	10.45	10.70	6.50
11	5.80	11.10	11.80	23. 10	20.00	20.90	25, 40	11.50	9. 60	10.20	10. 55	6. 60
12	5.80	11.55	12. 20	23. 40	26. 20	20. 10	26.80	11.10	9. 70	10.05	10. 60	6. 50
13	5.80	11.90	12.00	23.75	25. 50	25, 30	27.35	10,75	9.60	10.00	10. 40	6. 30
14	5.75	12.10	13.10	23.70	24, 00	a 24. 60	27.30	10, 55	9. 55	9.80	10.30	6, 10
15	5.75	12.40	13.00	23. 60	23. 10	a 24.20	20. 10	11.20	9.50	9.70	10.20	6. 60
16	6.20	12. 60	12,00	23. 40	22,30	$b 24.30$	25. 35	10.65	9.35	9.60	10.00	6.00
17	6.30	12.30	12.80	23. 30	21.70	a 24.80	23. 10	10.85	0.25	9.50	9.90	5. 00
18	6. 30	11.00	13.00	23, 30	21.30	24,90	21.85	11.10	9.20	9. 40	9.75	4. 60
19	6.60	11.10	13.40	24. 20	21,40	25. 50	21.30	11.16	10.35	9. 30	9.60	4.00
20	6. 90	10.70	13.80	25. 40	21.80	25.00	21.16	11.30	11.70	9. 30	9.40	3. (1)
21	7.00	10.80	13.00	25. 10	21.70	24.80	20. 80	12. 30	12.50	9.30	9.30	3. 60
22	8.20	10.80	14.00	24.09	21,20	25.00	20, 30	13.20	13.20	0. 20	9.10	3. 40
23	11.00	10.80	14.30	24.20	20.70	25. 10	19.20	13. 20	$\bigcirc 20$	9. 30	8. 90	3.30
24	15.10	10. 45	15.70	25. 40	20.20	24. 70	18. 60	13, 55	11.60	9. 40	8.70	3.30
25	10.50	10.40	17.30	27. 50	19.60	23. 50	18. 30	13, 85	12.20	9. 50	8. 60	3. 60
20	10.20	10.50	22, 00	30. 30	19.20	22. 60	18.20	13.75	11.80	8.70	8. 40	3. 00
27	16. 70	10. 60	22.40	c 32, 40	18.80	21.70	18. 00	13. 95	12.20	0.95	8.20	4. 40
28	15. 20	10. 85	23.10	c 33.80	18. 60	21. 40	17.30	13.85	12.80	10.20	8. 10	4.80
29	14. 20	10.70	26. 60	c34. 70	18.90	21. 40	16. 50	13. 10	12. 90	10.50	7. 90	4. 80
30	13.30		27.60	35. 20	18.00	22.20	15. 90	12.20	12.80	10.90	7.80	3. 20
31	12.20		27.90		10.60		15.30	11.50		11.30		3.00

a Reading changed one-hall foot or more. b Changed less than one-half foot. c Interpolated-no reading.
1905.
[Gange, 89.20 miles from Eads Bridge. Zero of gauge, 335.84 teet above Memphis datum plane. Gauge read at $8 \mathrm{a} . \mathrm{m}$.

Day.	Jan.	Feb,	Mar,	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dee.
1	3.00	8. 30	17.80	18.00	18.60	19.30	22. 30	19.70	13.90	10.50	14.30	11,50
2	3.00	8. 50	19.10	18.60	18.70	19.00	22. 50	20.60	13. 20	15.70	13.90	12. 20
3	3.10	8.80	19.40	19. 10	18. 10	18.80	22.70	21, 10	13.10	15.00	13.70	12. 30
4	4.20	8. 20	10. 40	18.00	17. 40	18.90	22, 80	21. (6)	12. 60	14.60	a 13,70	12.10
51	5.00	7.70	19.40	18. 70	16.90	10.30	23. 20	21.30	12. 20	14.00	13.80	11.80
6	6. 00	8.00	20. 10	18. 40	10. 80	20.00	24.00	20. 50	11.90	13,70	14. 20	11. 50
7	5.00	3. 10	10.60	18.00	15. 00	20.30	b24.30	10.70	11.80	13.30	14. 70	11. 10
8	5. 00	8.20	10. 40	17.30	14.90	20. 10	b24.60	18. 00	11,80	12.80	15, 10	10. 60
9	4.80	8.05	10. 20	10.80	14. 30	19.60	b 24.40	18. 10	11.80	12.40	15. 20	10. 00
10	4.60	7.80	18. 80	10. 30	13. 70	10.00	624.40	17.60	11.75	12.00	14.90	9. 30
11	c 5.50	7.65	18. 60	15.90	13. 40	18. 00	b 24.20	17.10	11.70	11.70	14.60	8.70
12	4. 30	7.30	18. 30	15.70	13. 50	18. 30	b 24.00	16.80	11.75	11. 60	14.40	8.30
13	3.60	8. 20	17.80	15.60	13.80	18. 60	$b 24.30$	16. 20	12. 50	11.30	14.30	8.10
14	3.60	8.10	17. 20	15.40	13.90	19. 40	b 24. 90	15. 70	13. 40	11.00	14.30	8.00
15	4.00	8. 60	16. 40	15. 30	14. 60	20.20	b 25. 50	15.60	13.10	10.80	14.10	8. 10
16	3. 40	7.00	15. 40	15. 10	15.90	20.70	b 25, 70	14.90	12. 50	10.60	13. 60	8.15
17	2.70	7.90	14.80	15. 30	17.90	20.80	625,00	14. 40	14.20	10.30	12.00	8.10
18	2.00	7.80	14. 60	15. 40	10. 30	30.00	$b 24.10$	14.00	17. 50	10.30	12.40	8.10
19	2.60	7.80	14.30	15. 30	19.90	20.20	23. 10	13. 80	¢ 24.10	12.80	12.00	8.05
20	4. 40	7.70	14.00	16. 10	20. 30	19.80	21.80	13.90	b 20.90	18.00	12.00	8.15
21	5. 70	7.60	13.80	14.90	21.10	20.40	23.10	14. 35	${ }^{\circ} 28.90$	17.30	12. 10	8.40
22	c 7.70	7.75	13.60	14.70	20.70	20.70	22. 00	14. 60	b 29, 60	16. 20	12. 40	8.40
23	c 7.70	8.60	14.00	14,50	19.00	20.50	20.50	15.00	b 29. 70	16.00	12. 20	8. 40
24	c 7.45	0.00	14.80	14. 60	19. 40	20.20	20.00	16. 20	b 28, 00	15, 90	11.60	8. 40
25	c 7.45	10.00	15. 60	15.00	10.00	20.35	19.80	18. 30	b 20.60	15. 70	11.20	840
20	c8. 00	10. 40	15. 00	16. 60	18.60	20.80	20.10	18. 60	24.00	15. 90	11.00	8.25
27	c 7.60	11.20	16. 20	16.20	18. 40	21.30	20.60	18.10	22. 40	10.60	10.90	8.10
28	0.70	15. 40	16. 50	16.90	18. 30	21. 40	20.20	17.80	20.60	17. 10	10.80	7.05
29	7.50		17.00	17.60	18. 50	21.50	19.30	17.20	18.90	16. 30	10. 70	8. 10
30	8.00		17.60	18.00	18.80	21.75	18. 60	16. 20	17.60	16. 50	10.90	8.70
31	8.40		17.90		10.40		18.60	14.00		14.00		9.00

[^15]Tabulated gauge readings at selected stations between Chain of Rocks and Cairo-Cont'd. RED ROCK, MO.--Continued.
1906.
[Gauge, 89.20 mlles from Eads Bridge. Zero of gauge, 335.84 feet above Momphis datum plane. Gauge read at $8 \mathrm{a} . \mathrm{m}$.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1	9.30	15. 40	21.50	20.90	20.90	14.70	19,40	12.60	a 12. 40	13.65	8. 20	11.20
2	9.50	15.80	22. 40	26. 00	20.80	15. 20	10.20	12.30	12.00	13. 60	8.50	11.10
3	9.80	15.90	23.00	20.30	20.70	15.90	19.30	12. 20	11.60	13.95	8.95	11. 20
4	10.70	15. 50	23.00	25.80	20.70	16,30	19.40	12. 40	11.50	14.05	9.25	11. 40
5	11.70	14.60	22.10	25.40	20.70	16.90	19.30	12.30	11.30	13.90	9.40	11.50
6	15.30	13.80	21. 20	25. 50	20.50	17.20	19.00	12.00	11.00	13. 60	9.50	11.80
7	16.60	13.20	20. 40	25.30	20. (6)	17.30	18.70	11.90	10.90	12.70	0.50	12. 10
8	10.20	12. 50	19.80	25.00	21. 40	17.90	18. 40	12.60	10.80	12. 10	9, G0	12. 40
9	16. 20	11. 60	19.50	25.30	21. 00	18.80	18.00	12. 60	10.80	11.70	9.75	12. 40
10	14.10	11.00	19.40	25. 40	21.00	19.10	17.70	12,30	10.80	11.30	9.80	12.20
11	13.00	10.60	19.20	25. 30	20.20	19, 40	17.10	12. 45	10. 80	11.00	9.90	11.00
12	11.70	10. 20	18.90	25.00	19. (1)	19.40	16.70	12.70	10.80	10.70	10.00	11.60
13	10.85	10.00	18.60	24. 60	10.00	19, 10	16.30	12.80	11.00	10. 40	10.05	11. 40
14	10.30	10.00	18. 30	25.10	18. 50	18,70	16.20	13.20	10.80	10. 20	10.05	11. 20
15	9.90	10. 50	17.90	26.20	18. 10	18.50	15.80	13.80	10.75	10.10	10.05	11,51)
16	9.70	10. 50	17.30	26. 70	17.70	18. 40	15. 50	14.20	10. 05	9.90	10.10	11, 20
17	9.70	10.50	16.80.	26.30	17.00	18. 10	15.35	14.20	10.60	0.75	10.20	10.80
18	9.50	10.50	10.10	25.70	10.50	17.00	15.00	13.85	10.50	9.65	10. 40	10.60
18	9.25	10. 60	15. 80	25. 40	16, 00	17.80	14.85	13.40	10.45	9.50	10.40	10. 10
20	9.40	10. 80	15. 10	25. 10	16.70	17.00	14.60	13.00	10.60	9.25	10.50	0.50
21	9.70	11.10	14.60	23.00	15. 40	18.30	.14. 10	13.00	10.80	0.15	11. 80	9.05
22	13. 40	11. 60	14.30	23. 60	15. 10	19.00	13.00	13. 20	10.75	9.10	13.30	8.00
23	13.80	11, 70	13.00	23. 10	14.80	19.70	13.80	12,90	10.70	0. 00	12.00	8.60
24	14. 30	12.70	13.80	22.70	14.70	20.30	13.80	12. 60	10.70	8.90	12. 60	8.30
25	15. 40	15. 40	13.80	22, 30	14.50	20.70	14.20	12, 20	11. 20	8.80	12.20	7.65
28	15.60	17. 60	14. 40	22.00	14. 40	20.70	15. 00	11.85	12.10	8. 60	11.90	7.00
27	15. 20	19.60	10. 30	21.80	14. 30	19.90	15.35	12.10	12. 10	8. 50	11.60	6.65
28	15.10	20.70	10.70	21.40	14.20	10.20	a 14.70	13. 60	12.80	8.30	11.40	0.30
29	14.90		22.50	21.30	14.20	10.20	14.20	14. 20	13.20	8.20	11.40	6.10
30	14.85		24. 10	21.00	14.30	19.40	13. 60	13.70	13.60	8.20	11.30	0.40
31	15.00		a 25.50		14.20		13.00	12.00		8.20		7.70

- Reading changed one-half foot or more.

1907.

[Gauge, 89.20 miles from Eads Bridge. Zero of gauge, 335.84 feet above Memphis datum plane. Gauge read at $8 \mathrm{a}, \mathrm{m}$.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July,	Aug,	Sept	Oot.	Nov.	Deo.
1	8,0	18.5	16.1	10.8	18.3	16.0	23.5	a 25.8	15.2	11.4	9.6	8.8
2	8.3	18.1	16.0	17.4	10.0	16.8	23.0	a 25.2	16.0	11.35	9.7	8.8
3	10.5	17.5	15.8	17.75	10.4	17.2	22.4	23.9	14.9	11.5	0.6	8.7
4	11.4	16.8	15.5	17.75	19.4	a 17.9	22.0	22.7	11.8	11.8	9.5	8.6
5	11.6	15.7	15.2	17.5	10.2	10.9	21.2	21.8	14.8	12.4	0.4	8.5
6	11.8	15.0	16.0	17.4	18.9	21.4	20.5	$b 21.1$	14.7	12.7	9.4	8.4
7	12.4	14.0	14.9	17.4	18.6	21.7	19.9	20.6	14.6	13.0	0.3	8.3
8	12.7	12.9	14.8	17.2	18.6	21.6	19.9	20.3	14.5	13.1	9.25	8.2
9	12.9	11.7	14,6	17.1	19.65	21.0	20.1	20.1	14.3	13.15	9.25	8.1
10	12.7	11. 1	14.2	17.1	20.3	20.9	20.2	20.0	13.8	13.45	9.2	8.0
11	12,65	10.7	14.0	17.3	20.6	21.1	20.2	10.8	13.4	13.7	9.1	8.1
12	12. 55	10.5	14.2	17.3	20.1	21.3	20.2	19.3	13.0	13.8	9.05	7.9
13	12.3	10.8	16.0	17.7	19.2	22.3	20.2	18.8	12.6	13.9	8.95	7.8
14	12.4	11.3	17.9	18.6	18.2	23.1	20.3	18.5	12.3	13.75	8.8	7.8
15	12.9	12.1	19.2	19.0	18.2	23.45	20.9	18.2	12.1	13.4	8.75	7.8
16	13.6	13.0	19.6	18.8	18.2	23.5	21.3	17.8	11.9	13.0	8.75	7.8
17	14.1	13.0	18.9	18.6	20.0	24.0	21.6	17.8	11.7	12.8	8.7	7.85
18	15.3	12.8	18.4	18.6	21.4	23.2	22.4	17.4	11.5	12.3	8.7	8.0
19	18.3	13.1	18.2	18.0	21.7	22.5	23.6	17.2	11.2	12.0	8.7	8.05
20	20.4	13.5	17.9	10.0	20.9	21.7	24.3	17.7	11.0	11.7	8.7	8.1
21	23.7	13.35	18.0	10.5	19.9	21.2	a 24.8	18.4	10.8	11.4	8.85	8.1
22	a 25.8	13.0	18.2	20.0	19.2	20.9	a 25.3	18.5	10.6	11.2	8.9	7.9
23	a 26.4	13.1	17.6	20.2	a 17.9	20.6	$a 25.8$	19.0	10.4	11.0	8.85	8.0
24	a 20.6	13.7	16.8	20.1	17.1	20.5	a26. 4	19.1	10.3	. 10.75	8.8.	8.4
25	$a 20.3$	14.7	16.4	20.3	16.5	21.2	a 27.0	18.7	10.8	10.65	8.75	8.4
26	a 25.1	15.6 -	10.1	20.2	15.9	22.6	a 27.3	18.5	11.0	10.4	8.7	8.3
27	a 23.8	10.1	15.9	10.8	15.3	23.2	$a 27.2$	18.8	11.1	10.3	8.65	8.3
28	22.4	16.1	15.8	10.3	15.2	24.0	a 26.8	17.4	11.2	10.2	8.75	8.35
29	21.0		15.7	18.7	15.7	a 24.2	a 26.5	16.3	11.3	10.0	8.8	8.1
30	19.9		15.8	18.2	15.9	23.9	a 20.1	16.5	11.4	9.8	8.8	8.4
31	19.1		16.4		15.8		a 26.0	15.4		9.7		8.1

- Reading changed one-hall foot or moro.
b Changed less than oue-half foot.

Tabulated gauge readings at selected stations between Chain of Rocks and Cairo-Cont'd.

$$
\begin{gathered}
\text { RED ROCK, MO.-Continued. } \\
1908 .
\end{gathered}
$$

[Gauge, 89.20 miles from Eads Brldge. Zero of gauge 335.84 feet above Memphls datum plane. Gauge read at 8. a. m.]
[Gauge discontInued after Jan. 31, 1908.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1	8. 10											
2	8.10											
3	8.05											
4	8. 05											
8	8.00											
6	7.90											
7	7.85					30.30						
8	7.85					30.35						
9 10 10	7.75				30.45 30.15						
$\begin{aligned} & 10 \\ & 11 \end{aligned}$	7. 60 7.55	….....				$\begin{aligned} & 30.15 \\ & 30.60) \end{aligned}$						
$\begin{aligned} & 11 \\ & 12 \end{aligned}$	7.06 8.00				.	$\begin{aligned} & 30.60) \\ & 30.60 \end{aligned}$						
13	9.00				.	$\text { 30. } \mathfrak{K})$						
14	0.30					31.30						
15	9.50	\therefore				31.14						
16	9.00					32. 10						
17	8.75					33.20						
18 19	$\begin{aligned} & 8.40 \\ & 8.05 \end{aligned}$					$\begin{aligned} & 33.90 \\ & 34.40 \end{aligned}$						
20	7.76					34. 80						
21	7. 60				.	35.00						
22	7. 40					35.00						
23	7. 20					34.00						
24	7. (1)					34.70						
25	7.70					34.40						
28	7.80					34.10						
27	7. 80					33. 75						
28	7. 01											
29	7.70											
30	7. 50											
31	7.20											

GRAND TOWER, ILL.
1896.
[Gauge, 103.30 milles from Fads Bridge. Zero of gange, 329.04 feet above Memphis datum plane. Qauge read at $4 \mathrm{p} . \mathrm{m}$.]

Day.	Jan.	Feb.	Mar,	Apr.	May.	June.	July.	Alug,	Sept.	Oct.	Nov.	Dee.
1	17.0	5.6	8.3	9.0	12.2	25.1						
2	15.7	6.4	8.7	8.6	13.0	24.4						
3	13.9	6.6	9.2	8.1	13.2	24.0						
4	12.6	7.1	9.2	7.8	13.6	24.4						
5	11.2	7.8	0.0	7.4	a 13.2	24.4						
6	9.9	8.1	8.7	7.1	13.2	24.3						
7	9.5	8.2	8.5	6.7	13.2	24.2						
8	8.9	8.2	8.2	8.6	13.2	23.8						
9	8.4	8.2	7.8	6.5	'13.4	23.4	.					
10	7.7	8.1	7.6	6.5	13.5	23.0						
11	7.2	8.0	7.4	7.0	13.8	22.8						
12	6.7	7.9	7.3	10.4	13.9	22.4						
13	6.4	7.8	7.1	11.2	13.8	21.8						
14	6.2	9.1	6.9	12.7	13.8	20.0						
15	b. 4	10.7	6.8	$a 12.5$	13.5	19.2						
16	5.4	11.7	6.6	12.1	13.3	18.0						
17	5.4	11.1	0.5	11.8	13.3	10.9						
18	5.5	10.8	13.2	11.4	13.2	10.8						
19	5. 3	10.2	8.2	11.1	13.8	17.8						
20	6.3	9.7	5.8	10.7	17.7	18.0						
21	6.6	9.0	6.0	10.2	21.0	18.0						
22	6.8	8.3	6.0	10.0	23.1	17.8						
23	6.0	7.2	7.2	0.8	24.0	17.7						
24	6.4	6.6	7.6	9.6	24.8	17.2						
25	a 6.0	6.2	7.0	9.4	25.6	16.6						
26	8.7	6.1	8.1	a 0.4	20.2	10.4						
27	6. 6	8.4	8.7	9.6	26.8	16.2						
28	5.5	6.9	8.9	9.8	b 27.2	10.6						
29	5.5	7.9	8.3	10.6	b 27.4	17.0						
30	5. 5		3.6 8.8	11.4	- 26.9	17.2						
31	5.5		8.8		28.0							

Tabulated gauge readings a! selected stations between Chain of Rocks and Cairo-Cont'd.
GRAND TOWER, ILL.-Continued.
1896.
[Gange, 103.30 miles from Eads Brldge. Zero of gauge, 329.04 feet above Memphis datum plane. Gauge read at $6 \mathrm{a} . \mathrm{m}$.]

Day.	Jan.	Feb.	Mar:	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Deo.
1							16.90	14.10	9.60	8. 60	5. 40	6.80
2							a 16.80	13.70	9. 20	8.10	5. 40	6.70
3							16.80	13.50	8. 90	7.80	5. 40	6.60
4							17.00	13.70	8.50	7.50	5.70	6.60
5							17.10	13.90	8.20	7.20	6. 50	6. 60
6							17.30	14.20	8.00	a 7.00	7.10	6.60
7							17.40	14.30	7.80	0. 80	8.20	6.30
8							16.90	14.30	7.60	$a^{\text {a } 6.80}$	9.00	6.00
9							16. 60	14.00	7.20	6.60	9. 20	6. 70
10							16.70	13.70	7.10	6.50	8.90	5.50
11							16.80	13. 50	0.00	6. 60	8.50	5.30
12							16. 20	13.00	6.80	6. 60	8.10	5. 20
13							15.40	12. 60	6. 60	6.60	7,90	5. 20
14							15.00	12. 30	6. 50	6.60	7.70	5. 30
15							14.60	12. 10	6. 40	6. 60	7. 60	5.40
119							13.80	11.60	6.70	6.70	7.30	5.50
17							13.20	11.40	6. 80	6.90	7.20	5.80
18							12.90	10.90	6. 90	7,00	7.20	6. 10
19								10,60	7.00	6.80	- 7.20	6. 80
20								10. 30	7.40	6.60	7.20	7.30
21								10. 60	8.10	6.40	7.20	7.70
22							16.70	11.30	8.70	6.30	7.20	7.80
23							19.70	11.90	9.00	6.20	7.10	7.80
2.1							20.70	12. 40	10.30	6.10	7.00	7.70
25							19.70	12. 40	10. 40	5. 90	6. 90	7.60
20								11.90	10.00	5.80	6.80	7. 60
27							18.60	11.60	9. 70	6. 60	6. 00	7.40
28							17.60	11.40	0.50	6. 60	7.00	7.20
29							16. 60	10.90	9.20	6. 0	7.00	7.00
30							15.60	10. 40	8.90	5. 50	6. 80	6. 80
31							14.90	10.00		5. 40		6.80

- Changed less than one-half foot.

1897.

[Gauge, 103.30 milles from Eads Brldge. Zero of gauge, 329.04 feet abovo Memphis datum plane. Gauge read at 8 8. m.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Deo.
1	6.70	7.30	a 14.20	23.40	27.00	15. 50	20.10	13.00	8.40	5.90	4. 10	5.40
2	6.70	6.80		25.10		14.00		13.60	8.20	6.90	8.20	5.30
3	6. 90	6, 60	13. 60	20. 60	27.00	14. 40	19.70	13.20	7.80	6.00	6.20	5.20
4	9.10	6. 50	13. 40	27.00	28.00	14.70	10.00	13.00	7.70	6. 80	5.20	5. 00
6	10.00	6.80	15.20	27.70	27,70	15.00	20.30	12.70	7,50	5.80	6.20	4. 80
6	22.60	7.60	18.60	27.60	27.30	15. 60	20. 10	12.50	7. 40	6.70	8.10	4.30
7	24. 10	8.10	22.00	27.40	20.00	10.00	19.30	12.30	7.30	5.70	6. 20	4.00
8	24.30	8.30	23.30	27. 60	25.60	10.20	19.00	12.10	7.20	6. 60	5. 30	3. 60
9	22.90	8.70	23.40	28.00	24.60	16.30	18.80	11.00	7.20	5. 60	6. 70	3.20
10	20. 60	9.20	23.30	28.10	23.70	18.20	18.90	12.10	7.20	6. 60	5, 60	2. 00
11	18.10	10.10	22.60	28.50	22.80	10.00	18.60	12.20	7.10	5.40	5.80	8.00
12	15.70	11.00	22.00	28.70	22. 50	15.80	17. 00	11,80	7.00	5. 40	5. 80	3.00
13	13.60	11. 40	21.30	28, 70	21.50	15, 50	17,00	11,60	${ }^{6.80}$	6. 40	5.80	3. 00
14	12.50	11.30	21.00	28. 10	20.70	15. 20	16.30	11.40	6.70	5. 30	6. 80	3. 30
15	11.50	12.20	${ }^{\circ} 20.40$	27.60	20.00	14. 80	15. 60	11,30	6. 00	5.20	5.80	3.50
16	10.90	12.3)	19.60	28.90	19.30	14. 40	14.90	11.20	0. 50	5.20	588	3. $\%$
17	10.60	12.80	10. 10	26.30	18.80	14.30	14. 50	11.20	${ }^{6.50}$	${ }^{5.20}$	${ }^{8} 880$	3. 80
18	10.50	13. 00	18. 60	25.00	18.20	14.30	44.10	11.10 11	6. 20		5.90	
18 20	10.60 11.80	12.70 12.40	20.50 20.00	25. 26.50	17.60 17.10	14.50 a 14.70	14.00 14.30	11.00 10.80	6.10 6.00	6.10 6.10	6.70 6.80	4.00 3.60
21	13.40	12.10	10.70	25. 20	16. 60	14. 40	14. 20	10.70	6.00	6. 10	8. 40	2.00
22	13.80	12.60	20. 50	25. 40	16.10	14.70	13.00	10.60	0.00	5.10	8.30	2.80
23	14. 20	13. 50	20.70	25.60	15.80	15.40	13. 20	10. 40	5.90	6.00	6.30	2.80
24	14.30	14. (i)	20.80	25.70	15. 60	15.50	12. 00	10. 20	5.90	6. 00	5. 30	2. 60
25	114.00	15.50)	21. (x)	25.70	15. 20	16. 60	12.80	10.10	6.90	4.90	5. 30	2.20
20	13.40	15. (\%)	21.10	25.70	15. 10	16.20	13. 40	9.90	6. 10	4.80	6. 40	2. 30
27	12.50	15.310	21. (1)	25.10	15.40	17.00	15.00	0.60	6.20	4.00	6. 00	2.30
28	11.20	14.40)	22. (k)	25.00	15. (0)	17.30	-10.30	9.30	${ }^{0.20}$	6. 00	5. 20	
29 30 3	10.30 9.40		23.30 233 23.30 20	25.50 26.20	15.60 15.60	17.60 18.90	16.50 15.80	9. 8.80	0.10 0.00	6.00 6.00	6. 6. 40 0.4	3. ${ }^{\text {3. }} 80$
31	8.20		23. © 81		15.80		14.70	8. 60		6.00		4. 20

[^16]Tabulated gauge readings at selected stations between Chain of Rocks and Cairo-Cont'd. GRAND TOWFR, ILL.-Continued.
1898.
[Gauge, 103.30 miles from Eads Bridge. Zero of gauge, 329.04 feet above Memphis datum plane. Gange read at $8 \mathrm{a} . \mathrm{m}$.]

Day.	Jan.	Fob.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Deo.
1	3.9	8.3	9.3	24.4	15. 5	19.6	- 21.1	12.4	7.9	8.2	10.2	7.4
2	4.0	7.9	9.1	23.8	15.0	18.9	21.2	12.2	7.6	8.0	9.8	6.8
3	4.0	7.4	8.9	22.7	15.1	18.7	21.1	12.3	7.3	7.5	9.0	6.1
4	4.1	6.7	8.7	21.5	16.4	10.0	20, 5	13.1	7.0	7.1	8.4	5.
5	3.8	6.8	8.5	20.8	18.8	10.5	10.8	13.5	6.9	6.9	7.9	5.6
6	3.0	5.8	8.4	19.9	20.0	10.8	19.0	12.9	6.8	6.8	7.5	6.3
7	4.1	5.5	8.2	19.5	20.7	20.0	18.7	12.2	6.7	6.6	7.3	5.0
8	4. 4	5.4	8.1	19.5	20.5	10.6	19.3	12.1	6.6	6.3	7.3	4.9
9	4.9	5.5	8.0	19.1	20.0	18.8	21, 1	12.2	6.7	6.1	7.7	4.8
10	5.2	5.8	7.9	a 18.9	10.7	18.3	21.0	11.5	7.2	5.8	7.8	4.6
11	6.7	6.5	$\% .0$	18.7	10.0	18.2	20.8	11.3	7.9	6. 8	7.9	4.0
12	0.5	6. 5	8.5	18.0	a 18, 4	18.7	20.4	10.8	8.9	5.7	8.3	3.
13	7.5	6.7	$\checkmark 11.0$	17.6	17.7	10.7	19.6	10.3	0.5	6.8	8.5	3.3
14	8.2	8.0	12.2	17.0	16.9	20.6	18.5	10.0	9.3	6.3	8.5	2.9
15	8.9	9.4	15.9	10.9	16.8	21.1	17.5	10.2	9.0	0.3	8.2	3.0
16	3.8	0.8	17.6	17.0	16.2	21.3	10.6	10.1	8.6	6.0	8.0	2.7
17	8.4	10.0	17.0	17.0	16.5	22.0	15.7	10.2	8.4	5.7	7.7	3.2
18	8.2	10.1	18.0	16.5	18.9	23.0	14.8	10.0	9,3	5.4	7.4	4.2
19	7.8	10.2	18.0	16.0	20.8	23.3	14.0	0.8	10.4	5.3	7.1	4.5
20	8.2	10.7	18.0	15,3	21.4	22.9	13.6	9.7	11.0	6.6	7.0	5.6
21	8.6	11.3	18.4	14.8	21.7	22.2	12.9	10.0	10.6	0.4	6.8	4.7
22	8.0	12.2	10.3	14.4	22.4	21.1	12.7	10.8	10.1	7.8	6.8	4.9
23	9.7	12.5	21.8	13.9	24.2	20.0	12.5	11.1	9.4	0.5	6.8	6. 5
24	9.8	12.0	24.7	13.7	25.0	19.2	12.0	10.6	8.9	10.3	6.9	,
25	9.6	11.2	25.0	13.4	24.9	18.1	11.8	0.0	0.0	10.5	7.4	8.0
26	9.4	10.8	24.9	13.6	24.1	18.2	11.5	9.3	9.5	10.2	8.0	9.6
27	0.4	10.2	24.9	14.6	23.4	18.0	11, 8	9.0	0.4	0.6	9.0	10.2
28	9.5	9.7	25.1	10.5	22.6	19.0	11.7	8.7	9.3	9.0	9.5	10.3
29	9.7		24. 6	16.9	21.5	20.5	11.8	8.4	9.0	8.8	9.0	10.1
30	9.4		24.4	18.3	21.1	21.0	11.5 11.8	8.3	8.5	9. 10	8.2	9.7
31	9.0		24.5		20.3		11.8	8.1		10.3		9.3

a Changed less than one-half foot. b Reading changed one-half foot or more.
1899.
[Gauge, 103.30 miles from Eads Bridge. Zero of galuge, 329.04 feet above Memphis datum plane. Gauge read at 8 a. m.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1	9.0	3.6	14.7	13.7	23.4	21.3	19.2	14.1	9.1	7.2	6.0	7.3
3	8.2	3.1	a 15.7	13.8	23.4	21.3	b 19.2	14.0	9.1	7.1	6.3	7.1
3	7.2	3.1	15.3	13.0	23.3	21. 6	10.2	14.0	9.1	6.8	6.3	7.0
4	6.5 6.5	3.3 3.7 1	14.0 14.3	13.2 13.1	23.0 21.8	22.0 22.2	10.5 20.1	13.9 13.8 13.8	8.0	6.8 6.8	6.4	6.8 6.8
${ }^{6}$	6.5 8.2	3.7 4.1	$\begin{array}{r}14.3 \\ 13.9 \\ \hline\end{array}$	13.1 13.4	21.8 20.7	22.2 22.3	20.1 20.6	13.8 13.4 13	8.9	6.8 6.7	6.7 6.9	6.8 8.8
7	5.8	5.0	13.5	13.9	- 19.8	22.3	20.8	13.4	8.5	6.0	7.0	6.8
8	6.4	4.9	13.4	14.2	19.3	22.1	21.0	13.1	8.4	0.5	7.2	6.7
9	. 0.4	4.6	13.0	14.0	18.8	21.5	21.2	12.8	8.3	6.3	7.3	6.6
10	6.4	4.3	12.4	13.8	18.7	21, 3	21.1	13.0	8.3	6.2	7.6	6.6
11	0.1	5.0	12.2	13.9	19.3	21.3	21.1	14.1	8.3	6.2	7.6	6.8
12	6.2	6.0	12.4	14.0	19.8	21.2	21.5	15.0	8.4	6.2	7.8	6.6
13	8.2	6.2	12.5	14.8	b20.4	21.5	21.6	15.2	8.5	6.1	7.9	6.5
14	7.2	0.5	12.5	16.0	20.6	22.4	21,4	15.0	8.5	6.0	8.0	6.6
15	7.9	6.3	12.9	15.9	20.7	22.8	20.8	14.7	8.4	6.0	8.0	6.5
16	7.5	0.2	13.0	15.3	20.5	22.4	20.3	14.4	-8.3	6.9	8.1	6.6
17	7.3	0.1	15.3	14.9	20.0	21.5	19.8	13.8	8.2	5.9	8.1	6.6
18	7.5	6.2	10.2^{\prime}	14.7	19.4	21.0	19:3	13.1	8.2	6.9	8.0	6.2
19	7.0	6.3	10.9	14.6	18.9	21.0	19.1	12.6	8.2	6.0	8.0	6.1
20	7.5	5.3	17.5	14.7	18.1	20.9	10.0	12.2	8.3	6.0	8.0	6.2
21	7.3	7.0	18.6	15.3	17.9	20.8	18.8	11.9	8.4	6.0	8.0	0.0
22	7.3	6.9	10.3	10.1	18.4	20.6	18.4	11.6	8.2	5.9	7.8	6.8
23	7.2	6.2	19.2	17.1	19.2	20.2	17.8	11.3	8.0	5.8	8.0	6.6
24	7.1	5.4	18.7	20.0	20.7	19.8	17.3	10.8	7.9	5.8	8.1	6.4
25	8.9	4.7	18.3	22.1	21.7	19.1	10.9	10.5	7.8	5.7	8.2	6.9
26	7.0	7.3	17.8	23.2	22.6	18.7	16.5	10, 1	7.6	5.7	8.3	6.5
27	6.8	9.2	10.8	23.5	23.0	-18.5	15.9	9.8	7.5	5.7	8.0	5.0
28	6.7	11.8	10.1	23.7	22.9	18.0	15.4	9.7	7.4	6.8	7.7	4.8
29	6.4		15.4	23.5	22.4	18.8	14.9	9.6	7.3	5.9	7.5	4.4
30	6.2		b14.7	23.3	21.9	19.0	14.8	9.4	7.2	6.3	7.3	4.0
31	8.8		14.0		21.4		14.2	9.2		6.6		3.6

- Reading ohanged one-hall loot or more.
-Changed leas than ono-half foot.

Tabulated gauge readings at selected stations between Chain of Rocks and Cairo--Cont'd. GRAND TOWER, ILL.-Continued.
1900.
[Gaugë, 103.30 miles from Eads Bridge. Zero of gauge, 329.04 feet above Siemphis datim plane. Gauge read at $8 \mathrm{a} . \mathrm{m}$.

Day.	Jan,	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1	3.4	6.1	9.0	13.8	15.9	14.1	13.1	- 12.1	10.0	10.2	12.7	11.5
2	2.7	4.5	8.4	13.6	15.4	13.5	12.6	-11.8	10.4	10.7	12.7	a 10.9
3	2.0	3.1	8.4	13.9	15.1	13.4	12.5	11.4	10.6	11.1	12.3	10.3
4	2.0	3.5	8.3	14.0	15.2	13.5	12.5	11.0	10.6	11.8	11.9	9.8
5	2.6	3.6	8.4	14.0	15.3	13.4	12.4	10.8	10.6	12.8	11.8	9.4
6	3.4	3.3	9.5	14.2	15.1	13.1	12.4	10.3	10.6	13.0	12.0	0.1
7	4.4	3.4	12.0	14.5	15.4	12.8	12.3	9.9	10.7	12.8	12.3	8.9
8	0.1	4.0	16.2	$15.0-$	15.8	12.5	12.1	9.5	10.6	12.6	12.8	a 8. 6
9	5.0	5.5	17.9	15.0	16.1	12.3	11.7	9.1	10.0	12.5	13.4	8.4
10	5.0	7.2	18.2	15.7	16.1	12.3	11.3	8.8	0.5	12.8	13.4	8.2
11	5.2	9.0	18.7	16.7	16.0	12.1	11.3	$8.5{ }^{-}$	9.1	12.9	13.1	8.0
12	5.3	9.5	19.7	15.4	15.8	11.9	11.1	8.2	8.9	12.3	12.8	8.0
13	5.4	$\theta .1$	20.5	15.5	15,5	11.0	11.1	7.0	8.5	11.7	12.6	7.8
14	5.2	8.9	21.4	16.0	16.9	11.8	11.0	7.6	8.2	11.1	12.4	7.6
15	5.2	8.8	21.7	17.0	16.1	12.8	10.9	7.4	8.0	10.8	12.3	7.4
16	5.2	8.3	21.9	17.4	16. 5	14.6	10.6	7.2	7.8	10.6	12.0	7.2
17	5.1	8.1	22.0	16.9	14.8	14.2	10.5	7.0	7.7	10.4	11.9	7.0
18	5.1	7.8	21.7	10.2	14.2	13.5	10.8	7.0	7.5	10.4	11.8	6.8
19	6.2	7.4	21.1	15.4	14.1	12.8	10.7	6.0	7.4	10.4	12.0	6.6
20	5.8	7.1	20.3	15.0	14.0	12.5	10.4	7.4	7.4	10.4	12.0	6.4
21	7.6	7.0	19.3	15.0	14.0	12.4	10.5	8.6	7.4	10.5	12.1	6.2
22	8.7	7.5	18.4	15,3	14.0	12.6	10.4	9.5	7.6	10.8	12.1	6.0
23	8.5	8.9	17.8	15.6	14.0	13.6	10.8	0.0	8.0	11.1	12.3	6. 0
24	7.9	10.0	17.4	15.9	14.0	14.8	11.8	10.0	8.3	11.6	12.7	6.7
25	7.5	10.8	17.0	16.2	14.0	16.5	12.8	10.0	8.5	11.8	12.6	6.7
26	7.3	10.5	18.5	18.5	13.8	15.4	13.6	10.0	8.5	12.1	12.5	5.6
27	7.3	0.9	16.2	16.0	13.5	15.2	13.3	0.0	8.8	12.3	12.6	5.5
28	7.2	0.4	16,7	16.9	13.2	14, 0	13.5	0.8	8.8	12.4	12.4	5.6
29	7.1		16.3	16.6	12.9	14.3	13.1	0.8	0.0	13.4	12,3	6. 0
30	6.7	.	14.7	16.2	12.0	13.6	12.7	9.7	9.7	12.4	12.0	5. 5
31	5.9		14.3		13.4		12.3	9.6		12.4		5.3

a Changed less than one-hall foot.
1901.
[Gauge. 103.30 miles from Eads I ridge, Zero of gallge, 320.04 feet above Memphis datum plane. Gauge read at 8 a.m.]

Day.	Jan.	Fob,	Mar.	Apr.	May.	June.	July,	Aug.	Sept.	Oot.	Nov.	Dec.
1	5. 10	0.30	6.40	17.60	16.70	10.60	14,60	9.20	6.00	5. 50	5.90	6.00
2	5. 10	0.00)	6. 20	17.80	16. 40	10.40	14.00	9.20	5.00	5. 40	6.90	6.00
3	4.00	6. 06	6. 90	17.0)	16, 00	10.40	13.00	9,30	6. 80	6. 30	5. 80	6.00
4	4.10	6.80	6.70	17.00	14.80	10.00	13.00	0.40	5.70	5. 20	5.70	4.00
5	4.40	0.00	5.60	a 18.00	14.40	12.00	12.60	9.30	5.60	5. 10	6.60	4.80
6	4. 40	6. 00	6. 80	18,30	a 14.20	12. 50	12.10	0.20	5. 40	5. 10	5.60	4.80
7	4.20	6.8)	6.30	18. 60	14.00	12.70	11.60	0.00	6. 30	6. 10	5. 60	4.70
8	4.00	6. 80	6.60	18.70	13.70	12.80	11,40	8.70	5.30	6. 20	6.40	4.70
9	4.00	5.60	7.00	18.80	13. 80	13.20	11.20	8. 40	5. 10	5.20	5.30	4.70
10	4.10	5. 10	b8. 50	10.30	13.30	13.30	11.30	8.20	5. 10	5.30	5. 30	4.70
11	4.50	4.40	10.40	20, 20	13.10	13.10	11.90	8.00	5. 10	5.40	5.30	4.70
12	4.00	4.30	13.40	20.60	12.00	12.90	12.20	7.80	5. 10	5. 50	5. 30	4.60
13	6. 0^{10}	4, $\mathrm{h}^{\text {a }}$)	16.10	20. 80	-12.70.	12,80	11.80	7.70	5. 10	5. 50	5. 40	4.60
14	6. 50	a 4.70	16.90	21.20	12.80	12.80	11.30	7.70	4.00	5. 60	5. 50	5.00
15	0.80	a 4.70	17. 10	21.10	12.40	12.00	11.10	7.60	4.00	5. 50	5. 40	C5. 30
10	7.10	4.80	16, 80	21.00	12.20	13.60)	10.90	7. 60	4.00	5. 40	5. 40	c 4.90
17	7.10	4.00	11.60	20.00	12.00	13.90	10.80	7.40	4.80	5. 40	6. 40	c 4.00
18	7.00	4.90	16.50	21. 30	11.80	13.80	10.80	7.30	4. 80	5. 50	6. 40	c 4.90
19	7.00	6.10	16. 40	21. 80	11.70	13. 50	10.80	7.20	4.80	6. 130	5. 40	c 3.10
20	7.00	5.20)	11.30	21.80	11.50	13.10	10.80	7.10	4.00	5. 80	6. 30	c 3.00
21	6.90	6. 40	16. 10	21.10	11.30	12.10	10.80	7.00	6. 20	5.00	5.30	c2. 40
22	6.70	5. 40	16.00	20. 30	11.00	12.80	11. 20	(3. 90	6. 90	6.10	6. 30	c2. 40
23	6.60	5. 20	16. 30	10. 50	10.90	12.80	11.40	6. 0^{\prime})	(i. 70	6. 10	5.30	22.40
24	6.60	6. 10	17.20	18.00	10.70	13.00	11.0.)	3.80	(i. 80	B. 11$)$	5.30	c2. 60
25	6. 60	a 6.10	17. 180	18.40	10. 10	13.70	10.1.0)	(i. 70	(i. 50	a ${ }^{\text {a, }} \mathrm{m}$	5.30	c 3.10
26	0.60	5. 30	18. 00	17.80	10. 40	14.20	10.20	6. 10	(i. 30	5.90	5.38	¢3. 50
27	6.60	6. 8^{\prime})	18.20	17.20	10. 60	14. 40	10.00	6. 50	(i. 00	5.00	5. 20	c 5.00
28	6.40	6. 20	18.10	11. 70	11.10	14.60	0.7)	(i. 40	5. 80	5.80)	5. 20	c 4.20
29	6.30		17.16)	16. 40	11.10	14.80	9.60	(i. 30	5. 70	5. 80	6. 10	c 4.50
30	3.30		17. ${ }^{\text {a }}$ (13.00	10.40	14.00	9. 91	(i. 20	6. 60	\%. 80	5. 10	c 4.20
31	6.30		17.10		10.70		9.20	6. 10		6. 90		c 4.10

a Changed less than one-half foot. bleading ohanged one-half foot or moro.
Doubtul on aceount of lee.

Tabulated gauge readinge at selected stations belween Chain of Rocks and Cairo--.Cont'd.
GRAND TOWER, ILI. - Continuod.
190%.
[Gauge, 103.30 millos from Eads Bridge. Zaro of gaugo, 329.0 f feot aloove Momphls datum_plano. Gaugo read at $8 \mathrm{n} . \mathrm{m}$.)

Day.	Jan.	Fob.	Mar.	Apr.	May.	June.	July.	Aug.	Sopt.	Oct.	Nov.	Deo.
1	a 4. 20	a 2. 30	6.70	11.30	9.20	16.90	20.00	21.60	10.20	16. 40	12. 20	14.30
2	a 4. 20	a2. (i)	8. 40	11. 60	9. 20	111. 70	21.10	21.00	18. 80	15. 70	11.90	14. 40
3	a 4. 30	a 2.60	7.10	12. 10	9. 20	16. 10	21. 80	20.60	18.50	16. 60	11.50	14.50
4	a 4.40	a 2,30	7. 20	12, 30	10.40	17.50	22.00	19.60	18.00	15. 80	11.20	14.00
5	a 4.00	a 1.70	7.90	12. 30	11.40	18.10	22. 20	-18.00	18.30	16. 40	11.00	13. 70
6	a 3. 80	a 1, 80	8. 20	12. 10	11.20	18.00	22, 00	18.60	18.70	16.90	10.80	13.70
7	a3. 70	a 2. 30	8.00	12.00	10, 10	17.00	21. 40	18.10	18. 40	17.30	10. 00	13. 70
8	a 3.90	a 2. i^{0}	7.70	12. 00	0.90	17.50	21.00	18.00	17.70	18.00	11.30	13.70
9	a 4.00	a 2, 80	8.10	12.70	9. 20	17.00	20, 50	17.80	10.80	18.70	11.60	14.00
10	4.00	a 2.80	9,00	12,00	8.80	10. 70	20. 40	17.40	10.00	19, 20	11.80	13. 80
11	4. 20	a 3. 10	800	11.50	9. 00	10.80	20, 30	17.00	15. 20	19.00	12.40	13. 20
12	4. 30	a3. 10	10.00	11. 20	9.80	17. 10	19.00	10.70	14. 70	18.60	12.60	12. 610
13	4.30	a3. 30	9. 00	10.80	10.70	18.10	19.80	10.20	14.30	17.80	12. 50	12. 20
14	4. 10	a 3. 30	10.30	10. 60	11. 20	18. 20	20. 40	10.00	13.80	17. 10	12.00	12. 60
15	3. 70	a 4.20	11. 40	10.10	11. 70	18, 40	21, 40	15. 70	13.30	16, 40	11.70	12.90
16	3.40	a 4.10	12. 20	9. 00	11.70	10, 10	22. 20	15.60	12.80	16. 80	11. 60	13. 10
17	3. 60	a 4.10	13.00	9. 70	11, 70	19. 20	22, 80	14.80	12.30	15,30	11.30	12. 60
18	3.70	a 4. 20	13. 50	9. 40	11.60	19, 00	23. 20	14. 60	12.30	15.00	11. 20	11.70
18	3. 90	a 4. 30	13.30	9.30	11,50	18.70	23, 50	14. 70	11.80	16.00	11.30	11.60
20	3. 00	a4. 20	12.80	9.30	11. 50	18.60	23. 80	14.60	11.30	15. 10	12.00	11.60
21	(b)	a 4. 30	12.20	9. 20	12. 00	18. 20	23. 70	15. 20	11.00	16, 30	12.00	12.10
22	(0)	a4. 20	11.30	8.80	12, 10	17.80	23. 50	10,20	10. 10	16. 60	13. 60	12, 40
23	(b)	a 4.20	10.60	8.50	11. 80	17.60	23. 50	16. 90	10. 30	16.00	13.70	13.00
24	(b)	a 4. 00	10. 10	8.60	11. 60	17.30	23.70	17.20	10. 00	10.30	13.70	13.60
25	(b)	a 4. 00	9. 80	9.30	- 12.00	17.30	24. 00	17.20	9.90	10. 20	13.60	14. 10
26	(0)	a 3. 70	9. 50	9. 60	13.00	17.30	24. 20	17.30	10. 30	10.00	13. 50	14.70
27	(b)	a3. 70	9. 40	9.10	13. 40	17.10	24. 30	17.50	12. 00	16.80	13. 40	14.80
28	(b)	a 7.00	9. 50	8.70	14. 00	17. 40	24.00	18. 00	13.00	15.00	13. 40	1.1. 60
29	(b)		11.30	8.80	15.60	18. 20	23. 60	18. 10	13. 70	14. 20	13. 70	13. 6
30	(0)		11.10	8. 70	17.10	19.60	23, 00	10.00	14.80	13.30	14.00	13.20
31	(b)		11. 40		17.40		22. 30	19.39		1280		12. 30

- Doubtful on account of lco.
o Observer reports gauge records destroyed by are.

1903.

[Oauge, 103.30 miles from Eads Bridge. Zero of gauge, 329.04 feet above Memphis datilm plane. Galuge read at $8 \mathrm{a}, \mathrm{m}$,)

Day.	Jan.	Feb.	Mar,	Apr.	May.	June.	July.	Aug.	Sept.	Oot.	Nov.	Deo.
1	11.20	11.80	14.40	19.40	18.40	23.30	20. 40	17.80	17.00	17.10	15.80	0.20
2	10.50	11.80		19.00	18.00	24. 90	20. 40	17.30	17.00	17.20	15.70	9.00
8	10.10	11. 40	16.40	18.00	17.80	20. 40	20.20	10.70	18.00	17. 10	15. 50	0
4	10.00	11. 60	18.70	18.400	17.50	27.60	19,70	10.30	10.40	17.20	15.40	8.60
6	10.20	12.80	17.40	18.60	17.20	28, 50	19.20	10.50	19,60	17.40	15.20	8. 40
8	10.50	16. 60	18.20	18.00	16.90	20.50	18.70	10.10	10.20	17.50	15.00	8. 10
7	10.70	16.30	18.80	19.00	10.70	30. 40	18.00	15.60	18.00	17.70	15.00	8. 00
8	10.40	15.50	19.60	20.60	16,50	31.30	17.70	16.00	18.00	18.20	15.20	7. 31
	10.60	15.10	21. 40	20.60	10.40	31.90	17.10	10.90	17,70	18. 50	15.50	7. 90
10	10. 40.	14.40	23.30	20.20	16.40	32. 20	17.60	17. 10	17.60	19.50	15.60	7.70
11	10.10	13.60	24.20	19.90	16.60	32.70	17,60	17. 20	17.20	20.40	15.30	7.4)
12	9.60	13.00	24.60	19.00	18. 40	33.20	17.60	17.30	17.20	21.00	16.10	7.20
18	8.90	12.80	24.10	20.90	16. 20	33.70	a 17,30	17,20	18.30	21.00	14.80	7.10
14	8.60	13.00	23.80	21.70	16.10	33.80	10.90	17.40	10.40	20.70	14. 50	b6.90
15	7.90	13.40	23.40	22.00	16.00	33.70	16.80	17.30	19.90	20.40	14.00	85.9
16	7.60	13.90	23.40	22.30	15.80	33.20	17.00	17. 10	20.00	20.00	18.70	85. 2 (1)
17	7.60	13.30	23, 40	22.30	15.70	32.30	17.40	17.70	20.40	19.70	13, 40	${ }^{6} 5.00$
18	7.70	12.80	22.70	22.30	16.80	31.40	18.10	17.40	20.60	10.10	13.20	84.70
19	8.30	11.70	22.80	22.60	18.60	20.00	19.00	17.40	20.20	18.60	12.80	${ }^{6} 4.70$
20	8.80	11.00	22.80	22.50	19. 50	28.60	19.30	17.70 77	20.00		12.50	
21	9.10 0.30	10.60 10.30	22.60 23.00	22.00 21.80	19.80 19.60	27.100 25.00	10.10 18.70	17.70 17.70	20.00 19.60	17.80 17.40	12.10 11.80	b b. $\bullet 60$ 6.00
	${ }_{9.00}$	10. 40	23.30	21.80	${ }_{19} 190$	25.30	18.60	17.80	18.00	17.00	11.60	-6.30
24	8.90	10.40	23.10	21.00	10.00	24. 50	18.60	17.60	18.30	16.70	11.30	0.60
25	8.80	10.60	22.70	21.00	19.00	24. 10	18.80	10.90	17. 10	${ }^{16.50}$	11.10	6. 00
26	8.70	10.70	22.40	20.50	19.30	23.70	10.10	10. 40	17.10	16.40	10. \&0	7.30
27	8. 50	11.00	22, (x)	20.00	20.40	23.40	19.70	- 10.30	16. 80	16.30	12.50	7.in
28	8.80	12.10	21.40	19.70	21.90	22.60	19.80	16.00	16.70	16. 20	1010	7.90
29	10.10		20. 80	19.10	22.30	21.70	10.30)	15.90	16.80	13.00	4.80	7.20
30	11.70		20.10	18.80	22.40	20.90	18.80	16.00	17.00	16. 00	450	0
31	11.90		19.60		22.60		18.30	10.60		16.80		7. 60

Tabulatel gauge readings al selected stations between Chain of Rocks and C'airo C'ont'd.

1904.
[Gange, 13.30 miles from Ends Bridge. Zero of gange, 320.04 fret abovo Memphis datmm plane. fiame read at 8 a. m.)

Day.	Jan.	Feh.	Mar.	Apr.	May.	Junc.	July.	Ang.	Sept.	Oet.	Nov.	Tee.
I	7.8	11.1	10.3	25.9	31.5	20.8	22.9	15.3	11.6	13.9	12.1	8.2
2	8.3	10.3	10.0	25.7	31.4	22.4	23.1)	15.1	11.2	1.4 .1	12.2	8.2
3	8.2	9.4	0.8	25.3	31.1	23.7	22.4	11.6	10.8	13.8	12.1	$\times .1$
4	8.0	0.0	0.6	25.0	30.8	23.8	22.0	14.3	10.5	13.5	12.9)	7.9
5	7.7	a 8.9	9.8	24.4	30.3	23.3	21.7	14.1	10.5	13.1	11.8	3.8
6	7.2	0.2	10.0	23.9	29.4	2.1 .1	21.6	14.0	10.9	12.5	11:7	7.7
7	7.1	0.7	10.7	23.2	29.3	25.1	21.1	13.8	10.9	12.0	11.9	7.7
8	7.1	0.9	11.2	22.7	27.0	26.5	20.6	13.4	10.6	11.8	11.1	i. 5
9	7.2	10.3	11.4	22.0	20.1	26.1	21.1	13.0	10.2	11.5	11.3	17.1
10	7.0	10.4	11.8	21.7	25.5	26.2	22.6	12.5	10.0	11.3	11.2	7.0
11	6.0	10.8	12.3	22.2	2.2	25.5	24.3	12.3	10.1	11.1	11.1	7.0
12	0.9	11.2	12.6	22.7	24.7	24.7	25.5	11.9	10.2	10.9	11.10	7.0
13	0.0	11.6	13.1	22.9	24.1	2.1 .1	26.0	11.7	16.1	10.7	10.9	7.0
14	6.7	11.8	13.4	23.0	23.4	23.6	26.1	11.5	10.1	$b 10.5$	10.8	6.9
15	6.8	11.8	13.3	22.8	22.6	23.2	25.5	12.0	10.0	10.3	10.7	6.5
16	7.1	12.2	13.2	22.5	21.9	23.3	24.6	11.6	9.9	10.1	10.19	6.2
17	7.3	12.0	13.0	22.5	21.3	23.6	23.3	11.5	9.8	10.0	10. 1	7.0
18	7.3	11.6	13.2	22.5	21.0	23.7	21.9	11.7	9.7	49.9	10.3	i. 8
19	7.4	11.0	13.6	23.2	21.0	24.3	21.3	11.8	10.9	9.8	10.1	3.5
20	7.8	10.6	14.0	23.5	21.3	23.9	21.2	11.8	12.5	9.8	9.9	-3. 1
21	7.8	10.7	14.4	23.4	21.4	23, 7	20.9	12.9	13.3	9.8	9.8	3. 0
22	8.6	10.0	14.6	23.1	20.9	23.8	20.4	13.9	13.9	9.8	9.1	i. 0
23	11.3	10.8	14.8	23.2	20.4	2.4 .0	19.6	13.9	11.1	0.8	0.1	4.8
24	14.5	10.4	10.0	23.6	20.0	23, 7	18.9	14.1	13.i	6.8	9.2	4.8
25	10.1	10.3	17.0	25.2	19.4	23.1	18,5	14.\%	13.0	10.0	$9.1)$	8. 0
26	18.0	10.1	22.8 8	27.4	19.0	22.4	18.4	14.4	12.6	10. 2	3.9	i. 1
27	15.2	10.5	22.6	29.1	18.7	21.3	18.2	14.5	12.9	10.5	8.7	i. 2
23	14.7	10.8	2, 0	30.3	-18.6	21.2	17.7	14.5	13.5	10.7	8.6	5. 1
20	13.8	10.6	24.9	31.11	18.7	21.4	16.9	13.6	13.6	11.0	8.1	3. 9
(1)	-12.8		26.9	31.4	18.8	21.9	16.2	12.9	13.5	11.1	8.3	3.11
31	12.1		26.2		10.8		15.7	12.1		11.8		4.6

a Reading chsenged one-half foot or more.
D Changed less than one-half foot.
1ヶяк.
[Gauge, 103.30 miles from Fads Bridge. Zero of gatge, 329.04 fert ahove Memphis dathm plane. Gialge read at 8 a. m.)

Day.	Jan.	Feb,	Mar.	Apr.	May.	June.	July:	Alig.	Sept.	Oet.	Fov.	Dene
1	8. 90	7.00	18.80	16.00)	18.50	26.00	20. 10					
2	8. 90	7.40	18. $\mathrm{C}_{0} 0$	16.20	18.00	20. in)	29.00					
3	8. 80	8. 90	18. 50	16.00	17.60	27.01)	23. 70					
4	8.80	90. 50	- 18. 0	16.00	17.20	27. H)	23.90					
5	8. 70	$\square 7.00$	19.00	1i). 00	17.80	27.40	29.00					
6	8. 60	8.00	19.00	10.00	18. 70	25. 20	29. 10					
7	8. 50	7.00	19. 20	15.90	20.6	2S. 210	29. 10					
8	8. 50	7.50	19.40	17.10	21,00	28. 20	29.00					
9	8, 50	7.80	20.00	17.40	21.27	23.30	28.30					.
10	8. 30	8.10	21.00	18.00	21.70	28. 30	27.40					\cdots
11	8.20	8.40	21.80	10.90	22.10	28. 210	213.60					
12	9. 40	8. 50	21.00	(2). 80	22. 0	$\underline{2} 8.30$	26.10					-
13	9. 70	9.00	21.90	21.30	22.70	28.30	25. 80					
14	9. 90	9.40	21.70	21.40	22.10	28. N)	2 Si (10					
15	10.10	11.80	21. 60	21. 20	21.00	29. 20	25.30					
16	9.90	13.10	21.20	20.90	21.90	29. 20	2.4. A)					
17	9. 50	15.80	20. (1)	21). 50	23.00	330. 10	24.1)					
18	9. 10	17. 40	20.20	19.80	24.00	130. 50	23. 210					\ldots
19	8.80	18.50	19. (\%)	19.10	24.50	431. 30	23.71)					.
20	8.70	18.30	19.30	18. 10	24.10	231. 0	22.0					.
21	8. 40	18.70	18.30)	17.50	24. 1)	331. \%	22. (0)					
22	8.10	18. (0)	18.00)	16. 90	23. 91)	231.90	23. (X)					.
23	8. 10	18.30	18.20	16. 10	23. 70	-31.90	23.90					.
24	8. 10	17.90	17.80)	17.00	23. A)	:31. s)	22. 30					
25	S. 40	17.50	17.40	17.80)	23. 40	431. 70	92. (0)					\cdots
26	8.50	17.50	16.9)	18. 10	23.00	:31. 40	21.70					
27	S. 40	17. 40	1ti. 50	18. 80	23.10	231.30	21.30					\cdots
28	8. 60	18. 10	16. 20	18.70	23.90	131.0)	21.30					-
29	S. 60	15.90	10.20)	18.90)	31.70	430.70	$\because 1.30$					
30	S. 20		16. 20	19, 20	3 3 .10	131). (x)	21.10					. . \cdot
31	S.00		13.30		23. 10		20. V)					

[^17]

Tabulated gauge readings at selected stations between Chain of Rocks and Cairo-Cont'd.

 MOCCASIN SPIRINGS, MO.1896.

[Gaugo, 116.80 mlles from Eads Brdge. Zero of gauge, 320.84 foot abovo Momphis datum plane. Gauge read at 8 n. m.]

a Changed less than one-half foot.
1897.
[Gauge, 116.80 miles from Eads Bridge. Zero of gauge, 320.84 feet nbove Memphis datum plane. Gauge read at 8 a. m.]

Day.	Jan.	Feb,	Mar.	Apr.	May.	June.	July.	Aug,	Sept.	Oct.	Nov.	Dec.
1	7.40	8.15	14.50	24. 00	20. 60	15, 60	19.85	14.30	Q. 40	6. 05	6.15	8. 35
2	7. 40	7. 60	13.00	25, 70	27. 20	14. 80	20. 20	14.00	9. 10	6. 80	6.20	0. 25
3	7.45	7.30	14. 10	23. 80	27. 40	14.60	10, 40	13.80	0. 00	(1, 85	0.20	6. 25
4	9.20	7.10	13. 95	28.00	27.05	14.80	19.80	13.45	8. 70	0.80	6. 20	0. 00
5	18.70	7. 50	15. 40	28.10	27.45	1.1, 80	20.10	13.20	8. 55	6. 80	6.20	5. 80
6	22, 85	8.15	18. 80	27.90	27.00	15. 65	20.15	12.90	8. 50	6, 75	0.15	5. 40
7	23.85	8.70	22. 10	27.70	20.30	16. 00	10.50	12.80	8. 20	0.70	6. 20	5. 00
8	24. 35	9.00	23.80	27.70	25.50	16.30	10.05	12.60	8.10	6. 60	0.25	4.70
9	23. 10	9. 40	24. 20	28. 20	24.60	16. 40	18.80	12. 40	8. 10	0.55	6. 60	4.20
10	20.70	9.80	24. 10	28.35	23. 60	10. 30	18.90	12. 50	8.00	6.65	6. 05	3.90
11	- 18.40	10. 65	23.20	28. 70	22. 50	10.10	18.70	12.85	8.00	0.50	6.65	3.90
12	10. 10	11.30	22, 60	28, 80	22.20	15.85	17.90	12.45	8.00	6.45	6, 70	4.00
13	14. 20	11.85	22.20	28. 90	21.35	15.60	17.30	12.15	7.90	6.50	6.80	4.05
14	12. 90	11.80	21.80	28. 50	20.60	15. 20	10. 00	11.95	7.80	6. 40	6. 80	4.30
15	11.80	12.45	21, 20	27.00	19.95	14.90	15.80	11.80	7.75	0.30	6.75	4.55
16	11. 30	12.75	20.60	$2{ }^{2} 7.30$	19.40	14.70	15.30	11.80	7.60	6. 25	6.80	4.80
17	11.10	13.30	19.00	20. 60	18. 85	14. 60	14.90	11.70	7.60	0.20	6.80	5. 00
18	11. 00	13. 40	20.25	20.10	18. 30	14.50	14.40	11.60	7.40	6.20	6.85	5. 30
19	11.10	13. 30	21, 10	20.00	17.70	14, 60	14. 40	11. 50	7. 30	6. 15	6. 70	6. 00
20	12. 20	12, 85	20. 00	25.80	17. 25	14.85	14.60	14.40	7.10	0. 10	6, 60	4. 70
21	13. 85	12.70	20.60	25. (6)	16.85	14. 60	14, 60	11, 30	7.10	6.10	6.50	4.15
22	14.20	13.05	21.10	25. 65	10.40	14. 50	14. 30	11.20	7.00	6.10	8. 40	3.95
23	14.45	14.00	21. 45	25. 60	15. 05	15.65	13.80	11.10	7.00	0. 00	6. 30	3.85
24	14. 80	15. 30	21. 60	25. 70	15. 05	15. 40	13. 50	10.85	6. 05	6. 00	6.35	3.85
25	14.30	15.95	21.85	25. 75	15. 30	10.75	13.35	10.70	0.95	6. 00	6. 35	3. 20
20	13. 70	10.00	21.00	25.70	16.16	10. 40	13.75	10.30	0. 95	6. 00	6.45	3. 10
27	12.90	15. 55	22. 60	25.20	15. 40	16. 80	14.80	10.15	7.15	6. 00	6. 40	3.10
28	11.80	15. 20	23. 65	25.00	15. 60	17.40	10.45	10.00	7.16	0. 00	6. 35	3.40
29	10.80		24. (1)	25.30	15. 70	17.40	10.85	10.00	7.10	0. 05	6. 30	3.90
30	10. 10		23. 00	25.00)	15. 65	18.65	10. 20	0.75	7.00	(i. 05	6. 35	4.70
31	0.20		23. 60		15.80		15.20	O. (i)		0.05		4.00

a lleadlig changed one-half font or moro,

Tabulated gauge readings at selected stations between C'hain of Rocks and Cairo-Cont'd.
MOCCASIN SPRINGS, MO.--Continued.
1898.
[Gauge, 116.80 miles from Eads Bridge. Zero of gauge, 320.81 feet above Memphis datum plane. (iauge read at 8 a. m.]

Day.	Jan.	Fob.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1	5. 30	9.90	10. 50	25. 20	16. 50	20.50	21. 50	13.30	8.805	9.00	11.20	8. 50
2	a 5.40	9.40	10. 30	24. 70	16.05	10.50	21.60	13.20	8. 20	9.90	10. 70	7.80
3	5. 40	9. 05	10.10	23. 50	15.90)	19.00	21. 65	13.20	8.00	8.50	10.05	7.30
4	5. 60	8.65	9.90	22. 40	16.8)	19.40	21. 10	14.00	7. 10	810	9.35	7. 00
b	5. 20	7.70	9. 70	21, 85	18.90	a 19, 85	20. 00	14.50	7.50	7.80	8.00	6. 50
6	5. 10	7.30	9. 65	21.00	20.50	a 20.15	19.00)	14. (0)	7.30	7.65	8. 50	6. 20
7	5.20	7.00	9. 40	20. 60	21.30	20.30	18.20	13.30	7.10	7.45	8.15	5. 80
8	5. 55	(3.70	9. 30	20. 65	21.10	20. 10	18.50	13.15	7.16	7.10	8.10	5.75
9	5. 90	6.70	9. 10	20. 20	20.70	ᄂ19.10	21. 40	13. 45	7.20	6. 80	8.55	5. 40
10	6. 30	7.00	9.10	19.80	20. 10	18.60	21.30	12.50	7.70	a 6.60	8.70	5. 30
11.	6.80	7. 50	9.05	10.60	19.60	18.00	21.00	12. 40	8.30	6.50	8.80	4. 80
12	7.40	8.10	0.85	19.20	19.00	18. 60	20. 10	12.00	9.30	6. 25	9.10	3. 80
13	8. 5.5	8.15	12.30	18. 50	18.30	21.15	10.15	11.30	10. 10	6. 30	9. 40	3. 60
14	9.15	8. 90	13.30	18.00	17.80	20.90	18.20	11.00	10.10	6.90	9. 40	3. 40
16	9.85	10.20	16. 20	17.60	17. 10	21.50	17.15	11.05	9.90)	7.10	9.20	3. 20
16	9.95	10. 10	18.00	17.40	10.00	21.80	16.60	11.00	9.50	6. 80	9.00	3. 8
17	9.55	11.00	18. 40	17. 10	18.80	22. 45	16. 10	10.05	9. 10	6.30	8.70	3. 70
18	9.35	11.10	18. 60	17.25	18.70	23.35	15.60	10.60	9.80	6. 00	8. 45	1. 05
19	9.05	11.15	18. 60	16.90	20. 60	23.75	14.00	10. 40	10. 95	5. 80	8. 10	4.80
20	9.55	11. 60	18.70	10.25	21.70	23. 25	14.15	a 10.30	11.70	6.00	7.90	6. 20
21	10.00	12.20	19.10	15.70	22.00	22.80	13.00	10. 70	11.55	6. 85	7.80	5. 50
22	0.90	13. 10	19.80	15.35	22.45	21.80	13. 60	11.50	10.00	8. 10	a 7.60	5. 80
23	10.80	13. 65	21.00	15. 00	24.30	20.80	13. 50	11.00	10. 40	9. 90	7.55	6. 35
24	11.05	13.00	24. 80	14.70	25. 30	10.75	13.00	11.50	9.75	11.00	7.80	7. 30
25	11.00	12. 40	25. 40	14. 50	25. 40	19.15	12.55	10. 70	9.75	11,35	8.10	9. 45
26	10.80	11.70	25. 30	14. 70	24. 60	18.35	12. 35	10. 20	10. 20	11.10	8.80	10.50
27	10.90	11.25	25. 25	15. 20	23.00	18. 00	12. 40	9.85	10. 20	10. 30	9.80)	11.10
28	10.90	10.80	25. 70	17.10	23. 10	18. 60	12.55	9.55	10. 10	9.90	10. 30	11.30
29	11.10		25.10	17.70	22.00	20.60	12.85	0.10	$0 . \mathrm{ba}$	8. 135	10. 10	11.00
30	10.90		24.05	17.40	21.70	21.30	12.60	9.00	a. 10	10. 10	9. 310	10. 10
31	10.40		25.10		21.00		12.70	8.85		11.0		10. 20

a Changed less than one-hall foot.
\checkmark Reading changed one-half font or more.
1899.
[Gauge, 116,80 miles from Eads Bridge. Zero of gauge, 320.84 feet above Memphls datum plane. Gauge read at $8 \mathrm{a} . \mathrm{m}$.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dee.
1	10.10	4.20	15. 60	15. 10	23. 00	23.15	19.75	14.80	8. 80	6. 80	6. 10	7.20
2	9. 10	2.60	16. 50	15.05	23, 85	21.00	10.75	14.35	8.80	6. 60	5. 00	7.00
3	8.10	2.35	16. 30	14.90	23.80	22.15	19.75	14.40	8.80	6. 310	5. 80	6. 80
4	7.60	2.90	15. 70	14. 5.5	23.40	22. 65	20. 05	1.4 .35	8.70	6. 40	¢. 90	6. 75
5	7.70	3.30	15.35	14.45	22.60	22. 80	20.65	14. 05	8. 50	6. 20	b. 20	6. 8.5
6	7.60	3.70	15.0)	14.70	a 21.40	22.05	21.15	13. 80	b 8.30	6. 119	6.35	6. 60
7-1	7.20	4.20	14.65	15.20	a 20.50	22.95	a 21.35	13.75	8.10	6. 15	6. 55	B. 30
8	7.20	5. 10	14. 50	15. 50	a 19.00	22, 75	21.65	13. 50	7.95	6. (0)	6. 75	6. 00
	7.50	7.10	14.00	15. 35	b 19.30	22. 25	21.85	13. 10	7.00	5. 30	18. 00	6. 15
10	7.40	7. 30	13. 40	15. 10	a 19,20	22.00	21.75	13. 15	7.80	5. 70	7.10	. 40
11	7.10	6. 85	13. 30	15. 10	b 19.80	22. 00	21.75	14.25	7.75	5. 70	7.310	6. 40
12	7.10	7.00	13. 40	15. 10	20.30	21.85	22. 05	15. 35	7.90	5. 60	7. 40	6. 40
13	7.20	7.60	13. 50	15. 70	21.00	22. 05	22. 20	15.70	8.05	5. 60	7.60	6. 40
14	8.60	7.40	13. 55	17.00	21.30	23.05	22.05	15. 50	8.05	3. 50	7.70	6.35
15	9.10	7.50	13.90	17.05	21.35	23. 45	21.55	15.20	8. 00	5. 40	7.80	B. 40
16	8.70	7.50	14.65	16.40	21.20	23.15	21.00	14.90	7.90	5. 30	7.90	6. 30
17	8. 10	7.50	13. 25	15.90	20.90	22.15	20. 45	1.1. 20	7.80	5. 40	7.90	6. 30
18	8. 80	7.55	17.40	15.70	20.60	21.65	19. 95	13.50	7.75	3. 40	7.80	6. 20
19	8. 90	7.50	b 18.30	15. 60	19.90	21.55	19.70	13.00	7.75	5. 40	7.80	6. 00
20	8.95	10.15	19.00	15.60	19. (1)	21.55	19.55	12. 45	7.90	5.45	7.75	5. 95
21	8.70	9.00	20.00	16.03	13.60	21.45	19.45	12.05	8.00	5. 40	7. 80	(6. 50
22	8. 50	8. 20	20. 50	16.00	- 19.15	21.25	19.05	11.85	7.90	5. 35	7.75	6. 75
23	8.25	7.45	20. 40	18.00	20.00	20.90	18.45	11.30	7.70	5. 30	7. 80	6. 60
24	8.10	6. 50	-19.75	20.40	21.20	20. 35	17.85	10.85	7.50	5. 20	7.90	6. 30
25	7.90	5. 15	${ }^{1} 19.25$	23.00	2.250	19.85	17. 40	10. 35	7. 45	5. 20	8.00	5.90
20	7.80	7.30	b 18.70	24. 100	23. 20	19.35	16. 95	10.05	7.20	3. 10	8. 10	5. 40
27	7.70	10. 50	18.00	2.4 .45	23. 70	19. 10	16. 45	9. 70	7.10	3. 10	8. 00	4. 80
28	7.55	12.00	17. 45	24.50	23.36	19.10	11.00	9. 45	7.05	5. 20	7.75	+. 50
(9)	7.30		16. 70	21.20	23. 20	19.35	15.45	9.30	3.95	-3. 35	7.40	+. 00
30	7.00		16. 05	23.80	22. 60	19. 55	15.30	9.10	6.80	3.65	\%. 25	3. 30
31	6. 40		13.45		22.30		14.70	8. (x)		13.05		.3. 10

Tabulated gauge readings at selected stations between Chain of Rocks and Cairo-Cont'd. MOCCASIN SPRINGS, MO.-Continued.
1900.
[Gauge, 116.80 miles from Eads Bridge. Zero of gaugo, 320.84 feet abovo Memphts datum plane. (iange read at 8 a. m.$]$

Day.	Jan.	Feb,	Mar.	Apr,	May.	Junc.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1	3.30	4.90	9.30	14.20	16.45	14.70	13.80	12.70	10.75	10.00	a 13.60	
2	4.10	4.10	8.95	14.00	16. 00	a 1.4 .30	13.25	12.45	11.00	11.45	13.65	
3	4.00	3.10	8.80	14.15	15.75	13.95	13.15	12.05	11.25	11.00	13.20	
4	4. 00	2.30	$\checkmark 8.60$	14.40	15. 60	14.05	13.10	11.05	11.30	12.55	12.75	
5	4.60	3.30	8.70	14.35	15. 75	13.95	13.05	11.35	11.35	13.65	$\checkmark 12.05$	
6	5. 75	2.80	0.80	14. 16	15. 70	13.70	13.05	11.00	11.40	13.85	12.80	
7	5.70	2.90	12.25	14.85	15. 80	13.35	12.90	-10.70	11.45	13.80	a 13. (x)	
8	6.85	3.80	16.70	15.35	16.25	13.00	12.65	10.35	11.30	13.60	a 13.51)	
9	7.10	5.45	19.00	16. 05	a 16.65	12.80	12.25	0.05	10.80	13.40	14.25	
10	6.76	7.30	19. 50	13.20	16. 65	12.75	11.85	0.15	10.40	13.65	14.25	0.15
11	5. 45	0.10	20. 00	16.30	16.60	12.65	11.80	0.10	0.80	13.70	14.00	0.00
12	5. 20	0.85	20.70	13.00	16.40	12.35	11.70	8.80	0.60	13.00	13.75	8.85
13	b 5. 25	0.50	21.40	10.00	16.15	12. 15	11.55	8.40	0.35	12.45	a 13.50	8.75
14	4.95	0.30	22,30	10.60)	16. 40	12.10	11.80	- 8.05	O. (1)	a 12,00	13.25	8.65
15	5.00	9.00	22.70	17.50	16. 65	12.90	11. 51	7.85	8.75	11.70	13.20	8.25
16	6. 50	8.60	23.10	17.01)	16.05	15. 10	11.10	7.70	8.15	a 11.40	13.00	8.00
17	4.90	8.30	23. 10	17.65	15. 25	15.00	11.10	17.65	8.60	11,20	a 12.85	7.90
18	4.90	8.05	22.70	16.10)	14.65	14.25	11.25	7. (x)	18.25	11.20	12.70	7.80
19	5.05	7.70	22.10	16.15	14.50	13. 5.5	11.15	7.55	18.20	11.20	12.75	7.65
20	i. 30	7.65	21, (1)	15. 60	14.45	13,25	10.05	8.00	8.20	11.20		7.30
21	7.40	7.20	- 20.00	15.50)	a 11.50	13. 20	a 11.05	8.80	8.15	11.25		7.00
22	8.80	7.70	a 19.00	15.85	14.40	13.35	10.90	10.05	18.30	11.70		6.90
23	8.75	0. 010	18.40	16.10	14.50	14.25	11.25	10. 15	8.60	12.10		6.75
24	8.05	10.20	18.00	16. 15	14.45	15.35	12. 20	10.75	O. 00	12.30		6.50
25	7.80	11.00	17.60	16.75	1.1.60	1 1. 25	13.45	10. 75	0.20	12.75		6. 40
26	7.40	10. 70	16.90	17.00	14,25	16. 20	14.30	10.80	0.40	13. 60	13.45	6.30
27	7.30	10. 30	16. 10	17.40	14.05	16.05	14.40	10.80	9.80	13, 25	13.40	6. 30
28	a 7:20	+0.70	18.15	17.50)	13.00	15.75	14.25	10. 60	0.65	13.35	a 13.20	6.25
29	7.10		15.70	17.20	13.65	15.25	13.80	10. 50	a9.90	13.35	13.10	6. 20
30	3.50		15.10	10.85	13.35	14.45	13.65	10. 15	a 10.60	13.35	12.80	6. 20
31	¢. 70		14.05		13.80		13.05	10.35		13.40		6.00

a Changed less thanono-half foot.
\checkmark Readling ehanged one-half foot or more.
1001.
[Gauge, 116.80 miles from Eads Brldge. Zero of gauge, 320.84 foot abovo Momphis datum plane. (iamge 1 read at $8 \mathrm{n} . \mathrm{m}$.)

Tabulated gauge readings at selected stations beturen rihain of Rock: and C'airn- Cont'd.
MOCCASIN SPRINGS, MO.-Continued.
1002.
[Cauge, 110.80 miles from Eads Bridge. Zero of gange, 320.84 feet above Momphis datum plane. (iango read at $8 \mathrm{a} . \mathrm{m}$.

Day.	Jan.	Feh.	Mar.	$\lambda^{\prime} \mathrm{r}$.	May.	June.	July.	Ang.	Sept.	Oet.	Nov.	Her.
1	a3. ${ }^{\text {a }} 5$	a 1.85	7.30	12.20	10.15	18.00	21.10	22.30	b 10.80	15. 40	12.60	15.00
2	a3. 3.90	a 2.00	7.25	12.40	10. 20	17. 60	21.65	21.70	19.60	16.35	12.20	15. 10
3	a 4.00	$a 2.10$	7.90	12.90	10.15	17.45	22.30	21. 10	18.05	16. 25	11.80	15.20
4	a 4.00	a 2.10	7.05	13.15	11.00	18.70	b22.80	620.30	18.65	16. 40	11.50	14.80
5	a 4.25	a 1.70	8.65	13.10	12.10	10. 40	22.80	10.45	18.80	17.00	11.20	14.40
0	a 3.90.	a 4.60	c 9.00	13.00	12.15	19.40	22.55	19.20	19.10	17.60	11.00	14.40,
7	a 3.70	$\square 3.50$	8, 60	12.90	11.65	10.20	422.10	$b 18.95$	18.90	18.00	11.10	14.40°
8	a 3.80	a 4.00	8.55	13.40	10.90	18.100	21.70	$\iota 18.75$	18.20	18.70	11.50	14.60
9	a 4.20	$\square_{6}^{6.00}$	8.80	13.60	10.20	18.00	21.30	18.60	17.50	19.50	11.70	14.63
10	14.45	${ }^{-5} 5.80$	9.70	13.00	9.70	17.50	$b 21.15$	18.20	16. 60	20.10	12,00	14.50
11	4.75	a 7.00	10.70	12.45	0.85	17.85	21.05	17.80	15.90	820.01)	12, 15	14.0)
12	4.85	18.00	10.80	12.70	10.65	18.35	20.70	17.20	15. 60	b19.50	12.90	13.70
13	4.70	a 3.95	10.75	12. 00	11.40	d 19, 30	20. 60	16.80	15.00)	$b 18.60$	12.85	12.80
14	4. 40	011.70	11.60	11.30	11.00	10.45	21.10	16. 60	14.40	17.80	12.45	13.10
15	4.30	a 9, 10	12.00	11.00	12. 45	19.70	22.00	115. 45	13.85	17.40	12.10	13.70
16	4.00	a 9.00	12.95	10,80	12. 60	20. 30	622.80	11. 25	13.30	16.50	11.80	13.60
17	3.05	48.70	13.80	10.95	12.55	-20.40	23, 40	15. 60	12.80	15.40	11.55	13.60
18	4.10	18.25	14.40	10.35	12.45	c 20.20	23, 00	15.35)	12,60	15. 60	11.55	12.60
19	4.30	18.35	. 14.20	10. 10	12.35	10.95	24.25	15. 60	12.25	15.55	11.60	12.20
20	4.40	a 8.10	13.75	10.10	12.45	10.70	24.60	15. 65	11.75	15. 60	12. 20	12.20
21	4.55	17.80	13.10	10.05	12.85	d19. 60	b24.60	15.80	11.30	15.85	d13.05	12.80
22	4.45	${ }^{4} 7.80$	12.25	10.30	12.05	10.15	24.40	11.80	11.00	16. 00	13.80	13.20
23	4.45	a 7. 40	11.50	0.85	12.70	18.75	2.4,20	17.60	10.50	16. 45	14.30	13.70
24	4.45	a 7.75	11.00	0.30	12.45	b 18.55	24.35	$b 18.00$	10.20	16.75	14.20	14.35
25	4. 40	a 7.30	10. 65	10.10	12.60	18.60	b 24.65	18.05	10.10	16.75	14. 10	14.05
20	4. 40	a 6.10	10.30	10.30	13.75	18.40	24.80	18.05	10. 40	16. 65	13.05	16.50
27	4.10	66.20 :	10.30	10.10	14.30	18.25	24.85	18.35	12. (4)	d 116.50	13.95	15.60
28	a 3.90	7. (i)	10. 40	0.65	14.80	118.50	24.75	${ }^{1} 18.85$	13.40	C 15.80	14.00	15.60
29	a3.70		12.00	9.65	16.30	10.30	24.35	19.40	14.20	c 15.00	14.25	14.80
30	a3. 20		11.05	9. 0^{6})	18.30	20. ik)	23. 6.5	19.80	15.05	13.80	14. 50	14. 50
31	132.40		12.20		18.85		22.95	19.9.)		13.15		13.30)

a Doubtful on arcount of lece.
b Interpolated-no reading.

- Reading changed one-half foot or more.
dChunged less than one-half foot.

1903.

[Gauge, 110.80 miles from Farls Brilge. Zero of gauge, $320.8+$ feet above Memphis datum plane. Gange real at 8 B. m. .]

Day.	Jan.	Fab,	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oet.	Nov.	Dee.
1	12.00	12,60	15. 10	a 10.45	a 18.10	24.25	a 20.20	17.50	17.20	17.30	10. 20	9. 40
2	${ }^{6} 11.30$	12.60	10.00	a 19.10	a 18.00	24.80	20. 20	17.00	17.00	17.35	16.10	9. 25
3	611.85	12.15	17.30	a 18.80	17.60	20.70	20. 00	10.50	18.80	17.35	15.85	0.00
4	${ }^{\circ} 10.70$	12.35	17.50	a 18.70	17.40	27.00	10.50	10. 10	10.40	17.40	15.80	8.80
6	b 10.80	13.45	$a 18.15$	a 18.40	17.15	28.00	18.00	16. 20	10.50	17.60	15.60	8.50
6	a 11.10	15.95)	a 18.80	a 18.80	10. 80	20. 9	a 18.30	15. 75	10.30	17.80	15.50	8.15
7	a 11.30	17.05	a 10.05	a 10.60	10. 25	30. 70	17.00	15.35	18.75	17.90	15.40	8. 05
8	a 11.20	10.30	" 21.00	a 20.25	10. 10	31.65	$\square 17.30$	15.75	18.15	18.45	15.00	7.95
9	a 11.30	18.00	a 21.90	a 20.40	10.30	32. 30	${ }^{1} 17.20$	10. 60	17.80	18.75	15.90	7.80
10	a 11.10	15.30	"24.30	${ }^{\text {a } 20.20}$	10.30	32.70	17.15	10.90	17.75	a 19.35	15. 8.5	7.05
11	a 10.75	14.00	${ }^{1} 25.00$	${ }_{\text {a }}^{\text {a }} 1988$	10.40	33.10	17.15	17.00	17.40	a 20.30	15.75	7.35
13		13.70	25.60 25.30	($\begin{aligned} & \text { a } 19.80 \\ & \square\end{aligned}$	16.10	33.80	16.15	17.15	17.30 17.85	121.00 a 21.10	15.60 15.25	7.20 7.00
14	a 8.90	413.95	24.80	a 21.65	10.05	33.90	16.50	17. 20	19.65	a 20.75	15.00	6.70
15	a 8.40	14.60	24.60	a 22.10	15.90	33.80	10.45	17.15	20.15	a 20.45	14. 50	6.90
16	a 8.00	14.95	24.50	22.45	15. 70	33.40	10.65	17.35	20.25	a 20. 20	14.15	4.80
17	a 7.90	14.50	24. 40	22.60	15.70	32.70	10.90	17.60	20.65	a 19.80	13.90	4.50
18	a 8.05	13.95	23.80	22.60	10.60	31.70	17.65	17.30	20.85	a 19.30	13.60	4.25
19	a8.65	13.00	23.00	22.00	18.10	30.30	18.65	17.30	20.40	a 18.80	13.20	4.00
20	a 9.20	12. 30	23.60	a 23.00	18.60	28.70	19.05	17.50	20.25	a 18.40	12.85	4. 40
21	9.50	12.15	23. 50	22.60	18.80	27.05	a 18.00	17.55	c 20.23	a 18.10	12.50	4. 85
22	0.60	11.70	23.75	22.30	18.50	25.05	a 18.65	17.75	a 19.00	17.70	12.10	5. 10
23	0. 65	11.80	24.00	22.25	18.30	25.10	a 18.35	17.75	a 18.20	17. 20	11.90	5.50
24	0.45	11.70	23.80	a 22.05	18.00	2.4.30	a 18.40	17. 50	a 18.50	17.10	11.60	5.75
25	0.30	11.70	23.40	a21.50	17. (\%)	23.85	1 18.50	10.00	17.75	16.90	11.30	6.05
20	9.25	11.80	a 23.00	a 21.00	18.20	23. 40	a 18.80	16. 45	17.35	16.80	11.00	6. 40
27	0.10	12.10	a 22. 60	a 20.50	10.30	23.10	a 19.30	10.30	17.00	10.65	10.70	B. 55
28	9.30	13.15	a 21.80	a 20.10	20.50	22.45	- 10.50	10.00	10.90	10.55	10.35	0. 40
29	9.60		a 21. 10	19.20	21.05	21.50	a 19.10	10.00	17.00	16.40	10.00	3. 40
30	10.60		a 20.40	a 18.00	21.30	a 20.70	a 18.60	10.10	17.15	16.30	9.60	6. 50
31	12.		a 10.80		21.50		a 18.10	16.70		16.20		6. 75

a Interpolated-no reading. b Reading changed one-half foot or more. echanged less than one-halffoot.

Tabulated gauge readings at selectel stations between Chain of Rocks and Cairo—Cont'd.
MOCCASIN SPRINGS, MO.-Contlnted.
1904.
\{Gauge, 116.80 miles from Eads Bridge. Zero of gauge, 320.84 feet above Memphis datum plane. Gauge read at $8 \mathrm{n} . \mathrm{m}$.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oet.	Nov.	Dec.
1	7.65	a 11.80	10.90	20.60	31.75	21.15	22.80	10.70	12.10	14.30	12.60	0.30
2	7.90	a 11.00	10. 60	20. 40	31.70	c22. 50	23. 15	15. 15	11, 65	14.35	12. 70	9.15
3	8.05	$a 10.00$	10. 40	¢20.00	31.50	424.00	22. 40	15. 00	11.30	14.30	12.05	9.00
4	7.90	9. 40	10.20	25.80	b 31.10	b24. 20	22. 10	14. 65	11,00	14.00	12.65	8.00
5	7.65	8. 00	10.30	25.25	29.70	c 23.80	21.90	14.50	11.05	13.70	12.45	8.80
6	7.30	9. 40	10.60	24.70	29.00	24. 20	21.70	14.30	11.30	13.10	12. 30	8.70
7	7.10	10. 40	11.15	24.00	c 28.30	25. 50	21.30	13.80	11.35	12. 65	12.15	8. 00
6	-7.10	10.35	11.70	23. 45	27.35	20.50	b 20.95	13.35	11.10	12.30	12.00	8. 40
9	7.20	10. 60	12.00	22. 80	23. 30	23.80	$\checkmark 21.40$	13. 10	10.75	c 12.05	11.40	8. 25
10	7.10	b 10.80	12. 30	22. 30	25. 55	20. 35	b22.95	12.90	10.60	b 11.85	11,85	8.16
11	7.00	11.10	c 12.70	22. 80	25. 30	25. 60	24.30	12. 60	10. $\mathbf{1} 0$	11.70	11.70	8.09
12	7.00	11. 65	13.05	23. 40	2.4 .75	24.90	25. 50	12.30	10.70	11.50	11.70	8.00
13	7.00	11.95	13.70	23.45	2.4. 20	24.30	26. 00	12.00	10.70	11.30	11. 60	7.95
14	0.90	12. 20	14.00	23. 40	23. 45	23, 135	20.20	11.80	10. 50	11.15	11.50	7.80
16	7.00	12. 20	13. 95	23.30	22. 60	23.30	b 25.80	12.10	10. 60	10.05	11. 40	c 7.60
16	7.20	12. 40	13.80	22.90	21.90	23. 25	24.90	12.00	10. 60	10.75	11.30	7.00
17	7. 40	12.30	13.70	22,30	21.40	23, 60	23. 40	11.00	10. 40	10.70	11.16	6.90
18	7.60	12.00	13. 80	?2. 70	21.20	23.70	22, 10	12.00	10.30	10. 60	11.00	6. 05
19	7.60	11.40	14. 10	23. 30	21.00	24.20	21.65	12.05	11, ${ }^{10}$	10. 50	10.00	0.30
20	7.90	a 11.20	14. 60	23.85	21.20	24.00	21.40	12.10	13.00	10. 50	10.75	6, 00
21	8.10	11. 50	15. 00	23. 60	21.00	23.80	21.10	12.00	13. 75	10. 45	10.65	6.00
22	8. 80	11.45	15.20	23.25	20.45	23.85	20.68	14. 60	14.20	10, 35	10.60	б. 90
23	11.30	11.30	15. 40	23. 30	20.20	23.05	10.05	14.30	14.60	10. 45	10. 30	6. 80
24	14. 70	11. 10	10. 50	23.80	20.00	23.80	19.20	14.40	14.00	10. 50	10. 10	c 5.80
25	16.30	11.05	18. 45	25.20	10. (0)	23.20	18. 75	14.90	13. 50	10.70	c 10.00	6.90
26	16. 50	11.05	23. 45	27. 60	119.20	22. 40	18. 70	14.70	13.10	10. 80	0.85	6. 10
27	15. 80	11.10	23. 20	29.20	18.00	21.90	18.50	14.75	13.30	11.00	9.70	6. 20
28	15.30	11.30	23, 45	30.15	18.70	21.30	c 18.10	14.80	13.40	11.25	0.55	6. 50
29	14.40	11.30	25. 30	31.00	18. 80	21.25	17. 25	14.20	14.10	11. 60	9. 45	7.00
30	b 13.40		20. 10	31. 50	18.90	b 21.00	10.60	13.30	14.00	11. 10	9. 35	b B. 10
31	12,60		20. 70		19.45		b 15.90	12. 55		12. 30		b 5. 50

a Interpolated-no reading, bleading changed one-half foot or moro. changed less than one-half foot.
1905.
[Gauge, 116.80 miles from Eads Bridge. Zero of gange, 320.84 feet above Memphis datum plane. Gauge read at $8 \mathrm{a} . \mathrm{m}$.]

Day.	Jan.	Feb.	Mar.	(pr .	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1	a 5. 40	7.00	17.80	18.65	19.30	19.00	22.00	10.90	14.05	17.15	15.30	12.40
2	a 5. 40	7.00	19.20	10.00	b 19.60	19.60	22.35	20.60	14.30	10.60	14.90	13.30
3	a5. 40	7.10	10.60	19.60	19.00	19.45	22,50	21.15	14.20	13.90	14.70	13.80
4	5.80	7.10	19.50	10.60	18.35	19.45	22.85	21.45	13.80	15.30	14.70	13.60
5	6.80	6. 55	19.50	19,35	17.80	10.70	22.85	21.40	13.60	14.90	14.65	13.40
6	0.80	6. 50	20.20	19.20	17.70	20.25	b 23.45	120.70	13.20	14.70	15.00	13. 10
7	0.85	6.80	20.00	18.70	17.35	120.70	$b 24.00$	$\square 10.90$	13.05	14.60	13. 60	12.70
8	7.00	6.80	19.90	18, 10	16.20	20.100	24.30	a 10.40	13.00	14.10	15.95	12.20
9	6.80	6.70	10.80	17.70	15.50	20.10	24.20	b 18.00	13.00	13.60	16.00	11.70
10	6.50	6.60	19.45	17.20	15.20	19.60	24.10	18.00	13.05	13.10	15.80	11.10
11	6. 10	8.60	19.20	16.90	16.00	19.20	24.00	17.00	13.05	13.00	15.60	10.80
12	6.80	6.35	19.10	10.70	14.80	18.95	23.00	17.30	12.90	12.85	15.25	10.25
13	5.20	$\% .25$	a 18.60	18. 50	15.10	19.00	24.05	16.80	13.35	12.70	15.20	10.00
14	4.80	8.80	18.15	16.30	15.00	19.65	24.40	16.35	14.30	12.45	16.20	9.70
15	5.10	10.00	17.45	16.30	15.40	20.35	24.95	16.10	14.30	12.25	15.10	9. 70
16	4.60	10.60	13, 00	16.30	16.50	20.85	25.10	15.60	13.70	12.00	14.70	9.70
17	4.30	10.90	15.90	16.30	18. 20	20.95	a 24. 80	15.10	14.90	11.85	14.10	9.70
18	b 3.90	10.10	15. 40	16.30	19.70	20.90	24. 10	14.80	17.40	11.70	13.55	9.70
19	4.00	9.80	15. 20	10,30	20. 40	20.60	22.95	14.60	23.40	13.20	13.20	9.70
20	4.70	9.60	15.00	16.15	20.70	20.30	21.80	14.65	26.00	17.95	13.10	9.70
21	6.70	0.10	14.80	16.05	21.30	20.60	22.20	14.90	27.70	17.85	13.20	9.80
22	5.90	9.05	14.60	16. 70	21.20	20.80	a 22.60	15. 40	28. 40	17.00	13.40	9.90
23	6.90	8.70	14.70	15. 40	20.60	20.80	21.00	15.75	a 28.70	16.75	13. 45	9.95
24	7.40	8.00	15.30	15. 50	20.00	20.65	20. 50	- 16.60	a 28. 10	16.60	13.00	9.95
25	7.35	8.25	16.00	15.80	19.70	20.60	20.30	- 18.80	a 27. 20	16.60	12.60	10.00
23	7.00	8.75	16. 60	10.40	10.50	20.80	20.50'	${ }^{\text {a } 19.20}$	- 25.15	16.80	12.40	9.90
27	6.80	9.00	16.85	16.95	19.10	21.25	20.00	¢ 18.85	a 23.25	17.00	12.30	9. 75
28	0.30	14.60	17.20	17.50	19.15	21.40	20.40	-18.35	a 21.45	17.85	- 12.20	9.75
29	6. 30		17.40	17.80	19. 10	21.50	20.00	17.95	19.50	17.30	12.10	9.75
30	8.80		18.00	18.80	19.30	21.65	a 19.30	17.00	18.05	16.55	12.10	$a 10.05$ $b 10.70$
31	7.00		18.55		19.85		19.15	15.90		15.95		b 10.70

Tabulated gauge readings at selected stations belween C'hain of Rocks and C'airo-C'ont'd.
MOCCASIN SPRINGS, MO.--Contl!ued.
1906.
[Gauge, 110.80 miles from Iiads Bridge. Zero of gauge, 320.84 feet above Memphis datum plane. Gauge read at $8 \mathrm{a} . \mathrm{m}$.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
,	10.70	10.50	21. 40	25.90	20.90	15. 30	20.30	14.00	13.80	15.10	10. 20	12.90
2	10.90	16.70	22.00	25.75	20.85	10.00	20.20	13.70	13. 40	15.10	10.30	12.70
3	11.80	16. 70	22.65	25.40	20.81	16. 60	20.30	13.60	13.10	15. 20	10. 45	12.70
4	12. 45	16.60	22. 10	a 25.00	20.75	17.10	20.20	13.65	12.00	15. 25	10.70	12.80
5	12.90	15. 70	21.95	24. 65	20.75	b 17.10	a 20.10	13. 20	12. 80	15. 10	10.00	12.85
6	16.00	15.95	21.10	24.50	20.70	18.10	10.90	13.40	12. 60	15. 00	11.00	13.00
7	17.60	14.30	20. 30)	24. 10	20.60	18.10	10.65	13.20	12.45	14.25	11.10	13.25
8	17.00	13.80	20.10	24.35	21.20	$b 18.60$	19.30	13.70	12.40	13. 55	11.10	13. 50
0	16. 60	13.00	10.70	24. 40	21. 10	19.80	810.00	14.00	12.30	13.40	11. 20	13.70
10	15. 70	12. 30	10. 60	24.40	21.20	19.(\%)	18.6)	13.75	12.30	12.75	11.30	13. 65
11	14. 50	11.95	19.60	24.30	20. © 0	20. 20	18.00	13.70	12.30	12. 65	11.30	13.20
12	13.50	11.70	19.10	24.15	20.20	20. 30	17.60	14.00	12.30	12.40	11. 40	12.90
13	12.60	11.50	18.85	23.85	10.60	20.10	17.20	14.00	12. 20	11.85	11.50	12.80
14	12.00	11.40	18.70	23.100	10. 25	19.80	17.10	14.30	12.35	11.80	11. 50	12.60
15	11.60	11.70	18. 10	24. 65	18.80	10.60	16. 80	14.75	12.20	11.60	11.40	13.20
10	11.30	11.80	17.80	${ }^{\bullet} 25.40$	18.30	10. 45	16. 60	15. 15	12.20	11. 20	11.40	12.00
17	11.20	11.90	17. 20	625. 25	17.80	19.20)	16. 40	15. 20	12.10	11. 40	11.70	12. 60
18	11.00	11.00	16.80	¢24.65	17.30	18.85	16. 20	15.00	12.00	11.30	11.00	12.30
19	10.80	12.00	16. 40	24. 10	16.80	18.80)	15. 00	14.60	12.00	11.10	11.9	12.00
20	10.60	12.15	10.00	23.00	16. 50	18.80	15.60	14. 25	12.05	11.10	12.10	11.00
21	11.00	12.40	15.60	23. 10	13. 25	19.10	15.30	14.10	12. 20	10.90	14.00	11.00
22	14. 20	12.80	15. 10	23.15	16. 00	10.80	15. 10	14.35	12. 20	10, 75	15. 30	10.90
23	a 15.30	13.00	14.85	22. 70	15. 70	20. 40	14.90	14.20	12.15	10. 65	14. 50	10. 50
24	a 15. 60	13.50	1.1. 65	22. 20	15. 40	21.00	14.80	13.60	12.10	10. 80	614.40	10. 10
25	16. 60	15, 30	14.80	22.10	1i.) 30	21.40	15.10	13. 60	12.40	10. 60	14. 10	-9.70
26	16. 20	17.80	15. 10	21.80	15. 15	21.60	15.60	13.20	13.25	10. 40	13. 80	L9.30
27	16.60	19.80	17.30	21. 20	a 15. 10	20.00	13. 30	13.20	13.70	10.30)	13.60	ᄂ8.80
28	16. 60	20.80	10.60	21.30	415.10	20.25	15.90	1.4. 10	13.90	10.05	13.40	8. 50
20	16.30		22. 60	21.20	15. 20	20.00	15.35	15. 10	14.1.0	10.00	13.20	8. 20
30	16. 10		b24. 10	20.05	15. 30	820.25	1.1.0)	b11.70	11.00	10. 00	13.10	9.00
31	10. 20		25. 20		15. 30		14.40	114.10		11. 10		9.80

a Changed less than one-halt foot.
\& Reading chariged one-half foot or more.
1007.
[Oauge, 116.80 miles from Eads Bridge. Zero of gatge, 320.8 f fel above Memphls datum phane. Gauge read at 8 a. in.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Iec.
1	10.05	19.5	16.8	17.2	19.0	17.3	23.4	25.2	18.0	12.3	10.13	0.55
2	10.2	a 18.8	16.8	17.8	10.5	17.4	22.9	24.6	15.9	12.3	10.7	9.5
3	12.6	18.1	10.65	17.9	20.0	17.7	22.5	$b 23.0$	15.7	12.4	10.8	9. 45
4	13.9	17. 55	16. 4	18.2	20.0	18.3	22.1	22.8	15. 15	12.7	10.6	9.1
6	13.4	10.7	10. 15	18.1	19.9	b 19.5	21.8	22.0	15. 5	13.1	10.5	9.4
6	13.85	15.8	15.9	18.0	10.7	21.65	20.9	21.3	15. 4	13.6	10. 35	9.2
7	14.5	14.9	15,85	18.0	10.3	22.1	20.4	21.0	15.3	14.0)	10.35	9.1
8	14.85	13.7	15.7	17.7	19.3	22.0	20.2	20.6	15. 25	14.3	10, 25	9.0
9	15.0	12.8	13.3	17.7	20.0	21.1	20.4	20.5	15.1	1.1	10.1	9.1
10	14.9	12.1	15.2	17.7	20.8	21.4	20.5	20.4	14.3	14.3	a 10. 0.5	9.0
11	14.8	11.7	15.0	17.85	21.1	21.9	20.5	20.25	14.4	14.13	10.0	9.0
12	14.65	11.55	15. 05	17.85	20.8	21.8	20.5	20.0	14.1	14.8	9.9	8.8
13	14.5	${ }^{6} 11.5$	18.1	18.5	19.9	22.6	20.45	19.8	13.7	14.85	9.8	8.7
14	14.4	${ }^{\text {b }} 12.1$	b 18.9	19.1	19.1	23.3	20.6	19.0	13.4	14.8	9.7	8.7
15	14.6	b 12.5	a 20.2	19.5	18.9	23.8	21.0	18.7	13.1	14.5	9.6	8.8
16	15.0	13.6	20.4	18.5	18.85	23.8	21.4	18.6	13.0	14.1	9.6	8.8
17	15.5	13.7	19.5	19.3	20.0	24.1	21.7	18.3	12.8	13.7	9.05	8.8
18	16.6	13.7	10.4	19.25	21.65	23.6	22.3	18. 1	12.55	13. 35	9.6	8.9
19	18.8	13.8	19.2	19.25	21.9	22.9	23.2	17.8	12.3	13.0	9.3	9.0
20	21.3	14.2	19.1	19.5	21.0	22.1	24.05	18. 2	12.0	12.7	9.7	9.05
21	23.7	14.2	19.1	20.0	20.0	21.65	24.3	18.9	11.9	12. 45	9.95	9.0
22	25.6	13.9	19.2	20.5	19.8	21.2	24.55	19.2	11.7	12.2	9.8	8.8
23	23.2	13.8	18.8	20.8	13.7	20.9	25.05	19.6	11.5	12.0	9.8	0.0
24	26.4	11.4	18.0	20.7	17.8	201. 85	25. 65	20. 2	11.5	11.7	9.8	9.4
25	26.3	15.2	17.5	20.7	17.1	21.3	20.0	19.5	11.7	11.5	0.75	9. 55
24	25.4	10.4	17.1	20.8	16.0	23.3	20.2	19.2	11.85	11.35	9.7	9.5
27	24.4	10.7	16.8	20.4	10.0	23.1	20.3	19.5	12.0	11.3	9.6	9.1
28	23.0	10.8	10.7	20.0	15.8	23.8	26.0	18.5	12.15	11.1	9.6	9.4
29	21.9		b 10.0	- 19.6	16.1	2.4	25.7	17.4	12.2	11.0	9.6	9.5
30	20.8		10.6	- 19.0	16.5	23.9	25.5	16.75	12.3	10.3	9.6	9.45
31	20.1		16.8		10.5		2 S .2	16.3.3		10.7		9.1

a Changed less than one-half foot.
Δ Reading changed one-hall foot or more.

T'abulated geuger rowlings al selerted stations between Chain of Rocks and Cairo-w.ont'd.
MoC('ASIN SPRINGS, MO.-C'onfinmed.
1908.
 rend nt 8 a. m.

GRAYS POIN'T, MO.
1800.
[Gange, lisf. 82 miles from Finds Brldge. Zero of gango, 308.15 feot above Memphis datum plane, Gauge read at $8 \mathrm{ar} . \mathrm{m}$.]

Jay.	Jalı.	Fobr.	Mnr	Apr.	May.	nle.	nly.	Aug.	ept.	Oet.	Nov.	Jee.
1	18.0	7.4	0.0	11.0	13.7	21.8	18.7	11.2	11.4	10.4	7.2	8. 70
2	17.2	7.4	10.3	11.0	14.6	26.2	18.4	15.9	11.1	10. 0	7.10	a 8.70
3	16. 2	8.2	10.8	10.7	16.1	25.7	18.6	16.8	10.6	0.0	7.10	a 8.60
4	15.2	9.0	11.2	10.4	15.2	25.7	18.7	15.8	10.3	0.3	7.10	8. 50
6	1.4.2	9.6	11.2	10.2	16.2	25.7	18.8	16. 1	10.1	0.0	7.05	8. 65
6	13.0	10. 2	11.0	10.0	15.2	25. 0	18.8	16.3	0.7	8.9	8.70	8. 60
7	12.1	10. 4	10. 6	10. 0	15.2	25. 4	18.8	16. 4	0.0	8.7	0.60	8.35
8	11.4	10. 5	10. 4	10.0	15.2	25.4	18.6	16.2	0.2	8.6	10.60	8.00
0	10.8	10. 6	10. 1	10. 1	15.2	24.8	18. 4	16.2	8.9	8.6	11.15	7.60
10	10.2	10.5	0.8	10.2	15.4	24.5	18.4	16.0	8.8	8.4	11.00	7.30
11	9.8	10. 2	0.5	10.4	15.0	24.3	18.5	16.3	8.6	8.4	10. 65	7. 10
12	0.1	0.8	0.4	11.2	15.8	23. 0	18.0	14.8	8.5	8.4	10.10	13.90
13	8.0	9.6	0.2	1.1. 1	16.0	23.5	17.4	14.3	8.3	8.4	0.00	6. 85
14	8.4	10.4	9.0	15.2	16.0	22.7	10.8	14.1	8.2	8.4	0.70	6.80
15	8.2	11.8	8.8	15.2	15.4	21.0	16.0	13.8	8.1	8.4	0. 40	6. 90
16	8.0	13. 4	8.6	1.4. 7	15.3	20.2	15.2	13.4	8.2	8.4	0.30	a 7.25
17	8.0	13.7	8.5	14.2	15.4	10.1	14.0	13.2	8.4	8.5	9.20	7.60
18	7.9	13.2	8.3	13.8	15.2	18.5	14. 5	12.8	8.5	8.7	0.10	7.00
10	7.8	12.7	8.1	13.5	15.3	18.8	1.4. 5	12.4	8.6	8.6	0.00	8.40
20	7.8	12.2	8.0	13.1	17.4	10.4	11.6	12.1	8.8	8.6	0.05	9.00
21	7.8	11.6	7.8	12.6	20.8	10.6	113.3	12.2	0.0	8.4	0.10	9. 60
22	7.0	10.7	7.8	12.2	$\checkmark 23.3$	10.5	17.0	12.0	10.2	8.1	9. 10	0.70
23	7.8	0.5	8.0	12.0	24.8	19.5	10.4	- 13.6	11.1	8.0	0.05	0.85
24	8.1	0.0	0.7	11.7	25.5	10.0	22.2	13.0	11.9	7.0	0.00	0.75
25	8.5	8.4	0.0	11.5	36.2	18.6	22.2	11.0	12.2	7.8	8.85	0.60
26	8.6	8.1	10.0	11.3	b 26.8	18.3	21.7	13.8	12.0	7.7	8.75	0.60
27.	8.3	8.0	10.5	11.4	27.4	18.2	20.6	13.5	11.0	7.6	8.75	0.40
28	8.4	8.3	11.2	11.0	27.6	18.2	10.7	13.2	11.3	7.4	8.70	0.25
20	8.0	0.0	11.1	12. 2	27.9	18.4	18.9	12.0	11.1	7.3	8.75	0.05
30	7.7		11.0	12.0	27.7	18.8	17.8	12.3	10.7	7.3	8. 70	8. 90
31	7.6		11.0		27.4		17.4	11.9		7.2		8.80

[^18]Trobulated gauge readings al selected stations beturen Chain of Rocks and 'airo Cont'd.
GRAY'S POIN'I, MO.--Continued.
1897.
[Gauge, 130.82 miles from Eads Bridge. Zero of gauge, 30 s .15 feet above Memphis datum plane. Gange read at sia. m.]

Day	Jan.	Fob.	Mar.	Арг.	May.	June.	July.	Auh,	Sept.	Oct.		Dec.
1	8.75	10.95	17.25	27. 80	28. 10	10.85	21.45	1i. 60	9.90	7.10	8. 05	6. 50
2	8.75	10. 25	16. 80	20.10	20, 20	16. 25	21.75	15. 10	9. 00	7.00	6. 15	6. 40
3	8. 80	1). 60	17.25	30. 60	29.60	15. 75	a 21.50	14. 90	9.30	6. 95	13. 20	6. 30
4	10.00	0. 10	17.8)	31.10	20.60	15. 70	21.60	14. 40	9.10	(i. 90	(1. 25	8. 20
i	10.60	0.70	18.00	31.10	29.35	15. 01	21.6	1.1. 10	8.90	6.90	(i. 20	5. 95
13	24.00	0. (K)	21.00	a30. (1)	20. 10	16. is	21.80	14. 20	8.70	8.80	(i. 15	6. 60
7	25.10	10. 25	124.30	30. \%)	2 x .60	16. 15	21. 60	14.00	8.55	6. 80	(i. 15	5. 00
8	25. 60	10. 35	26.70	30.90	27.135	17. 1 ij	20. 80	13.80	8.10	(3.76	6. 30	4. (1)
9	24.30	10. 160	27.35	31.20	a 26.19	17.70	20. 10	13, 55	8.40	6. 65	(3.) 40	4.10
10	22.20	a 11.00	27.30	a 31.30	26.10	17.5i	20.60	13.50	8.40	6. 60	(i. 80	3.70
11	10.90	11. (1)	20. 20	31. (k)	24.90	17.35	1920.40	13.70	8.40	6. 65	8. 80	3. 50
12	17.80	12.76	a 2\%i. (0)	31.80	21.10	17.16	19\%. 10	13.55	8.30	(i. 10	6. 90	3. 10
13	-16.10	13.70	25. 40	31.90	23.60	11, 80	15.70	13.25	8.20	(i. 15	1i.95	3.70
14	14.76	13.80	25. 20	31.65	22. (i)	116.45	1, 18. 50	12.00	8.100	6. 40	7.00	3. (1)
15	13.80	a 14. 10	25. 10	31.30	21.70	16, 25	17.80	12.75	7.85	(i) 36	7. 010	4.30
16	13.10	414.50	24.70	30. 60	21.10	15. 150	113. 70	12.165	7.70	(i. 30	6. 85	1. 30
17	12. 8)	1.1. 10	24.60	20, 10	a 20.180	15. 55	16. 10	12.65	7.70	i. 20	6. 8.5	4. sio
18	12.65	16. 30	24.00	29. 10	20. 10	1i. M	15.70	12.60	7.60	13. 10	7.00	6, 10
19	12.05	16. 10	25. 60	29. 20	10. 50	a 15, (9)	16. 70	12. 40	7.30	(i.10	7.00	5. 00
20	13.65	14.90	$\bigcirc 25.60$	25, (\%)	1!. 10	¢ 18, 30	15. (0)	12. 20	7.20	8.05	(i. 8)	4.80
21	15. (x)	14.40	25. 10	28. 10	- 18, to	116.30	16, (1)	12.05	7.15	(i. 0) ${ }^{\text {a }}$	6. 70	4.20
22	15. 70	14.30	25. 70	28.50	18.10	4 16.10	15.70	11.90	7.10	(i.) (0)	13.515	3. 70
23	10.05	15. 40	20. 10	28.45	17.55	16.85	15. 10	11, 85	7.10	6. 95	6. 10	$3 .(1)$
24		16. 55	26. 10	28. 10	17.05	16. 70	1.1, \% 0	11. 10	7.10	5.00	(1).45	3.10
25		17.35	26. 60	28. 30	11.70	11.18 .20	14.10	11. (1)	7. (0)	i. 60	6. 50	3.10
20		17.00	23. 610	28.25	11. 35	17.90	14. 70	11.4	7.10	i. (1)	6, 60	2.95
27		17.80	26. 80	1237.10	16. 55	18.10	115.70	11. 1.5	7.30	6. 00	6. 50	2.91
28		17.65	1.27 .80	127.45	16.85	18.90	17.05	10.95	7.30	S. O)	6. 60	3.05
20	13.25		a 23.00	1127.50	a17.00	418.195	18.20	10. (i)	7:25	6. 00	(i, 40	3.40
30	12.65		27.10	2i. (0)	16.85	119.80	17.70)	10. 30	7.15	(i. (6)	(6. 50	4.30
31	11.85		27.70		16. 85		16. 5	10. 10		6. (0)		4.60

a Changed less than one-half foot.
b Remeling changed ome-hali foot or more.
1808.
 read at © $\mathrm{n} . \mathrm{m}$.)

I)ay.	Jan.	Feb.	Mar.	Apr.	Mas.	June.	July.	Ing.	Sept.	Oct.	Nov.	Dee.
1	4.90	14.80	11.30	28. 20	17.70	21.80	23.05	14. 50	10. 10	10.80	12.70	10. 20
2	5. 20	14.75	10.00	28.00	17.15	21.15	23.10	14. 05	0.75	10.60	12.46	9. 10
3	6. 15	14.30	10.75	27.10	16.05	20. 65	23.10	14.35	9. 40	10.00	11.80	8.90
4	¢. 30	14.10	10.50	26. 20	17.65	20. 80	22, 60	15. 10	0.10	0.60	11.05	8. 20
5	5. 20	12.50	10. 40	25.60	20.00	21.30	21.80	16.75	8. 00	9.30	10. 40	8.10
6	5. 00	11.30	10. 20	25.00	21.70	21.70	21.10	15.60	8.70	0.00	10.00	7.70
7	5. 00	10.10	10.10	24. 60	22, 70	21.80	20.60	14.80	8. 50	8. 90	0.70	7.40
8	5. 45	8.76	10.00	24. 55	22.50	21.70	20.00	14. 60	S. 40	8. 60	0.70	7.10
0	5. 05	7.75	0.00	24. 20	22.15	20.05	22, 70	14.80	8.45	8.30	9.80	0.85
10	8. 35	7.50	9.80	23. 70	21.70	20.30	23. 00	14.00	8.80	8.00	10.00	6. 80
11	6. 05	7.05	0.80	23. 30	21, 10	20.00	22.80	13. 85	0.50	7.90	10.20	(3. 20
12	7. 60	8. 60	10.35	22.70	20. 60	20.35	22.50	13. 60	10. 30	7.75	10. 40	5.65
13	8. 60	8.80	12.50	21.80	10.80	21.30	21.60	12.90	11.30	7.70	10.75	4.95
14	9. 70	9. 30	13, 70	20.00	18.90	22, 20	20.70	12.40	11.60	8.10	10.85	4. 50
15	10. 10	10.20	10.40	20. 30	18.00	22.95	19.80	12.60	11.50	8.50	10.70	4.20
10	10.60	11.30	18.60	19.85	18.25	23. 20	18.05	12.60	11.05	8.20	10. 50	4.35
17	10.30	11. 60	10.00	19.65	18.00	23.80	18.00	12.40	10.50	7. 80	10. 25	4.50)
18	10.10	11.70	10.60	10.00	10.70	24.00	17.10	12. 30	10.85	7.50	10.00	4.90
19	10.05	11.70	10.65	18. 40	22, 10	25. 30	16,30	12. 10	12, 10	7. 30	0.70	(1. 20
20	10.60	11.80	10.85	17.60	23.20	25. 20	16. 70	11.90	13.00	7.30	0.40	7.01
21	11.60	12. 60	20.30	16. 00	23. 60	24.35	16.20	11.00	13. 10	8.00	0. 30	7.10
22	11.70	13.30	21.00	16. 60	24.00	23.35	14.85	12. 70	12.60	0.20	0.30	7.00
23	12.60	14.05	23.00	10.10	25. 70	(122. 35	14.80	13.30	12.00	11.00	0.20	7.50
2.1	13.60	13.95	20.30	16. 70	20.00	21.10	1.1.40	13.10	11.30	12.30	0.20	8. 70
25	14.10	13. 20	27. 30	16. 65	27, 00	20.70	13. (1)	13. 10	11.05	12.80	0.40	10. 40
20	1.4. 10	12. 65	27.30	16. 60	20.60)	20.20	13.00	11.70	11. 65	12. 60	10.00	11.70
27	14.80	12.05	27. 50	16. 10	25.76	20.75	13. 15	11.30	11.70	12.30	10.80	12.15
28	16.00	11.70	28.10	17.80	26.00	20.75	13.80	10.95	11.50	11. 00	11.70	12. 70
29	15.20		27.70	18,80	23.80	21.05	14.40	10. 65	11.40	11.20	11.75	12.65
30	15. 10		27. 60	18.10	23. 30	22.80	14.00	10.30	10. 90	11.60	11.00	12.20
31	15.10		27.05		22.10		14.00	10.15		12. 10		11.00

[^19]Tabulated gauge readings at selected stations between Chain of Rocks and Cairo-Cont'd.
GRAYS POIN'I, MO.-Contlnued.
1899.
[Chuge, 136.52 miles from Eads Brldge. Zero of gauge, 308.15 feet above Memphis datum plane. Gange read at 8 a.m.]

Day.	Jan.	Fels.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1	11.75	7.20	16.60	19.60	25.65	23.70	21.45	10. 10	10.20	8.10	7.50	8. 60
2	10.85	(6. 10	18.20	19.50	25.6is	23.00	21. 69	15.95	10.20	8.00	7.30	8. 40
3	9. 90	(6.\%)	18.50	10.5n	25. (i)	23.80	21.50	10.00	10.25	7.90	7.20	8.20
4	0.15	(6. 40	18.00	19.20	25.30	24.30	21.70	- 16.90	10.20	7.80	7.25	8.00
i	0.40	7.00	17.80	19.15	24.40	24. 40	22.40	16. 70	10.00	7.70	7.60	8.00
${ }^{\circ}$	0. 010	8.90	17.60	10.25	23.20	24.40	22.85	15. m	0,80	7. 60	7.70	8.00
7	8.70	8.90	17.40	19. [0)	22.60	24.60	23.10	a 16.45	0.60	7.50	7.90	8.00
8	8.65	9. 40	a 17.30	19.75	21.90)	24. 50	23.35	16. 10	0. 45	7.40	8.10	7.90
()	s. 30	9. (x)	17.30	19.50	21.30	24.00	23.50	14.75	0. 35	7.30	8.30	7.75
10	9.05	9. 0^{10}	16.95	19.30	21.20	23. 40	23. 50	14.70	9.20	7.10	8.50	7.75
11	8. 80	0.40	16.90	19.00)	21.70	23. 010	23. 40	15.50	a 0.20	7.05	8. 60	7.80)
12	8. 70	9. (i)	17.00	18.60	22. (0)	23, 60	23.60	17.00	0.35	7.05	8.80	7.80
13	9.00	9.80	17.20	18. 10	22.70	23.70	23.40	17.40	9. 40	7.00	8.05	7.70
1.4	10.30	0.90	17.50	10. 40	23. (x)	24.50	23.70	17.20	0. 40	6. 05	9, 10	7.70
15	11. in)	19. (\%)	17. 80	19. 10	23.20	25. 10	23. 20	10.80	0.40	8. 80	0.15	7.70
10	11. [(1)	10. 10	18.30	18. 80	23.10	24.80	22.70	16.60	0.40	3.70	0. 20	7.75
17	11.35	10.20)	19.30	18. 10	22,70	24.00	22,10	13.00	9.30	18. 80	9.20	7.85
18	11.60	10.35	90. 30	17.70	22,00	23.40	21.70	15. 20	9. 20	6.75	0.20	7.05
10	11.70	10.40	20. E \%	17.55	21. (6)	23. 30	21, 35	14. 60	0.16	10.75	9. 10	7.30
20	11.70	10.30	21. 40	17.45	20.00	23.30	21.20	14. 10	a 0.30	6. 85	0. 10	7.30
21	11. 60	11.25	22.30	17.60	20. 40	23.20	21, 10	13.70	0. 40	0. 80	0.15	7. 40
22	11.20	10.60	23.10	18.40	20. ¢0	23.00	20, 80	13.30	0.35	6.80	0.10	8.00
23	10.8i	9.70	23.30	19.20	21.30	22. 70	20. 20	12.05	0.15	6.70	0.00	8.00
24	(10.30	8. 90	23.00	21. (i)	22.80	23.20	19.05	12. 60	8.00	0. 60	0.20	7.70
25	10.20	8.00	22. 60	24.10	24.00	21.60	10. 20	12.00	8.80	0.65	0.30	7.30
20	10.00	9.00	22.00	25. 25	24. 80	21.20	18.75	11.60	8. 60	6. 50	9. 40	0.00
27	0.60	11.70	21.60	25. 50	25. 30	20.10	18.25	11.30	8.50	0.45	9. 40	6. 30
28	9. 40	13.00	21.00	23, 00	${ }^{25.25}$	20.80	17.70	10.95	8. 40	6. 60	9.10	6.80
29	9.10		20. 60	25. 70	24. 90	20.10	17.20	10.75	8.25	0.70	8.70	5. 30
30	8. 75		20.20	25.55	24.30	21.25	17.10	10. 65	8.20	(1.50	8. 65	6.05
31	8. 20		19.60		23.90		16. 40	10.30		7.30		4.00

a Changed less than one-half foot.
1000 .
[Gange, 136.82 , milles from Eads Bridge. Zoro of gango, 308.15 feot nbovo Memphis datum pharo, Gauge read at 8 a. m.]

Day.	Jall.	Feb,	Mar.	Apr.	May.	Junlo.	July.	Alug.	Sept.	Oet.	Nov.	Dee.
1	3.20	6. 50	10.00	10.10	18. 10	16. 10	15. 65	14.00	11.55	11.70	14. 50	13.70
2	2. 20	6.80	10.30	15.70	17.60	15. 70	15.00	13.80	12.05	12, 20	14.05	13. 20
3	1.50	6.10	10.00	15.90	- 17.30	15. 40	14.70	13. 40	12.30	12. 05	14.35	12.60
4	1.60	3. 80	10.00	16. 05	17.20	16. 60	14.65	13.00	12.35	13. 30	13. 00	12.20
5	1. 50	4.80	10.00	10.60	17.30	15. 45	14. 40	12. 60	12.35	14. 30	13.70	11.75
0	2.70	4. 00	10.70	10.10	17.20	15.20	14. 45	12.30)	-12.35	14.85	13.80	11.40
7	3.60	3.00	12.80	10. 15	17.20	14.00	14. 35	11.85	12.45	14.80	14.00	10.90
8	3. 10	4.00	17.30	10. 85	17.70	14. 60	14.10	11. 40	12. 40	14.35	a 14.60	10.65
9	6. 60	6. 00	10. 05	17. (10)	18.00	14.35	13. 65	10.90	12.00	14.25	16. 10	a 10.10
10	7. 00	7.80	20. 10	17.80	18. 20	14.20	13. 30	10. 50	11.45	14. 60	16. 35	10.10
11	8.00	0.80	21.00	17.00	18. 10	14.10	13.10	10.10	11.00	14.80	15. 20	9.90
12	7.30	10.90	22.10	17.65	18.00	13.85	13.10	0. 80	10.55	14. 45	14.85	0.80
13	6.70	10.80	23.05	17.60	17.70	13. 50	12.80	0. 40	10.20	13. 80	14.60	9.05
1.4	6. 30	10. 60	23.00	18.00	17.80	13. 60	12.90	0.15	9.90	13.15	14.35	0.40
15	6. 30	10.30	24.60	18. 80	18.15	14. 10	12.80	8.85	0.65	12. 75	14.25	0.20
16	0.20	10.10	2.1. 90	10.70	17.75	10. 30	12. 50	8.65	9.30	12. 60	14.00	0.00
17	6. 20	10.00	2.4.90	10. 40	17,00	16. 65	12. 30	8. 40	0.20	12. 30	13.85	8.80
18	6. 00	9.90	2.170	18.70	16.30	15.00	12. 60	8.25	0.10	12. 20	13.75	8.60
10	0.00	0. 65	2.1. 10	17.90	16.05	15. 20	12. 50	8.20	0.00	12.15	13.85	8.35
20	0.50	0.00	23. 10	17.30	16,00	14.80	12.30	8.60	8. 00	12. 20	14.05	8.05
21	7.80	9.00	22.00	17.10	10.05	14.70	12.30	9. 60	8.90	12. 30	14.00	7.85
22	0.60	9, 90	21.00	17.35.	15.05	14.70	12.15	10.70	0.100	12.60	14.00	7.60
23	10.00	11.00	20. 20	17.70	13. 00	15. 50	12. 35	11. 40	0.30	12,75	14. 20	7. 55
2.4	9. 60	11. 10	16.70	18.00	16.00	10.60	13. 20	11.00	0.70	13. 10	14.70	7.30
25	8. 80	12. 10	10.30	18. 10	113, 00	17. (6)	1.1. 50	11.60	10.10	13. 65	14. 50	7.20
20	8.85	12. 60	18.80	18.70	15. 85	17.75	15. 10	11. 16	10. 20	13.85	14. 50	7.05
27	8 8, 6	12. 100	18.30	10. (1)	15. 60	17.65	15. 60	11.70	10. 50	11.10	14. 45	7.00
28	8.60	11. 60	18.05	10.15	16. 25	17. 60	15. 60	11.60	10.45	14.80	14.30	7.00
20	8.40		17.60	18.00	14. 05	18. 90	16. 20	11.50	10, 60	1.150	14. 20	7.10
30	7.00		17.00	18. 10	14.75	10.10	14.85	11.15	11.05	14.2\%	a 14.00	7.05
31	7.30		16. 60		15. 20		14.40	11.30		14.30		0.80

achanged less than one-hald foot.

Tabulated gauge readings at selected stations between Chain of Rork: and Cairo--Gont'd.
GRAYS POIN'T, MO.-('ontinned.
1901.
[Gaugr, $1: 36.82$ miles from Ends Bridge. Zero of gatge, 308.15 fort above Momphts datumphane. (iange read at 8 a. ml .]

Day.	Jnn.	l'eb.	Mar.	$\therefore \mathrm{Pr}$.	May.	June.	July.	Aus	Sept.	Oet.	Sov.	Dee.
1	6, 60	7.95	8.00	10.60	19. 55	12.00	16.80	10.90	7.10	6.90	7.40	6.45
2	0.40	7.80	7.95	19.95	10.30	12.80	113. 30	10. 110	7.25	6. 80	7.40	6. 40
3	6.25	7.70	7.70	20.20	19.00	12.10	15. 80	11.10	7.10	6. 70	7.40	6.30
4	6.0)	7.60	7.40	20.30	18.65	12.80	1.5.35	11.10	7.00	(i, 50	7.30	0.25
\%	5.80	7.50	7.10	20.45	18.20	13.80	14.80	11.10	0.85	6. 10	7.20	6. 21
1	¢. 50	7.60	7.20	20.60	17.80	1.1.65	1.1. 25	11.00	6. 76	(i. 36	7.00	(i.1)
i	6. 20	7.45	7.80	$21.01)$	17.40	11.85	13.80	11. 80	6. 60	(6. 11	(6.90	(i. 05
8	4.05	7.60	8.10	21.20	16.90	1i. 010	13.30	11). 60	6. 0 ()	(i. (1)	0.80	6. (i)
9	4.80	7.40	8.65	21.60	16. 40	15.30	13.20	111. 20	6. 10	(1. 50	6.75	(i. (k)
10	б. (k)	0.85	10.10	21.90	1i. 95	15.80	13.20	4.90	6.35	(i. 50	6. 70	(6. 10
11	5.40	6.10	11.80	22. 70	15.50	15. 15	13.60	2. 60	6.30	(i. 70	6.60	6. 10
12	5.90	6.00	14. (1)	23.30	15. 20	15. 20	11.00	9. 10	(6. 10	13.80	0.70	6.05
13	6.70	5.80	17.10	23.60	14.05	15.00	13.90)	0.31)	6.30)	(i. 90	0.80	(i) 10
14	7.80	(1. 10	18.70	23.05	14.80	14.011	13. 10	9.20	(i, 21	(3. 91	(3.85)	a 6.10
15	8.30	6. 20	19.10	23, 010	1.60	14.90	13.09	!. (\%)	(i. 10	(i. ! ${ }^{\text {a }}$	6. 58	6.70
16	8.60	0. 25	10.00	23.80	1.1. 10	15. 50	12.90	9.01	5.85	(i. Sil	0.80	b0.00
17	8.80	0.30	18.85	23.65	11.10	16.00	12.80	S.95	i. 8.5	(i. ${ }^{\text {a }}$)	ti. 80	66.00
18	8.70	0.35	18.70	23.80	13.85	10.05	12. 70	S. 90	6. 8.5	c(3.80)	(i. 80	
19	8.05	0.40	18.60	2.140	13. 70	13. 70	12.70	8.70	6. 90	6.95	0.75	6.1.00
20	8.80	(3. 60	18. 50	2.160	13. 50	15. 30	12.70	8.60	(i. (0)	7.10	6. 70	6.4 .60
21	8.70	0.80	18.35	21.20	13. 10	15.00	12.71	$\because .80$	(3. 25	7.30	0.70	b3.80
22	8.50	7.00	18.10	23.30	13.15	14.00	12.95	8.19	(i. 80	7.50	6. 70	b3.90
23	8.30	0.65	18.40	22.00	12.90	11.90	13.20	8.15	7.80	7.65	6. 70	6.4.30
2.1	8. 25	0.65	10.10	22.10	12.70	15. 010	13. 011	S. 30	8.25	7.00	6.70	b. 4.70
25	8.30	0.15	19.65	21.00	12.80	15. 60	13. (i)	8.15	8.10	\%.is	0.60	6.100
20	8.30	0.60	20.10	21.00	12.30	16.30	12.30	8. 05	7.85	7.45	6.65	61.90
27	8.20	0.95	20.35	20. 50	12.60	16. 310	11.9%	7.90	7. 8)	7.10	6.60	b6. 20
28	8.00	7.60	20. 25	22.20	13.00	16.70	11.60	7.51	7.36	7.30	6. $\mathrm{i} \%$	$b_{5}^{5}, 5$
29	8.00		20. (1)	19.9\%	13.25	17.00	11.41;	7.70	7.10	7.30	(6. $!$	bi. 5.5
30	7.90		10.90	19.70	13.10	17.10	11.3!	$\because .180$	(i. !1:)	7.30	(i.19	bi. 40
31	7.95		10.80)		12.s.5		$11 .(4)$	7.8		7.35		bi. 20

1902.
 read at $8 \mathrm{n} . \mathrm{m} .1$

Day.	Jan.	Feb,	Mar.	$\Delta \mathrm{pr}$.	May.	June.	July.	Alif.	Sopt.	Oel.	Nov.	1)ec.
1	a 4.00	a 2.00	8.35	13.80	11.30	19.10	22.00	23. 10	21.00	16.70	13.60	15.70
2	$a 4.80$	a 3.50	8.00	13.80	11.10	18.80	22.90	22,70	20. 0^{2}	17.30	13.20	16.00)
3	a 4. 60	a 4.05	8.70	14.40	11.30	18, 20	23.10	22.00	20.20	17.20	12.80	16. 10
4	a 4.40	a 5.60	0,00	14.80	11.90	19.10	24.10	21.10	19,80	17.30	12.50	15.55
5	$a 4.60$	$a 5.60$	0.20	15.100	13.20	20.00	24.20	20.60	10.90	17.80	12.20	13. 30
13	a 4.40	a 5.50	10.20	15.10	13.40	20. 10	24,60	20.20	20. 20	18. 20	11.90	15.20
7	a 4, 60	a 6.50	10.20	15.00	13.00	19.80	23, 50	10.80	20.20	18.50	11.90	15.20
8	$\square 5.00$	$a 7.00$	10.20	15.30	12.40	10.70	23.10	10.10	19.40	19.41)	12.30	15.30
9	$a 6.25$	a 0.00	10.70	15.80	11.60	19.20	22.60	19.60	18.80	20.35	12.65	15. 40
10	5.45	a 7.00	11.70	15. 20	11.00	18.80	22.30	19.20	17.80	20.05	12.90	15.50
11	5.60	a 6.30	12.00	14.45	-10.90	18.50	22.30	18.00	17.06)	21.00	13.50	15.00
12	5.50	a 6.40	13.50	13,75	11.60	19.20	22.00	18.40	16. 10	20. 60	13.00	14. 40
13	6.45	00.40	13.70	13.20	12.65	19.00	21.80	18.00	15.90	19.80	13.90	13.70
14	6.35	a 0.30	14.00	12.70	13.00	20.20	22.00	17.60	15. 40	19.00	13.60	13.80
15	5.10	a 5.30	14.00	12.10	13.60	20.20	23.100	17.50	14.80	18.30	13.10	14.50
16	4.70	a 5.90	15.70	12.00	13.80	20.90	23.80	17.30	14.20	17.60	12.80	14.85
17	4.45	a 3.60	16.30	11.75	13.80	21.20	24.40	10.70	13.70	17.00	12.50	14.51)
18	4.75	a 0.60	17.00	11.40	13.70	21.00	24.80	10.30	13.30	16.60	12. 40	13.70
10	6.00	13.80	10.70	11.25	13.60	20.70	25.10	16.20	13.10	15.80	12.40	13.40
20	5.15	a 7.00	10.20	11.30	13.60	20. 60	25.40	16. 40	12.80	16.60	12.90	13.10
21	5.10	a 6.70	16. 50	11.30	13.00	20.30	25. 40	16.85	12.10	16.80	13.90	14.00
22	5.20	a 3.80	14.60	11.00	14.20	20.00	25.20	17.80	11.10	11.85	14.70	14.8)
23	5.20	a13.90	13. 60	10. 50	14.00	19.60	25. 10	18.4)	11.20	17.40	15. 20	15.0)
2.4	5.30	17.10	12.90	10.30	13.70	19.20	25. 25	18.80	10.90)	12.75	15.20	15.80
25	5.30	17.10	12.40	10.50	13.00	19.20	23. 6.0	18.85	10.10)	17.85	15.00	116.20
20	5.20	a 7.30	12.00	11.00	14.80	10.20	25.80	18.05	10.70	17.80)	14.80	16.90
27	a 5.00	$a 6.80$	11.70	11.60	15. 30	19.20	25.80	10.10	12.80	17.65	14.80	17.20
28	a 4.50	a 7.60	11.60	11.00	16.70	19.30	25.80	19.80	13.90	17.0)	14.80	17.10
20	a 4.30		13.00	10.90	17.00	19.80	2. 210	19.90	14.85	11i.10	15.10	11.30
30	a 3.60		13.30	10.70	18.80	21.30	2.1 .80	20.80	15. 70	1i. 100	15.30	16, 00
31	a3. 10		13.30		10.30		2.4 .10	20.00		11.30		14.6)

Tubulated gauge readings at selected stations between Chain of Rocks and Cairo-Cont'd. GRAY'S POIN'I', MO.--Conthued.
1903.
[(ange, lisi. 82 miles from Eads Bridge. Zero of gaugo, 308.15 feet above Memphis datum plane. Gauge read at 8 a. m.]

Day.	Jan.	Fob.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oet.	Nov.	Dec.
1	13.30	13. 40	17.00	22.00	20. (0)	24.70	21.80	18,05	18.00	18. 20	16.00	0.50
2	12. 40	13. 35	19.00	21.55	20.20	26.00	21. 60	18. 40	18. 40	18.30	16.80	0.30
3	11.75	13. 10	19. 40	21.30	19.70	27.70	21.65	17.80	19.50	18. 30	16. 0	9.10
4	11.50	13. 10	10.85	20.05	19.30	28.70	21. 10	17.20	20.50	18.30	16. 45	8.85
5	11.50	13.70	20. 20	20.70	18.80	20.80	20. 50	17,30	20. 65	18.50	16. 25	8. 0
1	11.80	10. 30	21.10	21.10	18. 55	31.00	10.80	17.05	20.60	18.60	113. 10	8.36
7	12.00	18.15	21,00	21.75	18.20	31,85	11. 20	16.50	10. 05	18.00	16.00	8.10
8	12. 10	18.0)	23. 10	22. 40	18.00	32.75	18.70	16. 60	10.30-	10. 40	10.10	7.95
0	12.10	17. 50	24.0	22, 70	17, 00	33. 40	18. 6.5	17. © 0	18.80	10.70	10. 50	7.00
10	11.00	17.00	20.00	22.65	17.00	33.85	18. 40	18.00	18.70	20.30	16. 10	7.70
11	11.50	16. 60	27, 80	22.05	17.00	34.30	18. 50	18.10	18. 45	21.40	16. 30	7. 45
12	11.10	16. 10	28, 30	23. (6)	17.09)	34.70	18.60	18.20	18. 20	22.30	16.10	7.3
13	10. 20	16. 00	28.30	22. 70	17.80	35. 05	18.30	18. 30	18.75	22.40	15.90	7.10
14	0. 40	16. 25	27.05	23.00	17.0)	35. 40	17.00	18.30	20. 20	22.00	15. 50	6.85
16	8.70	16. 70	27.80	24.40	17.45	35. 40	17.60	18.35^{-}	21.10	21.70	15.10	(1, 3)
16	8.20	17. 60	27.80	24.0	17.20	3i. 10	17.70	18.40	21.30	21.40	14.70	\%.6)
17	8.00	17. 0)	27.10	2.25	17.10	34.60	18.00	18.70	21. 510	21.00	14.30	4.00
18	8.20	17.30	27.30	2:3. 30	17.00	33.70	18.80	18.60	21.85	20. 50	14.00	4.40
10	8.80	16. 80	27.10	23. 70	10. 130	32.60	10.80	18.35	21.50	20.00	13.70	4.30
20	0.20	16. 40	27.10	25. 05	20.90	31.00	20.40	18. 18	21.30	10.50	13.30	4.70
21	0.00	17, 70	27.00	25. 60	21.60	20.40	20. 30	18.75	21.30	10.10	12.00	5.30
22	10.10	17.70	27.101	25. 25	21.40	28.10	10.90)	18.80	21.00	18.70	12.51	5. 10
23	10.10	10,00	27.20	25. 20	21.10	27.20	10. 10	18.00	20. 30	18.30	12.30	13. 00
24	10.00	13, 80	27.01	25. (0)	20. 80	21.40	10.70	18.60	10. 610	18.00	12,00	6i. 25
25	9.90	16, 30	20. 45	24. 60	20.70	25. 70	10. 70	18.00	19, 00	17.70	11.70	0. (1)
26	0.85	113. 35	213, (k)	24.00	20.80	25. 25	20. 00	17.50)	18.30	17. 40	11.30	7.0
27	9.70	13. 40	25. 40	23. 35	22, 60	25.00	20.50	17.30	18.00	17.20	11.00	7.10
28	9.8)	16. 70	24. ${ }^{\prime}$	22.8)	23. 20	24.30	21.00	17.00)	17.80	17.20	10. (6)	7. 40
20	10. 60		23. 70	22, (x) ${ }^{\text {- }}$	24.00	23, 30	20.50	116.80)	17.80	17.15	10. 25	7.25
30	12.10		23.00	21.40	24. 010	22. 40	20. 10	115.00	18.00	17.00	0.80	7.30
31	13.30		22. 40		2.40		19. 50	17.35		a 16. 6		7.5

a Chmured less than one-half foot.
1004.
[Gauge, 136,82 miles from Fids Bridge. Zaro of gaugo, 308.15 feet nbovo Memphis datum plane. Gauge read at $8 \mathrm{a} . \mathrm{m}$.]

Day.	Janl.	Foh.	Mar.	Apr.	May.	Junc.	July.	Aug.	Sept.	Oe	Nov.	Dec.
1	7.75	12.50	11.00	28.00	3:3. 00	21.80	23. 0.5	15.00	12. 10	14. 30	12. 40	8.55
2	8.10	11. 00	11.25	28,0.5	33, 05	23.50	21.45	15. 60	11.50	14. 10	12. 65	8.45
3	8. 40	10. 70	10.00	28.75	33, 00	25.10	23. 00	15. 20	11. 10	14.40	12. 55	8.30
4	8.25	10. 05	10.70	28.05	\$32.80	25. 40	23.20	14.80	10. 70	14. 10	12. 40	8.20
5	7.05	0. 40	10. 70	28.30	32. 40	25. 10	23.00	14.60	$a \mathrm{10}, 70$	13.70	12.40	8.10
6	7.45	0.05	10.00	27.00	31.60	25. 60	22,85	14. 30	10.85	13.20	12.20	8.00
7	7.10	10. 30	11, 60	27.20	30.70	27.00	22.40	14. 10	11.10	12. 60	12. 05	7.00
8	7.15	10.80	12.20	26. 60	20.60	28.10	21.00	13.80	10.85	12. 40	11,00	7.70
0	7.20	11.00	12. 60	25.00	28.50	28.30	22.00	13.40	10. 60	12.20	a 11.80	7.50
10	7.20	11. 20	12.80	25. 30	27.70	28, 10	23.30	12.00	10. 20	11, 205	11.70	7.30
11	7.05	11.60	13. 30	25. 60	27.35	27, 35	25. 40	12.05	10.15	a 11.70	11.60	7.25
12	7.00	12.00	13. 05	26.00	213. 80	20.65	23.80	12.20	10. 20	2 11.50	11.60	7.20
13	7.00	12.40	14. 20	20. 10	20.10	20. 00	27.10	11.80	10, 30	11.20	11.45	7.10
14	7.00	12. 65	14.70	23. 10	25. 50	25. 30	27.60	11.60	10.30	11.00	11.30	0.85
10	7.00	12.80	14. 80	25. 00	24.60	24.80	27.20	11.70	10. 20	10.80	11.20	0.60
10	7.10	13. 00	14.00	25. 50	23. 70	24.70	20. 20	11.80	10. 03	10. 60	11.05	0.00
17	7.40	13. 05	14.80	25. 20	23. 10	25. 00	2.7. 00	11,60	10, 00	10.30	10.90	6.70
18	7.45	12. 60	14.80	2.4.00	22. 70	25, 25	23.50	11.60	9.95	10.20	10.70	6. 60
19	7.65	12. 10	15. 00	25, 30	22. 60	25. 60	22.00	11.00	10.20	10.10	10. 50	5. 10
20	7.05	11.70	15. 30	25, 60	22. 70	25. 60	22. 40	11.00	12.70	10.00	10. 35	4.70
21	8.10	11.70	15. 70	25. 30	23. 00	25. 20	22.00	12.50	13. 70	10.00	10.20	4.50
22	8. 60	12.10	10. 10	24.80	22,0.5	25. 20	21.60	13.70	14.10	10.00	10.00	4.40
23	10.00	11.05	10. 10	24.80	22. 10	25. 40	20. 80	14.30	14.70	10.00	0.85	4.30
24	13.00	11,70	10.05	2i. 10	21.100	25. 20	20. 00	14.40	14.20	10. 05	0.00	4.20
25	10.65	11, 50	10.00	20. 60	21.00	2.4. 60	10.60	1.1.00	13. 60	10. 20	0. 40	4.30
20	17.10	11.80	23.40	28. 30	20.60	a 23.80	10. 20	14.85	13.20	10. 35	0. 25	4.05
27	10.35	11.70	2.4. 40	30.10	20.30	23, 00	10.10	14.85	13.20	10. 00	0.05	4.80
28	16.80	11.80	2.4. 60	31.30	b 20. 10	22. 50	18. 15	15.00	13.80	10.00	8.00	5. 20
29	15.10	11.80	20.00	32.10	$b 20.10$	22.60	17.75	14. 55	14. 10	11.30	8.80	5.76
30	14,25		28.10	32. 70	20. 30	23. 00	17.00	13. 60	1.1.10	11,60	8. 00	4.90
31	13.30		28.85		20.50		10.40	12.70		12.00		4.10

T'abulated gauge readings at selected stations between Chain of Rocks and Cairo-Cont'd.
GRAYS POINT, MO.-Continued.
1905.
[Gaugo, 138.82 miles from Eads Bridge. Zero of gauge 305.15 feet above Memphis datum plane. Gauge read at $8 \mathrm{n} . \mathrm{m}$.

Day.	Jan.	Fob.	Mar.	Apr.	May.	June.	July.	Ans,	Sept.	Oct.	Nov.	Dee.
1	4.00	7.80	18.20	19.60	19.80	20. 70	23.00	20.30	15. 30	18.00	15. 60	11.90
2	4.00	8.30	20.00	10.90	20. 10	20. 10	23. 10	21.10	14.40	17. 10	15. 00	12.80
3	3.00	10.30	20.60	20. 50	19.80	20. 10	23. 10	21.70	13.00	16. 30	14. 70	13. 50
4	4.10	12.00	20.40	20.70	19.20	20.05	23. 65	22.00	13.60	15.70	14. 815	13.40
5	5.30	12,60	20.40	20. 46	18. 60	20. 30	23. 70	22.10	13.20	15.25	14. 63	13.20
13	6. 80	a 12.50	21.10	20.25	18. 60	20.70	24. 50	21. 60	12.00	14.80	b 14.00	12.80
7	5. 75	-13.00	21.10	10.75	18. 30	21.30	25.00)	20.80	12.70	14. 40	15. 40	12. 20
8	0.05	a 13. 60	21.00	19.10	17.15	21.20	25. 40	20.00	12.65	1.1.00	15.00	12. 00
0	5.00	a 13.75	20.75	18. 60	16. 40	20.80	25. 40	10.35	12. 60	13. 60	16. 10	11.50
10	5. 50	12.00	20. 40	18.00	15.00	20.30	25. 15	18.70	12. 60	13.00	16. 00	10.80
11	5. 50	12. 10	20. 10	17.75	15. 10	19.00	25.00	18.10	12.60	12.70	15.80	10.10
12	5. 45	12. 10	20. 10	17. 40	15. 20	19. (6)	24.80	17.80	12.60	12. 10	15. 45	9.15
13	4.30	10, 50	19.85	17.10	15. 40	19. 40	24, 05	17. 40	12.80	12. 20	15. 25	0.00
14	3. 40	10.60	10. 60	16.05	15. 45	20. 10	25. 50	13.80	13.00	11.90	c 15.30	8.80
16	3. 50	10.60	10.00	16.80	15. 70	20. 80	25. 00	10. 50	14.20	11.65	c 15.20	8.70
16	3. 50	10. 60	18.25	16. 60	10. 10	21.40	20.20	16. 10	13.60	11.30	c 14.70	8.75
17	3.25	10. 40	17.60	1175	18. 30	21.70	25. 90	15. 30	14.20	11.10	14.00	8.80
18	2.16	10.70	17. 20	113.80	20.20	21.70	25. 30	15. 10	16.70	10. 00	13. 50	8.75
10	c2.70	!0. 010	10. 80	16.80	21.20	21.40	24.10	14.70	23.30	r 12, 20	13.10	8.15
20	3.10	10. 45	10.50	16.70	21. 60	20.05	23. 00	14.70	26.20	17.30	12.85	8.70
21	4.30	10. 40	10. 10	16.60	22. 40	21.10	22.90	15.00	27.00	18.70	12.80	8.80
22	4.80	10. 40	15. 70	10.25	22. 70	21.50	24.00	15. 40	23.80	17.60	13.20	8.95
23	5. 40	10. 60	15.60	113. 00	22. 10	21.80	22.30	15. 70	29.10	17. 00	13. 40	9. 10
24	(1. 20	a 12.80	10.10	16.00	21.50	21.30	21.10	16. 10	.28,75	16.90	12,80	0.10
25	6. 20	- 12.20	16. 80	16.30	21.00	21.20	21.10	18.50	27. (k)	13.80	12.30	9.15
26	6. 60	113.00	17.30	16.70	20. 80	21.65	21.20	10. 60	25. 75	16. 90	12.00	9. 20
27	7.10	0.50	17.185	17. 10	20. 40	22. 010	21. 10	19.30	23.00	17. 10	11.70	9. 10
28	13. 10	12.10	17.80	17.90	20. 10	22. 30	21.60	19. (0)	22. 20	18. 10	11.80	9.00
29	13.20		18. 30	18.80	20. 10	92.30	20.00	18.50	20. 30	17.80	11.85	0.00
30	3.80		19.00	19.30	20. 20	22.8)	20.00	17.70	19.0)	16.00	11. (1)	9.30
31	7.10		10. 40		20.60		19.10)	16. 50		16. 20		9.90

a Doubtful on necount of ice. b Interpolated-no realing. a Reading changed one-half foot or more.
110)
[Gauge, 130.82 miles from liads Brdge. Voro of gango, 305.16 fout above Momphis datum phane. Gauge road at $8 \mathrm{n} . \mathrm{m}$.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oet.	Nov.	Dec.
1	10. 20	17.30	22. 10	27. 1 ()	21.80	15, 60	20.80	13.00	13.80	15. 20	8.60	13.50
2	10. 45	17.50	22.00	27.70	21, 10)	16. 10	20.75	13. 8.0	13,30	15. 10	8.70	13.10
3	11. 40	17.60	23.80	27. 10	21. 55	10.70	20. 70	13.30	12. 50	15. 20	0. 20	12.85
4	12.20	17.60	23. 80	27. 40	21.50	17.45	20, 80	13. 20	12. 50	15.30	0.70	12.00
5	12.80	16. 70	23. 40	27.10	21.80	18.00	20.80	13. 45	12.35	15. ${ }^{10} 0$	10.00	12.05
6	16. ${ }^{1} 0$	15.90	22.70	27. 10	21.15	18. $\mathbf{3}$	20.80	13. 20	12.10	15.30	10.20	13.00
7	17.80	14. 10	22.00	27. 10	31.80	18. 0	20. 20	12.90	11.90	14. 60	10.30	13.30
8	18.00	14. 20	21.50	26.00	81.80	18.95	19.90	13. 10	11.70	13. 70	10.30	13, 60
0	17. 50	13. 40	21.00	27.00	22. 40	19.70	19.80	13.00	11.70	13. 10	10. 40	13. 90
10	16. 40	12,50	20. 10	27.00	22.10	20.30	19. 20	13.60	11.70	12.60	10. 20	13.80
11	15. 30	12.00	20.70	37.00	21.50	20. 20	18. S0	13. 40	11.70	12.20	10. 60	13.60
12	14.00	11.100	20. 40	26.80	20. 80	20.70	18.30	13.80	11.70	11.80	10. 70	13. 10
13	12.00	11.30	20.10	23. 50	20. 20	90. 70	17.90	13. 00	12.00	11.50	10.00	12. 85
14	12.20	11.20	10.90	20. 10	10.80	20. 30	17.60	14.10	11.80	11.20	10.90	12.05
15	11.70	11. 10	19.60	26.85	10. 10	20. (0)	17.30	14.70	11.70	11.00	10. 90	13. 30
16	11.20	11.80	19.10	27.45	18.90	19.60	17.00	15.20	11.60	10.80	10.00	13.30
17	10.00	11.80	18.60	27.30	18.50	10.70	-10.70	15.50	11.50	10.50	11.10	12.85
18	10.75	11.80	17.10	20.70	17.90	111. 40	10. 55	15.20	11.40	10.50	11. 50	12.40
10	10. 30	11.80	17.80	20.10	17.40	10. 20	13.30	14.80	11.30	10.35	11.50	12.20
20	10.30	12.00	17.20	25.70	16. 00	19. 20	15. 00	14.30	11. 10	10. 20	11.70	11.80
21	10.50	12.30	16. ${ }^{10} 0$	25.20	16.10)	10. 60	15. 60	14. 10	11.10	10.00	13.70	11.30
22	13. 40	12.65	10.10	24.80	10.30	20. 10	16. 30	14.30	11.70	9. 80	15.70	10.80
23	16.70	12.90	15, (1)	24, 30	13.00	20. 90	15.00	14.20	11. 30	0. 60	15. 30	10. 50
24	15.75	13. 00	15.70	23. 80	15.8)	21.10	15.00	13.00	11.6	9. 0	15.00	10. 20
26	10.70	16. 30	16.80	23. 40	16. 50	22, 10	15. 20	13. 60	11.70	9. 10	14.90	9.80
20	17.60	18.00	16. 30	23. 00	16. 40	22.25	1i.) 00	13.00	12. 70	1). 20	14.60	9. 20
27	17.60	20.10	18. 10	22. 70	16. 30	21.70	16. 50	12.80	13. 10	9, 100	14.35	8.50
28	17.40	21.40	20. 20	22. 40	15.20	20. 00	10. 40	13.60	13. 80	8. so	14.20	7.80
20	17.20		23.80	22.20	16. 20	$\because 0.60$	15.70	15. 10	1.1. 10	S. 80	1.1 .00	7. 10
30	17.00		25.40	22.00	15.30	20. 40	15. 20	15.25	1.4 .70	s. sio	13.80	7. [10
31	17:00		20.70		15. 40		14. 50	14. 61		8. 70		8.70

Tabulated gauge readings at selected stations between Chain of Rocks and Cairo-Cont'd.

GRAYS POIN'S, MO.-Continued.
1007.
[Gauge, 136,82 miles from liads Britge. Zero of gange, 308.15 feot above Memphts datum plane. Gaugo read at 8 a.m.)

Day.	Jan.	Fob.	Mar.	λ_{1}	M	June.	July.	Aug.	Sept.	Oct.	Nov.	Dee.
1	9.2	23.6	18.0	10.7	20.1	18.0	24.6	26.5	16.3	12.1	10. 2	9.3
2	0.8	23.0	18.0	11.9	20.5	18.7	2.1. 2	25.9	16.1	12.1	10.3	0.2
3	12.4	22.3	17.11	20.15	21.2	18.8	23.6	25. 0	16.0	12.1	10.3	0.2
4	14.7	21.6	17.3	20.0	21.4	19.3	23.2	23.9	15.8	12. 45	10.25	0.1
i)	1.1 .0	20.7	17.15	11). 7	21.3	20.8	22.11	23.0	15.8	12.8	10. 1	0.1
6	15.4	19.8	17.5	10.3	21.1	22.7	21.8	22.3	15.8	13.4	10.0	8. 05
7	16.3	18.6	17.4	19.2	20.85	23.5	21.2	21.8	15.65	13.8	9.05	8.8
8	17.0	17.1	17.3	10.0	20. 7	23.4	21.0	21.5	15. 5	14.2	0.0	8.7
9	17.4	15. 4	17.2	18.8	21.25	23.0	21.1	21.2	15. 4	14. 1	9.7	8.6
10	17.5	13.8	16.0	18.8	22.3	22.8	21.3	21.0	16. 0	14.25	9, 65	8.5
11	17.4	12.7	16.) 3	18.0	22. 7	22.0	21.3	20.0	1.16	14.0	9.6	8.5
12	17.2	12.3	16.5	10.0	22.6	23.1	21.35	20.4	14.1	1.1. 8	0.5	8. 45
13	16.0	12. 1	17.2	19.9	91.7	23.7	21.3	20.0	13.7	14.05	0.4	8.3
1.4	16.1	12. 5	20.0)	11. $!$	20.8	2.413	21.3	19.6	13.3	14.05	0.3	8.3
151	11.5	13.1	21.4	20. 5	20.5	25.1	21.7	10.4	13.0	1.1 .7	9.2	8. 35
11	17.0	14.1	22.2	20. 6	20.4	?5. 2	22.2	19.0	12,8	14.3	0.1	8.4
17	17. 5	14.6	22.1	20.1	21,3	25.6	22.4	18.8	12, 6	13.8	9.1	8.6
18	18, 3	14.4	21, 8	20.3	23.0	25. 3	23.0	18.7	12.3	13.4	9.1	8.6
10	20.3	14.6	21.7	20.1	23, 7	24.4	24.0	18.3	12.1	13.0	0.1	8.7
20	22.8	14.9	21.7	20. 5	23.3	23, 7	2.4 .9	18.19	11.8	12.7	0.1	8.8
21	$25 . \mathrm{E}$	15.1	21.8	21.0	22.3	23.2	25.2	19.2	11.6	12.4	9.05	8.8
22	27.8	14.7	22.1	21.5	21.2	22.8	25.5	19.13	11.3	12.2	9.45	8.7
23	28.7	14.6	21.0	21.0	20.2	22.4	25.9	19.18	11.1	11.9	0.45	8. 8
2.4	20.2	15.2	21.1	21.0	19.3	22.2	23.5	20.7	11.1	11.6	9, 45	0.2
25	29.3	16.0	20.0	21.7	18.4	22. 13	27.0	20.0	11.25	11.4	9.4	0.4
26	28.0	17.0	20.6	22.0	17.0	23.4	27.3	10.7	11, 5	11.2	0.35	0.4
27	2 S .0	17.8	20.3	21.7	17.2	24.2	27.3	19.7	11.7	11.0	9.25	0.4
28	27.1	18.0	20.1	21.4	10.7	2.4 .8	27.2	19.3	11.8	10, 85	0.2	0.3
29	26.0		19.9	20.9	17.0	25. 1	27.0	18.1	11.9	10. 7	0.2	0.4
30	25, 0		19.6	20.3	17.4	2.4 .95	20.7	17.2	12,1	10. 5	9.3	0.3
31	24.2		19.5		17.1		2i. 1	16.7		10.3		9.1

1908.

[Gauge, 130.8: miles from Eads Bridge, Zero of gange, 30k. is fret abovo Momphis datum plane. Gango read at 8 n .1 m.]

Tabulated gauge readings at selected stations between Chain of Rocks and Cairo-Cont'd.
COMMERCE, MO.
1896.
[Gauge, 143.67 milles from Fads Brldge. Zero of gaugo, 308.84 feet abovo Momphis datum plane. Gaugo read at 8 a. in.]

Day.	Jnn.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1										7.60)	4. 00	6. 20
2										7.30	4.90	6. 20
3										7.00	4.90	6. 10
4										(6. 70	5. 10	6. 010
5										(i. 80	5.55	5. 9\%
6										6. 40	(i. 10	6. 00
7										6. 30	6. 80	5.85
8									(i. 75	6. 20	7. 70	5. 50
0									6. 60	6. 15	8.10	5. 20
10									6. 40	ti. 05	8.00	5. 010
11									6. 20	6.05	7.70	4. 80
12									6. 10	6.00	7.30	4. 135
13									(i). 00	5.05	7.10	4. 60
14									5.90	6. 9.5	6.90	4. 60
15									i. 8.5	6. (0)	6. 70	4. 80
10									5. 90	6. 00	6. 60	4.95
17									6.05	15.10	6. 60	6. 20
18									(i. 20	6. 20	6. 6.40	5. 50
19									(5. 20	6. 20	6. 40	5. 80
									6. 45	13. 00	6. 60	6. 40
21									6. 0.5	6. 8.5	(1. 50	6. 70
22									7. 50	5. 75	(6. 40	6. 91
23									8.10	¢. 70	6. 40	7.00
24									8.75	5. 60	(i. 30	6. 00
25									0.05	5. 45	6. 20	6. 80
213									8. 010	5. 40	6. 10	6. 75
27									8.65	5. 25	6. 10	6. 70
28									8.30	5.15	6. 20	(i. 55
29									8.10	5. 10	6. 20	(i. 40
30									7.90	5. 60	6. 20	6. 20
31										¢. 10		6. 10

1897.

[Gauge, 143.07 miles from Eads Bridge. Zero of gauge,30s.St fert ubovo Memphls datum plane. Gauge read at $8 \mathrm{a} . \mathrm{m}$.]

Day.	J®11.	Fiols.	Mar.	Apr,	May.	June.	July.	Altg.	Sept.	Ort.	Nov.	Dee.
1	0.05	7.65	14.35	24.35	23.20	a 13, 15	17.20	12.35	7.55	5. 20	4.35	1. 55
2	0.00	(b)	14. 40	25. 20	23. 70	12.70	17.15	11.95	7.40	5.10	4. 40	4. 50
3	0.05	6. 60	15.00	25. 80	a 24.00	12. 35	17.05	11.75	7.15	5. 10	4. 40	4.45
4	7.00	0.60	15. 50	20. 60	24.10	12.40	17.20	11.50	6.05	5. 05	4. 10	4. 30
5	14.60	0.85	113. 30	20. 165	2.4, 05	12, 55	17.50	11.15	6. 75	5. 00	4.40	4. 10
6	18.80	7.25	18.60	20.50	23. 80	13.00	17.60	11.00	6. 60	4.95	4.35	3. 80
7	19.70	7.40	21.40	20. 25	23.30	13.40	17.00	10.80	6. 50	4.90	4.35	3. 40
8	20.00	7.50	22. 80	20.25	22.60	13.70	16. 60	10. 63	6. 40	4.90	4.10	3. 05
0	10.20	7.55	23. 60	23. 40	21.80	13.80	16. 30	10. 40	6.35	4.85	4. 60	2. 60
10	17.30	7.00	23. 60	20. 50	21.00	13.85	16.10	10.10	6. 30	4.75	4.85	2.25
11	15.35	8. 40	23.20	23. 80	20. 25	13. 65	16. 35	10.60	6. 30	4. 75	4.85	2.15
12	13.55	0.25	22.10	23. 05	10.85	13. 15	15. 10	10. 50	6. 2.5	4.70	4. 00	2. 20
13	11.00	10.00	22.40	27.05	10.0.5	13. 25	15. 00	10.25	6. 20	4. 60	4.80	2. 30
14	10.80	10.15	22.10	26.85	18. 30	13.00	14. 50	10.05	6. 05	4.60	5.00	2. 45
15	10.00	10.60	22.00	20. 50	17.60	12.70	13. 5.5	0.00	5.85	4.50	5. 00	2. 70
16	9.40	11.05	21.80	20. 05	17.00	12. 15	13.35	0.85	5.80	4. 60	5.00	2. 90
17	9.20	11.35	21.70	25. 65	16.05	12. 30	12.85	0.80	6.80	4. 10	6. 019	3. 20
18	0.05	11.60	22.10	25. 10	16. 20	12.30	12. 45	9.70	\%. 60	4.35	5.05	3. 50
10	0.00	11.40	22.00	24. 75	15.80	12.40	12.30	9. 05	5. 45	4.35	5. 00	3.35
20	0.75	11.10	22.70	21.45	15.40	12.70	12. 30	9.60	6.35	4.30	4.85	3. 15
21	10.05	10.80	22.55	24, 10	16.00	12. 30	12. 50	9. 10	6. 30	4.30	4.75	2. 70
22	11.60	c 10.60	22.00	23. 90	14.60	12.45	12. 25	9.30	6. 25	4.25	4.70	2. 30
23	11.05	11.70	23. 20	23.80	14.15	13.30	11.00	9. 20	5. 20	4. 30	4. 60	2.15
21	11.05	12.70	23. 25	23.70	13.75	13.30	11. (i)	9. 10	5.15	1. 20	4.55	2. 00
25	11.05	13.70	23. 60	23. 60	13.35	14.30	11. 40	8. 6	6.15	4.20	4.55	1.80
20	12.00	14.15	23.65	23.55	13.10	14.10	11.65	8.75	6. 25	4.15	4.65	1. 70
27	11.30	14. 25	23.00	22.80	13.20	14.30	12.65	8.65	5.35	4.15	4. 65	1. 0
28	(b)	14.30	24. 50	22.35	13.40	15. 01	11. 00	8.35	6. 40	4.20	4.60	1.70
20	10.00		24.70	22.40	13. 40	14.05	C 14. 50	8. 10	6.35	4. 20	4. 60	1.90
30	0.20		24. 60	22.70	13.30	15. 90	c 11.10	7. 00	5. 25	4.20	1.60	2.80
31	8.40		24.30		13.30		13.20	7.70)		4.25		3. 10

「'abulated guuge readings at selected stations between Chain of Rocks and Cairo-Cont'd.
COMMERCEF, MO.-Continued.
1898.
[Gauge, 143.07 miles from Eads Bridge. Zero of gange, $308.8 t$ feet abovo Memphis datum plane. (iauge real at 8 a. m.]

| Day. | Jan. | Fob. | Mar. | Apr. | May. | June. | July. | Aug. | Sept. | Oct. | Nov. | Dec. |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | |

a Changed less than one-half foot.
1890.
[Gauge, 143.67 miles from Eads Bridge. Zero of gange, 308.84 feet above Memphis datum plane. Gauge read at 8 n. m.]

Day.	Jan.	Fob.	Mar.	Apr.	May.	Jıne.	July,	Aug.	Sopt.	Oot.	Nov.	Dec.
1	0.20	5. 30	13. 00	17.30	21.10	10.35	17.35	12.75	7.80	6. 85	5. 35	0.05
2	8.30	6. 30	15. 10	17.30	21.15	18.20	17.35	12.15	7.75	6. 80	6. 20	6. 95
3	7.50	6. 40	15. 40	17.30	21.00	10.30	17.35	12.05	7.80	6. 70	6. 05	5. 90
4	6.90	5. 30	15.15	17.05	20.70	19.80	17. 55	12.65	7.70	6. 60	6. 10	6. 75
5	7.20	6. 60	15. 00	17.05	10.85	19.05	18. 10	12.40	7.50	5. 60	6. 30	5. 65
6	6. 70	7.30	14.85	17.10	18. 80	20.00	18.55	12.15	7. 40	156.45	6. 45	6. 60
7	6. 65	7.25	14.85	17.30	18.20	20.05	18.75	12.10	7.20	6. 35	5. 60	6. 55
8	0. 50	7.60	14.80	17.40	17.60	20.00	10. 05	11.70	7.10	5. 25	6. 80	5. 50
0	0. 50	7.40	14.80	17.25	17.00	10.50	10.20	11.30	7.00	6. 10	5. 95	5. 45
10	6. 80	7.70	14. 55	16.00	17.00	10.25	19.15	11.20	3. 90	0.05	6. 10	5. 40
11	0.60	7.70	14. 50	16. 60	17. 40	10.15	10.15	12.20	6.00	6. 00	6.25	6. 40
12	6. 65	7.00	14.70	15.95	18.75	10. 15	10. 40	13.40	7.09	4.95	0.35	5. 40
13	0. 00	8.00	15.00	15.65	18. 40	10. 30	19.60	13.90	7.05	4.00	6. 50	5. 30
14	8.10	8.10	15.30	10.30	18.70	20.10	10. 40	13.70	7.05	4.85	6. 60	5. 30
15	0.25	8.20	15. 50	16. 30	18.90	20.60	10.00	13.40	7.05	4.75	6. 70	6. 35
16	9. 40	8.30	16.00	15. 50	18.85	20. 30	18. 50	13.20	7.00	4.65	6.75	5. 35
17	0.30	8.35	10.85	14.80	18. 65	19.60	18. 05	12.70	0.00	4.80	6. 75	5. 30
18	9. 45	8.40	17.70	14.35	18.05	18.05	17.05	12.05	(i. 90	4.70	B. 70	5. 25
10	0.05	8.40	18.10	14.05	17.45	18.05	17.30	11.55	13. 80	4.70	6.70	b. 00
20	9.65	8.25	18.60	13.90	10.80	18.05	17.20	11.05	11.00	4.80	6. 65	4.95
21	9. 45	8.60	10.30	14.05	10.35	18.05	17.10	10.70	7.00	4.80	6. 70	b. 20
22	0.15	7.70	20.00	14. 70	16. 60	18.75	16.80	10.30	0. 05	4.70	(1. 05	5. 60
23	8.80	13.80	20.25	15. 45	17.20	18.50	16.30	10.05	6.80	4.60	6. 05	5. 55
24	8.50	(3. 15	20.00	17. 60	18. 15	18.10	16. 80	9.60	3.65	4. 65	6. 75	5. 30
25	8.05	5.35	10. 65	10.70	10. 65	17.65	15. 40	9.25	6. 60	4.50	6. 85	4. 05
20	7.85	6. 30	10.05	20.70	20.25	17.10	15.00	9.00	6.35	4.45	6. 90	4. 60
27	7.65	0. 10	18.05	21.20	20. 65	16. 80	1.1. 65	8.05	6. 25	4.46	6. 85	4. 05
28	7.20	10.10	18.35	21.45	20. 35	16. 75	1.1. 10	8. 40	(1.06	4.65	6. 70	3.70
29	0.00		18.00	21.30	20. 10	16.00	13.70	8.25	a 11.00	1.150	6. 35	3.25
30	(1, 00		17.75	21.00	10.00	17.15	13. 56	8.16	6. 95	4.80	6. 30	3.00
31	6.05		17.36		10. 10		13.00	7.05		6.05		1.85

a Changed less than one-half foot.

Tabulatal gutue readings at selected stations between C'hain of Rows and C'airo--('ont 'il.
COMMER(CE, MO.-Conthned.
1900.
 read at \& p. m.)

Day.	Jain.	Fels.	Mar.	Apr.	May.	June. 1	July.	Ang.	spl.	OH.	Nos.	Der.
1	1.25	4.20	8.20	12.50	14.35	12.30	12.00	10.65)	8.40	8.50)	11.00	10.1010
2	0.25	3.65	7.70	12.10	13.80	12.05	11.65	11.30	8.80	(1.06)	H,20	10.05
3	-0, 50	2.05	7.30	12.20	13.40	11.75	11.25	0.05	9.00	!1. 40	10.95	0.50
4	-0.50	1.00	7.30	12.35	13.30	11.90	11.15	0.65	9.10	9. 00	10.60	0.00
5	-0.30	2.06	7.30	12.35	13.40	11.80	11.00	0.20	0.10	11.00	10.45	8.80
${ }^{1}$	0.50	2.10	7.95	12.35	13.30	11.60	10.05	0.00	0.10	11.40	10.45	8.35
7	1.40	2.00	0.90	12. 85	13.30	11.45	10.85	8.65	0.25	11.30	10.60	7.15
8	3.10	2.70	14.40	13.00)	13.75	11.00	10.65	8.20	9.20	11.00	11.05	7.0
0	3.40	3.70	11i.45	13,85	14.10	10.80	10.30	7.85	8.75	10.00	11.60	7.35
10	3.85	5.35	16.00	13.05	14.20	10.70	0.90	7.50	8.35	11.10	11.80	7.10
11	4.80	7.05	17.40	13.95	14.10	10.7)	0.76	7.20	7.85	11.30	11.10	1.85
12	4.65	8.25	18.40	13.80	13.06	10.60)	0.75	6.80	7.60	11.05	11.25	6.75
13	4.30	8.30	10.10	13.70	13.75	10. 20	9, 515	1, 60	7.30	10. 6.5	11.10	(i. 6.9
14	4.10	7.05	10.90	14.20	13.80	10.10	(1.65	6. 30	7.00	0.8i	11.10	6. 510
15	4.60	7.80	20. 00	14.00	14.16	10. 60	0.46	(i.)0	6. 70	(1). 510	10.80	6i.30
10	4.00	7.50	20.80	15.60	13.80	12.60	0.15	5.80	(i. 515	0.30	10.30	6, 1.15
17	4.00	7.60	20.80	15.30	$\square 13.06$	12.80	O. (X)	5. 710	(i. 40	0.0%	10.60	- 5.91
18	3.05	7.60	20.5x	14.70	12.30	12.25	0.25	5. 810	3.30	8.915	10. 10.	6. 31
10	3.05	7.010	19.05	1.4 .80	12.15	11.60	0.20	5.50)	6.15	8.90	10.60	6. 65
20	4.30	7.60	10.10	13.4i	12.25	11.20	0.00	5.80	6.10	8.00	10.60	-. 20
21	6.45	7.70	17.00	13.25	12.25	11.10	0.05	(1.80)	(1. 10	$0.00)$	10.6is	3.05
22	7.05	7.10	116.85	13.45	12.25	11.10	8.90	7.70	6.20	0.20	10.06	4.80
23	7.45	8.00	11. 10	13.00	12.20	11.80	9.00	8.25	6, 10	(1, 50	10.75	4.80
24	(1, 05	8.75	16.70	14.20	12.20	12.70	0.75	8.40	11.75	0.80	11.15	1.6
25	6.45	0.70	16.30	14.50	12.20	13.70	10.05	8.46	7.05	10.20	11.16	4.80
20	6.20	0.80	14.00	14.80	12.10	13.00	11.75	8.45	7.20	10. 60	11.05	4.10
27	6. 10	0. 20	14.60	16.15	11.80	13.70	11.00	8.50	7.56	10.75	11.05	4.30
28	6.10	8.70	14.30	15.25	11.ci)	13.75	11.05	8.35	7.510	10.80	11.05	4. 410
20	11.00		13.85	15.00	11.35	13.20)	11.65	8.35	7.75	10.85	10.00	4.40
30	5. 50		13.40	14.65	11.20	12. 01	11.35	8.30	8.00	10.85	10.35	4.35
31	6.00		12.00		11,50		10.00	8.20		10.85		4.20

" ('hanged less than one-half foot.
1001.
 read at 8 in. m.]

Day,	Jiln.	Fels.	Mar.	Apr.	Mry.	Junir.	Juls.	Allf.	Sept.	Oet.	Nov.	I)
1	4.00	5.05	5. 05	15. 60	16.100	8.95	12.70	7.50	4.60	4.10	4. 40	3.80
2	3.00	4.05	6.05	15.80	15.80	8.70	12.30	7.65	4. 45	1.00	4. 15	3.80
3	3.76	4.85	4.75	16.00	15. 60	8.60	11.90	7.65	4.30	3.80	4.15	3.160
4	3.60	4.80	4.60	10.20	16. 15	8.75	11.45	7.70	1.25	3.80	4. 40	3.50
5	3.40	4.75	4.35	10.35	a 14.70	U. 00	10.00	7.70	4.15	3.70	1. 30	3.60
6	3.10	4.80	4.45	113. 30	1.4.35	10. 10	10.45	7.00	4. (1)	3.65	4. 20	3. 45
7	2.00	4.65	4.80	10.00	13.80	10.75	10.00	7.50	3.00	3.70	4.05	3.40
8	2.60	4.75	6. 20	17.05	13.15	10.05	0.70	7.20	3.80	3.70	3.95	3.30
0	2.65	4. 70	\%. 60	17.30	12,4is	11.15	0. 50	11.00	3.75	3.85	3.95	3.30
10	2.70	4.20	6. 10	17.70	11.80	11.30	9.15	13.05	3.70	3.85	3.00	3.30
11	3.00	3.10	8.55	18.45	11.30	11.30	9. 75	0.45	3.65	3.90	3.85	3. 40
12	3.45	3.20	10. 100	10.05	10.85	11.10	10.10	(i. 30	3.70	4.05	3.95	3.35
13	4.05	3.25	14.00	10.35	10.60	10.10	10.10	6.20	3.05	4.10	4.00	3,30
14	4.95	3.60	15.30	10.35	10. 45	10.85	9.05	6.10	3.00	4.10	4.05	3. 40
15	b. 45	3.60	15.05	10.100	10.30	10.85	0. 36	6.00	35.55	4.10	4.00	133.70
16	5. ${ }^{10}$	3.60	15. 50	10.50	10.10	11.30	0.20	\%. 90	3.50	4.00	4.00	13.80
17	6. 80	3.05	15.25	10.25	11.00	11.80	9,10	6. 00	3.40	3.05	4.00	133.80
18	6. 80	3.75	15.00	10.25	0.70	11.90	0.05	6.80	3.35	3.05	4.00	$\underline{13.30}$
19	6.76	3.80	14.00	19.00	0.00	11.60	0.00	6.55	3.30	4.10	3.05	$\checkmark 1.90$
20	5.80	3.00	14.75	20.00	0.50	11.25	9.00	5.55	3.35	4.30	3.95	b2.40
21	5. 80	4. 10	14.50	18. 40	0.35	11.00	0.05	6.50	3.00	4.45	3.90	42.40
22	5.60	4.20	14.40	18.75	9.15	10.85	9.30	6.40	3.05	4. 130	3.00	62.20
23	5. 46	3.00	14,60	18.00	9.00	10.00	9.60	5.40	4.85	4.65	3.85	1.2 .25
24	6.40	3.80	15.35	17.60	8.80	11.00	9.40	\%. 30	5.30	4.70	3.85	62.80
25	5. 40	3.80	16.75	17.25	8.70	11.50	0.00	\%. 20	5.20	4.65	3.85	62.80
26	5.40	4.00	10.10	16.00	8.50	12.00	8.05	5.10	4.85	4.55	3.85	${ }^{1} 3.10$
27	5.30	4.25	16.35	10.50	8.55	12.35	8.35	6.05	4.70	4.60	3.85	63.40
28	5.20	4.75	16.25	10.30	0.05	12.50	8.10	4.00	4.50	4.45	3. 80	1.3 .40
29	5.15		10.00	16.20	0.25	12.80	7.00	4.80	4.30	4.45	3.70	43.45
30	5.10		15.85	16.10	0.20	12.85	7.80	4.70	4.20	4. 45	3.70	1.3.80
31	6.05		15.70		0.00		7.05	4.70		4.45		103.30

Tabulated gauge readings at selected stations between Chain of Rocks and Cairo-Cont'd. COMMERCE, MO.-Continued.
1004.

Gauge, 143.67 miles from Eads Bridge. Zero of gauge, 308.84 feet abova Memphis datum plane. Gange read at $8 \mathrm{a} . \mathrm{m}$. .

Day.	Jnn.	Feb.	Mar.	Apr.	May.	June.	Suly.	Ang.	sept.	Oct.	Nov.	Dec.
1	a 2.80	a 1.10	5.45	10. 35	7.80	15.10	17.60	18.55	16. 35	12.70	10.00	11.05
2	a 2.70	a 2.10	5.00	10.60	7.80	14.85	18.15	18.00	13.15	13.10	0.65	11.00
3	a 2.25	43.00	5. 05	11.10	7.80	14. 65	19.00	17.30	15. 70	13. 10	9. 30	12.05
4	a 2.20	a 3.10	5.00	11.65	8.35	15. 25	10. 45	16.70	15. 30	13. 20	0.00	11.60
5	a 2.30	a 3.10	0.20	12.00	9. 60	15. 05	10.60	16.00	15.35	13.65	8.65	11.30
6	a 2.60	a 3.70	7.20	12.10	0.00	16.05	19.50	15. 50	15.65	14.20	8.45	11.15
7	$a 2.80$	a 4.40	7.40	12.10	9. 40	15.85	19.00	15.25	15. 70	14.55	8.40	11.25
8	a3.100	a4.85	7, 60	12.35	9.00	15. 60	18. 55	16.05	15. 10	15. 15	8.70	11.35
0	a 3.10	a 4.05	8.20	12.55	8.10	15.10	18. 15	14.05	a 14.40	10.85	0.10	11.45
10	3.10	0.4 .80	0.50	12.00	7.50	14.65	17.00	14.70	13. 60	13. 10	0.30	11.45
11	3.10	a 4.00	10.50	11.40	7.50	14. 60	17.75	14. 40	13.00	16. 50	0.80	11.00
12	3.10	n 3.50	11.20	10.60	8.10	15.00	17.45	14.00	12.40	13.15	10.10	10.70
13	a 2.00	a 3.15	11.50	9.80	$8.00{ }^{-}$	16. 70	17.20	13.65	11.00	16. 65	10.20	10. 10
14	a 2.80	a 3.20	12.00	0. 60	0. 50	16.05	17.15	13.30	11.20	14.80	0.00	10. 20
15	a 2.05	- 2.50	12. (0)	8.00	10. 00	16.05	18.35	13. 20	10.00	14.05	9.50	10. 05
10	$a 2.30$	a 3.10	13.30	8.10	10. 10	16, 05	10.10	13.05	10. 35	13. 50	9.30	10.05
17	a 2.00	a 3.40	13.75	8.30	10.10	16.85	10.05	12.45	10.00	13.00	9.05	10.75
18	2.25	a 3.45	14.05	8.10	10.05	10.65	10.05	12.05	9. 70	12. 00	8.85	10.45
19	2.50	a 3.70	13.00	7.90	10.00	16. 40	20.25	12.00	0.55	12.50	8.00	10. 25
20	2.60	a 3.85	c 13.45	7.80	10.00	16.20	20. 50	12.20	0.00	12.50	0.25	10.50)
21	2.60	- 3 3.75	12. 55	7. 80	10.30	10.00	20.50	12.45	8.60	12.75	0.05	10.80
22	2.70	a 3.75	11.75	7.60	10.60	15. 70	20.40	13.00	8.25	12.00	11.00	11.20
23	2.70	$a 4.00$	10.75	7.30	10. 10	15.30	20.25	14.00	7.80	13.25	11. 25	11.70
24	2.70	a 4.20	0.85	7.00	10.10	15.00	20.30	14. 30	7.65	13. 10	11. 25	12.30
25	2.70	a 4.20	0.35	7.50	10.35	14.05	20.60	14. 50	7.35	13.70	11.15	12.85
26	2, 65	a 4.10	8.75	8.10	11.10	14.05	20.80	14. 50	7.40	13. 05	11.05	13. 40
27	$a 2.40$	a 4.10	8.45	7.85	11.65	14.00	20.80	14. 05	8.85	13.50	11.00	13. 70
28	a 2.10	4.20	8.30	7.55	12.00	15.00	20.75	15.00	10.10	13.00	10.00	13. 50
29	a 1.05		8.50	7.50	13.00	15.60	20.45	15.35	11.00	12.10	11.10	12.00
30	01.40		9. 80	7.30	14.05	16.80	19.85	16.85	11.75	11.30	11.35	12.00
31	1.10		10.00		15.35		19.20	16.30		10. 50		11.10

a Doubtful on account of lce. b leading changed one-half foot or more. © Interpolated-no reading.
1003.
[Gauge, 143.67 miles from Eads I ridge. Zero of gauge, 308.84 feet above Memphis datum plane, Gauge read at 8 a. m.]

Day	J®n,	Feb.	Mnr.	Apr,	May.	June.	July.	Aug.	Sept.	Oet.	Nov.	Dee.
1	10.00	9.90	15.05	17.75	10.65	10.70	17.65	15.15	14.30	14. 40	13.25	0.85
2	0.10	0.90	15.05	17.40	15.85	20.85	17.35	14.65	14.05	14. 55	13.15	6. 70
3	8.30	9.70	10.25	17.15	15.15	22. 30	17.15	1.1.15	15. 65	14. 65	13. 05	0. 50
4	8.10	9.05	16. 15	16. 05	14.85	23.25	16.05	13.75	10.65	14.65	12.00	0.30
5	8.10	a 10.00	17.00	16. 45	14.45	24. 25	16. 45	13.75	10.05	14,65	12.75	6.05
6	8.40	12.35	17.80	16.65	14, 20	25.30	15.05	13.65	10.45	14.85	12. 65	6. 80
7	8.70	14.30	18.65	17.15	13.90	20.25	15.45	13.05	15.95	14.90	12. 60	5. 65
8	9.00	14.45	10.65	17.75	13.70	27.15	15.15	13.15	15.45	15.60	12.60	5. 50
9	9.00	14.05	21.15	18.05	13.60	27.05	14,85	14.00	15.05	15. 65	12.80	5. 40
10	9.100	13.75	23.15	17.85	13.60	28.30	14.85	14. 35	14.05	16.40	13.00	б. 30
11	8.75	13.45	24.30	17.65	13. 05	28. 65	14.85	14.45	14.70	17.35	12.85	5. 15
12	a 3.25	13.35	24.80	17.50	13. 05	28.05	14.85	14. 65	14. 50	18.05	12.65	4.90
13	7.35	13.20	21.85	18.15	13. 55	29.15	14.05	14. 65	14.95	18.15	12.40	4.80
1.4	6.40	13.55	24.70	19.30	13.45	20.35	14.30	14. 65	10. 25	17.85	12. 05	4.70
15	6. 70	14.05	24. 50	20.00	13.35	29.40	14.15	14. 60	17.15	17.55	11.60	4.30
16	5.40	14.75	21.45	20. 55	13.16	29.05	14, 15	14,70	17.30	17.30	11.45	3.25
17	5. 40	15.15	24.55	20.05	12. 45	28. 65	14.40	14.05	17.50	17.00	11.15	3.00
18	5.45	14. 05	24. 10	21. 10	13. 05	27, 80	14, 65	14.80	17.80	10.50	10.00	2.75
19	5.85	14.75	23.80	21.45	15.25	26.80	15.85	14. 65	17.45	16.05	10.60	2.45
20	0.25	14. 60	23.70	21.70	16.35	25.45	16. 35	14.85	17.25	15.65	10.10	2.80
21	0.70	10. 25	23. 55	21.55	10.85	24.05	16. 25	14. 05	17.20	15. 25	0.80	3. 25
22	7.10	16. 30	23. 50	21.25	10.76	22, 60	15.90	15. 05	17.00	14.90	0.40	3. 60
23	7.00	17.85	23. 60	21. 25	10.55	22.05	15.75	15.05	16. 40	14.50	9.20	3.80
2.4	6.00	15.05	23. 30	21. 05	10.25	21,30	15.75	14.80	15.75	14.20	8.05	4.10
25	6.80	14, 65	22. 65	20, 05	10.20	20.65	16.85	61.4 .35	15.05	14.00	8.70	4.30
26	6.70	14.60	22, 15	20. 05	16.30	20.35	16.05	13.00	14.65	13.00	8.40	4.70
27	0.70	14.60	21.45	10. 45	17.15	20.05	10.45	13.75	14. 35	13.70	8.10	6.20
28	0.65	14.60	20.55	18.75	18. 45	10.35	16.85	13.45	14, 15	13, 60	7.80	6.05
29	7.35		10. 65	18.15	10.15	18.0.5	16. 50	13. 30	14.15	13. 50	7.45	4.95
30	0.20		18. (V)	17.25	10.15	17.05	10.05	13.40	14.30	13.40	7.10	4. 90
31	0.85		18.25		10.25		15.70)	13.75		13.35		6.10

a Reading changed one-half foot or more.
"Changed less than one-hall foot.

Tabulated gauge readings at selected stations between Chain of Rocks and Cairo-Cont'd.
COMMERCE, MO.--ContInued.
1904.
[Gauge, 143.67 miles from Eads Bridge. Zero of gauge, 308.84 fert above Memphis datum plane. Gauge read at $8 \mathrm{a} . \mathrm{m}$.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1	5.30	9. 50	8. 50	25.10	27.15	17.05	10. 40	12.60	0.15	11.00	9.35	5.55
2	5. 60	8.70	2. 20	25.15	27.30	18.60	10.70	12.35	8.70	11.25	0.40	5.80
3	6. 85	8.00	8.00	24.00	27.25	10.90	19.30	12.00	8.40	11.20	0.45	6. 75
4	5.85	7.30	7.60	24.05	27. 10	20.20	18. 80	11.60	8.10	10.90	9. 45	5. 60
5	\%. 60	6. 60	7.70	24.65	26.85	20.05	18.60	11.40	8.00	10.60	9.35	5. 45
1	5. 05	6.85	7.90	24. 20	26.30	20.30	18.40	11.25	8.15	10.15	9.15	5.40
7	4.75	6. 45	8.35	23.70	25. 50	21.70	18.10	11.10	8.30	9.55	9.05	5.30
8	4. 80	7.00	8.90	23.00	24. 40	22.70	17.60	10, 80	8.15	0.20	8.90	5.15
9	4. 80	8.00	9. 50	22. 25	23.50	23.05	17.70	10.45	7.80	9.10	8.80	4.05
10	4.80	8.15	0. 70	21.00	22, 60	22.80	18.80	10.10	7.60	8.00	8.70	4.80
11	4. 75	8.60	10.00	21.75	22.20	22. 30	20,65	0.60	7.50	8.70	8.55	4.75
12	4.65	0.00	10.30	22.00	21.70	21,60	21.85	0. 40	7.65	8.50	8. 50	4. 70
13	4. 65	0. 25	10.60	22.10	21.00	21.30	22.40	9.00	7.05	8.20	8.40	4.65
14	4.60	0.50	11.05	22.10	20.40	20.45	22. (\%)	8.80	7.70	8.15	8.30	4. 50
15	4. 60	0.70	11,05	21.80	10. 10	20.00	22.30	0.00	7.55	7.05	8. 20	4. 20
16	4.70	6. 80	11.76	21.30	10.00	19.01)	21.70	0.00	7.45	7.70	8.10	3.75
17	a 4.00	0.00	11.05	20.00	18.20	20.15	20.50	8.70	7.30	7.50	7.95	3.55
18	a 4. 85	0.60	11.65	20.45	17.80	20. 25	10. 20	8.80	7.25	7.45	7.80	3. 60
111	5.00	0.15	11.80	20. 30	17.70	20. 60	18.60	0.00	7.50	7.35	7.85	3.10
20	6. 30	8.70	12.00	20.70	17.85	20. (6)	18. 20	0.05	9. 65	7.30	7.50	2.75
21	万. 55	8.60	12.45	2(). 60	18.05	20. 30	17.00	0.10	10. 65	7.25	7.40	2.65
22	6. 01	8.10	12.60	10,00)	17.70	20.35	17.45	10. 60	10.80	7.20	7. 20	2. 45
23	$b 7.55$	8.80	12.65	10.00	17. 40	20.40	13. 00	11.25	11.45	7.20	7,00	2. 40
94	10.60	8.65	13. 25	20.25	17.00	20. 35	16.10	11.25	11.05	7.30	3.00	2.30
25	13. 10	8. 40	15. 10	21.35	10.50	10.00	15. (0)	11,65	10. 45	7.45	6.70	2.50
26	13.65	8.40	10, 10	22,00	16. 20	19.30	15. 45	11,55	10.15	7.60	6.60	2.65
27	13.00	8.50	10.70	24, 65	16. 00	18. 20	15. 30	11,55	10.10	7.85	6,35	2.75
28	12.35	8.85	10.85	25.65	15.70	18.10	15.0)	11.6.5	10. 55	8.05	6. 20	3.20
20	11.85	8.75	22.70	20. 25	15.70	18.00	14. 25	11. 20	10.80	8.30	6. 10	3.80
30	11.15		24.30	20. 85	16.85	18. 50	13. 65	10. 45	10.85	8.70	5.95	2.90
31	10.20		24.65		16. 05		13.10	0. 70		9.00		2.10

a Changed less than one-half foot.
b Reading ohanged one-half foot or more.
1905.
[Gange, 143.67 miles from Eads Bridge. Zero of gauge, 308.81 feet above Memphis datum plane. Gauge read at $8 \mathrm{n} . \mathrm{m}$.]

Dry.	JıII.	Feb.	Mar.	Apr.	May.	Illne.	Inly.	Aug.	Sept.	Oct.	Nov.	co.
1	2.10	6. 20	14. 40	15.05	15.50)	10. 10	18.10	113.00	11.65	13. 55	11.50	8. 35
2	2.10	13. 50	10. 20	10.05	15.85	16.15	18.10	16. 65	10.70	12.90	11.15	1. 20
3	1.50	8.85	16. 65	16. 45	15.45	15. 80	10.115	17. 10	10. 40	12. 30	10. 80	0.85
4	1.80	10.80	4. 60	16. 65	15.00	16.70	10. 16	17. 50	10.10	11.85	10.75	9.80
5)	2.60	11. 45	16. 40	16.35	14.35	15.90	10. 25	17.60	9.70	11.20	10. 80	9. 60
6	2.00	11. 45	17.00	16. 05	14.40	16. 40	19.95	17.00	9.40	10. 90	11.00	0.35
7	2.90	11.10	16.05	15. 70	14. 05	16.90	20. 45	16. 40	9. 30	10. 60	11.45	9. 65
8	3.10	11.15	16.80	16. 05	13.20	16. 00	20.70	15. 70	9.20	10. 10	11.90	8.60
9	2.00	11.15	16. 60	14. 40	12. 50	16. 45	20.65	15. 05	0.20	9.75	12. 20	8. 10
10	2.75	10.05	16. 30	13, 05	12.00	16. 00	20. 45	14.45	9.15	0.30	12.05	7. 45
11	2.70	10.65	16. 05	13.70	11.60	16. 55	20.30	14.00	0.10	9.05	11.80	3. 95
12	2. 60	10. 60	16.10	13.35	11.40	15.30	20.10	13.70	9, 05	8.75	11.50	6. 30
13	2.00	0.10	16. 05	13.10	11.50	15. 20	20.30	13. 40	9.80	8.60	11.30	5. 90
14	1.10	0.00	15. 80	12.05	11.60	15. 70	20.60	12.85	10.15	8.30	11.30	5. 60
15	1.10	0.00	15. 40	12.80	11.75	16. 15	21.10	12. 60	10.50	8.10	11.25	5. 60
10	1.25	8.80	14.75	12.70	12. 60	16.05	21.30	12,20	10. 05	7.80	11.00	5. 65
17	1.00	8. 70	14.20	12. 70	14.20	17.25	21.20	11.70	10. 50	7.70	10.30	5. 55
18	. 60	8.85	13. 80	12.80	10.00	17.35	20. 60	11.30	12. 60	7.60	9.80	\%. 50
19	. 35	8.75	13. 45	12.80	17.00	17.00	10. 45	11.00	18.60	8.30	0.45	5. 45
20	.80	8.60	13.10	12. 65	17.60	16. 60	18. 35	11.00	21.35	13.15	0.20	5. 60
21	1.00	8.50	12.70	12.50	18. 30	16. 80	18.35	11.20	22. 70	14.35	9.30	5. 60
22	2. 40	8.45	12.20	12.30	18.55	17.10	10.35	11.60	23. 40	13.25	9.50	5. 70
23	2.80	8.50	12. 05	12. 10	18.10	17.15	17.50	11.80	23. 00	12.00	9.65	5. 80
24	3. 45	a 9.45	12. 40	12. 05	17.45	: ${ }^{\text {c }}$, 00	16.05	12.45	23. 30	12.75	9.25	5. 85
25	3.60	a 10.35	12.00	12. 40	17. 05	16.85	16. 60	14.50	22. 30	12.70	8.75	5. 90
26	4.00	a 11.70	13.25	12.70	10.80	17. 20	10.70	15.25	b 20.70	12.90	8.45	5. 00
27	6. 00	7. 60	13.60	13.30	10.40	17.65	17.05	15. 05	19.00	12. 05	8.35	5. 80
28	4.70	9. 25	13.00	13. 80	10.05	18.05	17.10	14.75	17. 50	13.85	8.25	6. 75
29	4. 20		14. 10	14.70	15.05	17.05	16. 60	1.1. 30	16. 00	13. 60	8. 10	6. 75
30	4.80		14.05	15. 05	16.00	18. 10	15. 60	13.60	14.80	12.80	8.05	6. 00
31	5.80		16. 46		16.30		10.30°	12.65		12.05		6. 66

[^20]Tabulated gauge readings at sclected stations between Chain of Rocks and Cairo-Cont'd.
COMAERCE, MO.-ContInuod.
1906.
[Gauge, 143.67 mites from Eads Bridge. Zero of gauge, 308.84 feet above Memphis datum phane. Gauge . read at 8a. in.]

Day.	Jan.	Feb.	Mar.	$\Lambda \mathrm{pr}$.	May.	Junc.	July.	Altg.	Sept.	Oet.	Nov.	Dec.
1	6. 80	13, 50	17.70	23.30	16. 00	11.50	16. 35	10. 30	10. 10	11.40	5. 60	10. 20
2	7.05	13. 70	18.35	23. 50	10.70	12.00	16. 30	9.90	9.65	11.25	5. 70	0. 86
3	7.85	13.80	18.00	23.50	16. 30	12.65	16.25	0.70	9. 25	11.50	0.05	9. 40
4	8.85	13. 60	10.00	23.35	16. 50	13.15	16.30	9.70	0.00	11.75	(6. 50	9.30
5	0. 10	12.80	18. ©0	23.10	16. 6.5	13. (0)	16.30	9.80	8.75	11.65	6. 80	0.30
6	11.35	11.00	17.90	23. 05	16.80)	14.10	16. 10	(1. 60 2	8.65	11.50	7.00	0. 40
7	13.90	11.30	17.30	23.10	16. 50	14. 30	15.80	9.35	8.40	11.00	7.00	9.60
8	14.10	10. 60	16.85	22.90	16. 80	14.65	15. 50	0. 50	8.30	10.10	7.10	9.80
0	13.50	0. 5.5	16. 60	22.95	17.35	15. 20	15. 30	10.20	8.25	0. 40	7.20	10. 10
10	12.70	8.80	16. 40	22.10	17.20	16.75	15.00	0.00	8.20	0. 20	7.30	10. 10
11	11. 65	8.25	16. 26	22.85	16. (i)	16.05	14. 60	9. 80	8.20	8.75	7.40	0. 75
12	10. 50	7.90	15.00)	22.155	113.05	16. 30	14. 10	10. 10	8.25	8.40	7.40	(1. 40
13	9. 45	7.50	16. 70	22.30	16. 5.5	16.15	13.70	10.20	8.60	8. 10	7. 60	(1. 20
14	8.05	7.50	16.30	22.15	16. 20	16. 00	13.60	10. 40	8.35	7.80	7.65	(1. ${ }^{(0)}$
15	8. 00	7.85	15.00)	22. 40	14.80)	15. 00	13.25	11.00	8.20	7. 10	7.55	19.60
16	7.70	8.00	14.60)	22.60	14.45	15. 50	12.00	11. 40	8.10	7.40	7. 80	O. (\%)
17	7. 40	8.00	14. 10	22.75	14.10	16. 20	12.70	11. (0)	8.00	7.25	7.70	0. 20
18	7.25	8.00	13. [0)	22. 10	13. ${ }^{\text {(1) }}$)	15.05	12.60	11.30	8.00	7.15	8.05	8.90
19	6. 85	8.05	13.10)	21.40	13. 15	14.10	12.30	11.00)	7.0)	7.05	8.05	8.70
20	6. 75	8.20	12.85	20.60	12.70	14.00	12.00)	10. (k)	7, (1)	13. 05	8.30	8. 40
21	7.00	8. 80	12.30	20.80)	12.51)	15. 10	11.70	11). 10	8.10	1. 75	10.0.5	8.15
22	0.70	8.80	12.00	10.8i	12.20	15. 6.5	11.30	10. (0)	8.20	13, (0)	11.85	7.80
23	11.05	0.05	11.00	11). 11	11.00	16.45	11.25	10. ix	K. 20	(i.) (1)	11.45	7. (i)
24	12.00	0. 60	11.70	18.91	11.80	17.05	11.20	10. 20	8.10	(1.35	11. 40	7.40
25	13.00	11.26	11.85	18.45	11.50	17.25)	11.30	0.80)	8.30	3. 25	11.40	7.10
26	13. 00	13.75	12,30	18. 00	11.45	17.05	11.90	(1), 45	0.10	13. 10	11.30	6. ${ }^{\text {c }}$
27	14.00	15.75	13.75	17.70	11.35	17.25	12, 50	(1.30)	0.81)	(1.0)	11.15	6. 60
28	13.85	17.06	15. 80	17.45	11.25	16.50)	12. 45	O. (1)	10.10	6.80	11.00	46. 10
20	13. (6)		16.00)	17.20	11.25	16.16	11.80	11.20	10. 55	\%. 70	10.80	4. 41
30	13.30		20.90	17.0)	11.30	16. 25	11. 41	11.40	11.0.5	5. 71	10. 5 i	1. (i)
31	13.35		22. 25		11.35		10. 8 (1)	10.75		S. 80		i. is)

a Chonged less than ono-halt foot.
1907.
[Gauge, 143.67 miles from Eads Bridge. Zero of gange, 308, st feet above Memphis datum phanc. Gange read at 8 a. 11.1

Day.	Jın,	Fal).	Mar,	Apr,	May.	June.	Inly.	Aus.	supt.	Oet.	Nov.	Dere.
1	0.115	20.8	13.7	16. 4	16.4	13.4	11.8	21.15	12.1	8.5	6. 85	6.0
2	(i, 8	20.2	13.7	16, 3	15. 0	11.11	19.4	21.1	12.1	8.6	7.0	6.0
3	8.85	111.5	13.75	16, 2	16. 45	11.1	18.1	9	12.03	8.5	7.0	5.85
4	11.85	18, 8	13,75	15. 75	111. 76	14.6	18.	19.3	11.80	8.8	1i. 11	5.8
5	12.0	17.05	13.75	15. 4	16, 13	15.9	18.0	18.6	11.85	9.2	1i. 8	6.7
6	12.150	17.0	13. 1	14.85	1ii. 4	17.75	17.35	17.8	11.8	9.6	ii. 75	6. 65
7	13.6	15.8	13.16	14.7	16.3	14. 5	16. (i5)	17.1	11.165	111.0	1i. 6	5.45
8	14.3	14.2	13.6	14. 4	16.9	18.6	16.4	17.0	11.65	111.6	(i. 5	6.4
9	14.7	12.45	13.45	14.25	11. 75	15.3	113. 0.5	16.8	11.45	111. 3	(i. 1	6.25
10)	14. 0	10.13	13.3	14. 3	17.7	18.1	16.7	16. 11	11.1	11). 4	i. 3	5.2
11.	14.7	0.3	13.0	14.3	18.9	18.25	16.75	16.1	10.75	11.7	6. 3	5.2
12 !	14. 65	8.6	12.85	14.35	18.0	18.0	16.75	16.2	11. 4	11.19	13.3	6. 16
13	14.3	8.3	13.4	14.7	17.2	119.05	16.7	16. 8	11. 0	11.1	ii. 1	5. 0.5
14	13.9	8.6	15.85	15.3	16.6	11.9	116.75	15. 35	0.7	11.0	13.0	5.0
15	13.75	9.0	17.1	15.1	11. 36	20. 45	17.1	16.1	11.4	111.7	6. 9	5.1
10	14.0	II. 8	18.0	113.0	16. 16	2(0). 65	17.6	14.7	11. 2	10.4	i. 8	6. 1
17	14.35	11). 3	18.2	16. 8	116.0	\cdots	17.8	14.6	8.85	10.0	5. 8	5.1
18	15.1	10. 1	18.1	1.i. 7	18.6	2 20. 7	18.25	14.4	8.80	0.7	\%. 85	6. 25
19	16.8	11. 2	18.1	15. 7	11.1	20.0	10.3	14.2	8.5	11.3	6.8	5.4
20	10.4	10. 6	18.3	15.75	18.s	11.1	20. 05	14.3	8.1	11. 11	5.85	5. 45
21	21.7	10.8	18.0	16.15	17.8	15. S	20. 35	14.85	8. 2	S. 8	(i. 3	6. 45
22	23.0	10.65	18.8	16.05	16.7	15. 6	20.7	16. 25	S. 0	S. 5	(i. 15	5.35
23	24.85	10.4	18.85	$17.0{ }^{\circ}$	10.6	18.05	21.2	15.3	7.8	8. 3	6. 15	6.4
24	25.3	10.0	18.45	17.05	14. (i5)	17.8	21.15	115.3	7.75	8.1	(i. 15	6.85
25	25.5	11,6	18.1	16. 0	13.9	18.1	22.0	15. 6	7.85	7.9	0.1	13.0
20	25. 25	12, 55	17.85	17.15	13.3	18.7	22.35	15. 1	8.05	7.75	0.05	6.0
27	24. 65	13.3	17.6	113.0	12.7	19.5	22, 45	15. 4	8.2	7.65	6.9	6.0
28	23.75	13.6	17.35	16.6	12.3	2(). 0	22.25	15.1	8.35	7.45	5.9	(i, 0
29	22.8		17.05	16.1	12.6	20. 3	22.1	13.0	8.45	7.3	6.9	0.1
30	22.05		16.7	15.05	12.11	20. 1	21.8	13.1	8. 5	7.1	6.06	6. 05
31	21.4		16. 6		12.1		21.5	12.63		6. 05		6.8

Tabulated gauge radings at seleeled stations hetween Chain of Rooks and Cairo Contid. COMMERCB, MO...Contlnued.
1008.
[Gauge, 143.67 miles from Eads Bridge. Fero of gange, $30 s .84$ feet ahove Memphis datmin plane. Gange read it Sn. mi.l

Day.	Jan.	Fol.	Mar.	Apr.	May.	June.	July.	A 11%	Sept.	Set,	Nov.	Der.
1	a 5.70	4.50	18.50	15.85	16. 65	22. 50	25. 40					
2	5.70	4. 20	18.10	15.40	16. 05	23. 2010	25. (11)					
3	6.65	3.60	17.75	15.00	16.60	23.40	24. 70					
4	6.65	2. 80	17.40	14.70	15.20	23.65	24.711					
6	5. 60	2.95	17.35	14.75	15.35	24.00	2.1 .80					
t	5.50	4.35	17.40	14.70	16.40	24.30	24.80					
7	5. 40	4. 70	17.45	14.70	17.80	2.4. 40	24.95					
8	5. 40	4.45	17.60	15.70	18.80	24.40,	24.15					
9	6.35	4. 10	18.15	16. 61	19.20	24. 31	24. 50					
10	6.25	6. 15	18.00	17.20	10.75	24. 50	23.10					
11	5.15	5. ${ }^{\text {di0 }}$	20.00	18.85	20. 20	24. 05	23.10					
12	6. 10	(i.) (\%)	20.45	20. (k)	20.90	24. (i)	22. 50)					
13	6. 05	6. 45	20. 55	20.60	21.20	24.75	22.10					
14	6i. 95	7.85	20.10	20.00	21.20	25. (k)	21. (16)					
15	7.15	40. 60	20.65	20.70	20. 00	25.30	21.71					
16	7.10	11. (1)	20). 60	20. 30	20.80	25.60	21.20					
17	6.75	13.10	20. 35	10.80	21.60	26i. (k)	20. in)					
18	13. 30	16.70	20.00	19.25	22.60	2ii. 40	19.90					
10	6.95	16. 170	19.80	18.35	23.10	21.70	19.30					
20	6.150	17.40	19. 40	17.60	23.20	27.01	1!. 10					
21	6. 40	17.90	18.60	16. 70	23.10	27.15	19.15					
22	6. 10	18.30	18.45	16.00	22.60	27.20	19.25					
23	4.85	18.30	17.90	16. 20	22.20	27.25	19.35					
24	4.70	18.20	17.35	16. 01	29.75	27.20	19.05					
25	4.90	18.05	16. 70	16.00	21.40	27.10	1s. 60					
24	6.10	18.00	16. 10	15.90	20. 80	27.00	15, 20					
27	6. 10	17.85	16. 65	16. 40	20. 45	26.75	15. (\%)					
28	6. 10	18.0)	15. 35	16. 410	20. 80	2ti. 50	17. \mathbf{B})					
29	5. 10	18. 50)	15.30	111. 60	21.45	20.20	17.70					
30	4. 96		15. 10	16. (k)	21.90	25. (\%)	17. 30					
31	4. 55		15.5is		22.15		17.30					

"From Jan. 1 to Feb. 15 , inclusive, on tomporary kange.
REにCIIRIDCF, II.\&.
1001.
[Gange, 169.45 miles from Vads Bridge, Zero of ghage, 259.73 fret above Memphis datum plane. Gange read at 8 a. mi .]
[Gauge estahlished Oct. 15, IKMI.]

Iny.'	Jill.	Find.	Mar.	$A p r$	May.	Jinle.	Jul!	- Allg.	Sept.	Ont.	Nov.	Dec.
1											4. 40	3.40
2											4. 40	3. 40
3											4. 40	3.35
4											4. 40	3. 25
5											4.30	3. 15
6											4.10	3.10
7											4. 00	3.05
8											3.85	3.10
9											3.80	3.15
10											3.75	3.15
11											3.70	3. 25
12											3.80	3. 52
13											3.85	3.25
14											3.95	a 3.35
15											3.85	4. 50
16										3.05	3.85	5.00
17										3.80	3.80	0.10
18										3.75	3.80	7.40
19										- 3.80	3.80	8. 10
20										4.05	3.75	(b)
21										4.30	3.75	(b)
22										4. 45	3.76	(b)
23										4.60	3.70	(b)
24										4.70	3.70	(b)
25										4.55	3.70	(b)
20										4.50	3.65	(0)
27										4. 40	3, 85	(b)
28										4.35	3.55	(b)
20										4.30	3. 45	(0
30										4.30 4.35	3.45	(b)
31										4.35		(b)

Tabulated gauge readings at solected stations between. Chain of Rocks and Cairo-Cont'd. BEECHRIDGE, ILI,--Continued.
1902.
[Gauge, 160.45 miles from Eads l3ridge. Zero of gauge, 289.73 feet above Semphis datum phane. Gange read at 8 a. m.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	Junc.	July.	Aug.	Sept.	Oct.	Nov.	1)ee.
1	Ice.		8. 70									
2	9.30											
3 .											9.70	
\pm											9.30	
i											9.00	
1											8.70	
7											8.50	
8											8.75	
9											0.15	
10											9. 10	
11	Ice.	Ice.									9.90	
12	Ice.	Ine.										
13	Ice.	lce.										
14	Ice.	$\begin{aligned} & \text { Ice. } \\ & \text { In } \end{aligned}$										
15 !	Ice.	lce.									i0.00	
16	Ice.	Ice.									9.70	
17	I'c.	Ice.									9.60	
18	Ice.	Ice.							10.00		0. 2.5	.
19 20	$\begin{aligned} & \text { Ice. } \\ & 2.95 \end{aligned}$	Ico. Ice.							9.60 9.00		9.20 9.45	
20	2. 95 2.95	ICO.							9.00 8.60		9.45	
22	2.95	lea.							8.60 8.20			
23	3.00	Ice.							7. 70			
24	3.10	Ice.							7.30			
25	3.20	Ice.							7.10			
20	$\text { 3. } 30$	Ice.							7.10			
27	3.45	Ico.							8.20			
28	3.75	I'o.							10.00			
20	Ice.											
30	Ice.											
31	Ice.											

1003.

[Gauge, 160.45 miles from Eads Brldge. Zero of gange, 289.73 feet above Momphis datum plane. Gauge read at $8 \mathrm{a} . \mathrm{m}$.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oet.	Nov.	Vec.
1												7. 25
2												7.00
3												6. 70
4												6. 60
5												1. 20
6												5. 00
7												6. is)
8												6. 10
0												6. 30
10												6. 15
11												4. (1)
12			38.60									4. 76
13			30.00			37.25						4. 65
14			30. 15			37.35	. . .					4.00
15			30.15			37.30						3.20
16			30. 20			37.00						2.35
17			39. 25			30. 30						1.80
18			39.05			35. 40						1.70
19			38. 80			34.00						1. 40
20			38. 60									1.75
21												2. 55
22												3. 00
23											9.70	3. 51
24											9.60	4. 05
25											9.25	4. 15
20											8.00	4.70
27											8. 65	b. 00
28											8. 30	6. 35
29											7.95	b. 25
30											7. 65	6. 30
31												b. 60

Tabulated gauge readings at selected stations between Chain of Rocks and Cairo-Cont'd.
BEECIIRIDGE, II,L.--Continued.
1904.
[Gaugo, 169.45 miles from Fads Bridge. Zero of gange, 289.73 feet above Memphls datum plano. Gauge read at 8 a.m.)

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1	5. 60	(a)	(a)	37.40	34. 25	(a)	(a)	(a)	9.75	11.80	9.90	6.05
2	6. 00	(a)	(a)	37.80	34. 65	(a)	(a)	(a)	9.20	12.10	10.15	5. 95
3	5. 50	(a)	(a)	38.00	34.80	(a)	(a)	(a)	8.75	12.15	10.20	6. 80
4	5. 25	(a)	(a)	38. 25	34.90	(a)	(a)	(a)	8.35	11.80	10.15	5. 70
5	5.95	(a)	(a)	38.20	34. 95	24.45	(a)	(a)	8.10	11.55	10.00	5.55
6	5. 40	(a)	(a)	37.90	34.65	24.85	(a)	(a)	8.15	11.05	9.90	5. 40
7	5. 00	(a)	(a)	37.50	3.4 .00	20.30	(a)	(a)	8.55	10. 40	0.70	6.30
8	4.70	(a)	(a)	b 37.00	33.10	27.65	(a)	(a)	8.60	10. 00	9.55	6.10
9	4.85	(a)	(a)	c 35.90	31.80	28.25	(a)	(a)	8.15	9. 70	9.45	4.90
10	5.00	(a)	(a)	35.10	30.60	28.20	(a)	(a)	7.80	9. 40	0.30	4.70
11	4.90	(a)	(a)	35.10	29. 50	27.85	(a)	(a)	7.70	8.05	0.20	4.55
12	4.80	(a)	(a)	34.80	28. 60	27.20	24. 60	(a)	7.80	8. 80	9.10	4.55
13	4.70	(a)	(a)	34.65	27.60	20.40	25. 60	0.50	7.80	8. 60	9.00	4.55
1.4	4.65	(a)	(a)	34.20	20.40	25.40	26. 20	9.25	7.90	8. 40	8.95	4.35
15	4. C0	(a)	(a)	33. 50	25.20	(i)	26.20	9.20	7.70	8. 20	8. 90	4. 10
16	4.65	(a)	2.150	32.50	(a)	(a)	25. 60	9.60	7.60	7.95	8.70	${ }^{\text {b } 3.70}$
17	4.05	(a)	24.60	31.40	(a)	(a)	2.1.60	9.15	7.40	7.75	8.55	${ }^{6} 3.33$
18	4.15	(a)	21.65	29.85	(a)	(a)	(a)	0.25	7.30	7.65	8.40	2.85
19	4. 20	(a)	24.35	28. 65	(a)	(a)	(a)	9. 60	7.10	7.55	8.25	2. 60
20	5. 50	(a)	24.00	27.70	(a)	(a)	(a)	9.60	7.00	7.50	8.05	1.00
21	5. 00	(a)	23.30	20.00	(a)	(a)	(a)	9.80	11.00	7.40	7.90	1.65
22	6. 40	(a)	22.60	25.80	(a)	(a)	(a)	(a)	11.50	7.40	7.65	1.50
23	8.00	(a)	21.90	25. 20	(a)	(a)	(a)	(a)	12.10	7.35	7.10	1.50
24	(a)	(a)	21.05	25. 20	(a)	(a)	(a)	(a)	12.00	7.40	7.25	1.45
25	(a)	(a)	23. 70	20.30	(a)	(a)	(a)	(a)	11.35	7.65	7.05	1.40
23	(a)	(a)	27.60	27.60	(a)	(a)	(a)	(a)	11.00	7.75	6.90	1.80
27	(a)	(a)	30. 50	29. 60	(a)	(a)	(a)	(a)	10.70	8.00	0.65	2.15
28	(a)	(a)	31.00	31.30	(a)	(a)	(a)	(a)	11.20	8. 30	6.40	$\checkmark 2.80$
29	(a)	(a)	33.70	32.50	(a)	(a)	(a)	(a)	11.60	8. 60	6.30	3.40
30	(a)		35.50	33.65	(a)	(a)	(a)	(a)	11.65	8.95	6.15	3. 90
31	(a)		36.70		(a)		(a)	(a)		9. 40		3.35

a No gauge. $\quad b$ Interpolated--no reading.
c Reading changed one-hall foot or moro.
1905.
[Gauge, 169.45 miles from Eads Iridge. Fero of gauge, 259.73 feet above Memphis datum plane. Gauge read at 8 a. m.]

Day.	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	Alg,	Sept.	Oct.	Nov.	Dec.
1	3. 40	12.95	10. 20	24. 50	$a 19.10$	21. 50	23. 70	10.00	14.90	16. 80	15.00	10.60
2	3.60	(b)	22. 70	24. 60	c 10.60	20.80	24. 30	19.00	13. 80	15.80	15. 10	11. 60
3	3. 60	(b)	23. 70	25.00	19.80	20.00	24. 00	20.60	12.00	14.00	14. 50	13.50
4	3. 50	(b)	23. 70	24. 80	19.80	19.70	24. 70	20.80	12. 70	14.80	1.1. 10	14. 80
5	3. 75	(b)	23. 10	24. 10	19.70	20.00	24. 90	21.00	12. 20	13. 60	13. 00	15.70
6	4.15	(b)	23.60	23. 50	a 20.00	20. 60	25. 40	20. 40	11.70	13. 10	13.00	16.70
7	4.30	(b)	23. 70	22.60	20.60	20.70	25. 70	19.70	11.50	12. 60	14.30	17.40
8	4.35	(b)	23. 20	21.20	20.40	20. 00	25. 80	18.80	11. 40	12.20	14.60	17.80
0	d.4. 40	(b)	23. 00	10.70	19.60	19. 10	25.50	18.10	11.30	11. 70	14.90	17.00
10	4. 10	(b)	22.60	18.90	18. 70	18.80	25. 20	a 17, 70	11.30	11.30	14. 80	18, 10
11	d 3.70	(b)	23.00	18.00	17.70	18.40	2.480	16.80	11.20	10.00	14.60	18,00
12	3. 40	(b)	24. 20	17.20	16. 60	18. 10	2.1. 70	16. 10	11. 10	10.60	14. 20	17.80
13	3.55	(b)	25. 10	16.60	16. 30	18. 40	2.4. 60	10. 10	11.10	10.30	14.00	16.80
14	3. 60	(b)	20.00	c 16.40	15. 80	19. 10	24.00	15.60	11.00	10.20	13.80	15.80
15	2.80	(b)	26. 60	16.20	15. 80	19.80	25.10	15. 20	12. 80	0.80	13.80	14.80
10	3.70	(b)	26.00	16. 20	17.40	20.10	25. 60	14. 80	12.80	9. 60	13.50	13.80
17	3. 80	(b)	26. 90	16.30	10.80	20. 20	25.70	14. 10	12.30	0.40	12.90	12.80
18	3.00	(b)	20.00	16. 30	a 22, 00	20.20	25. 60	14.00	14.00	9.20	12. 20	12.10
19	3.00	(b)	20. 50	10.30	24.80	20.10	24. 70	13.70	20.50	10.10	11.70	11.E0
20	3.90	(b)	25.80	16. 30	25.90	19.40	23. 60	13.60	24. 20	14.00	11.30	11.00
21	4.00	(b)	24. 60	16.30	27.20	10.80	22.50	13.90	25.90	17.20	11.30	10.60
22	C 10.20	(b)	23. 40	16.00	28.00	20. 20	23. 90	14. 20	27.30	16.30	11.60	11.70
23	- 11.00	(b)	21.80	a 15. 70	28.30	20.60	22. 30	14.60	27.70	15.80	11.80	a 12.10
24	C11. 60	(b)	10.80	15. 30	28.00	20. 30	21.60	15.10	27.80	15.80	11.60	13.10
25	C 12.00	1.4. 00	10.50	15.30	27.80	20.10	20.80	16.70	27.00	15. 80	11.00	13.80
20	C 12.80	14. 80	10.60	15. 70	27.50	20. 70	20.70	18.60	25.70	16. 10	10.60	14.80
27	C 13.00	15. 60	20. 40	16. 20	26.00	21.60	20.00	18.80	23.70	16.10	10. 10	16. 30
28	-13. 60	14.80	21.80	10. 80	25.80	22.60	21.20	18.50	21.80	17.00	10.20	15. 50
29	-13.00		22.00	17.70	24.80	22. 50	20.60	18.10	20.00	17.10	10.10	15. 30
30	e 12.15		23. 40	18.60	23.50	23. 10	19.60	17.40	18. 20	17.00	10.30	15. 20
31	e 12.50		24. 00		22.30		19.00	16. 20		16. 60		14.90

[^21]Tabulated gauge rearlings at selected stations between Chain of Rocks and Cairo-Cont'rl. BEECIIRIDCE, ILA.-Continued.
1906.
[Gauge, 169.45 miles from Eads Bridge. Zero of gauge, 289.73 fect ahove Memphts datum plane. Gange readat 8 a. m.]

1)ay	Jan.	Feh.	Mar.	Apr.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1	14. 60	24.20	22.60	33.60	22.40	14.00	10. 40	13. 60	14. 10	14.30	7.60	22. 40
2	14.20	24.10	23.30	34. 70	21.00	14. 40	19. 40	12. 90	12.70	15.00	7.60	20.60
3	14.20	23.70	24.40	35.20	21.60	15. 00	19.30	12. 30	12.30	15.60	7.80	18. 85
4	14.90	23.00	25. 80	35.50	21.30	15.70	19.30	12. 10	11.80	16.20	8.20	17.00
5	15. 30	21.75	25.60	35. 60	21.30	15. 20	19.35	12.10	11.40	113. 60	8.40	15.80
6	16. 40	20.20	24.50	35. 90	21.30	16. 80	19.20	11.90	11.20	17.00	8.60	14.30
7	19.70	18.30	24.60	36.10	21.30	17.20	18.90	11.50	10.90	17.10	8.70	14. 10
8	21.40	16.90	25. 30	36. 20	21.60	17. 40	18.50	11.50	10.80	16.80	8.70	13. 70
9	21.90	(a)	25. 20	315. 20	22. 20	18.00	18.20	12.30	10. 60	16.80	8.80	13. 45
10	21.80	(a)	25. 20	36. 20	22.30	10.00	17.80	12. 10	10. 100	10.20	8.05	13. 45
11	21.20	(a)	624. 60	36. 10	21. 60	19. 40	17.30	11.75	10.65	15. 60	9.10	13. 30
12	20.00	(a)	423.80	35. 00	20.90	19.60	16.70	11.00	10. 50	14.80	0.20	13.15
13	19.30	(a)	23. 10	35.50	20.20	19. 60	16. 20	12.00	10.70	14.00	9.30	13.00
14	18.30	(a)	b 22. 30	34.00	19.70	19.30	15. 00	12.10	10.90	13.00	0.50	12.00
15	-17.50	(a)	21.40	34.00	19.30	18.90	15. 60	12.20	10.80	12. 10	9.50	13. 70
16	16. 50	(a)	¢20.90	34. 40	18.00	18.80	15. 40	b 12.70	10. 70	11.20	9. 40	b 15.10
17	15. $\mathrm{i}^{\text {0 }}$	(a)	20.30	33.00	18. 40	18.55	15. 10	13.30	10. 45	10.80	0.50	15.90
18	14.90	(a)	420.00	33.00	$b 17.80$	18. 30	14.90	13.90	10. 30	090	10.00	17.30
19	14.30	(a)	t 19. 60	32.00	117.10	18.10	14. 70	13.60	10.10	9. 50	11.20	1880
20	1.4. 40	(a)	610.60	31.00	16.40	18. 10	14.50	13.30	0.80	0.20	13.40	20. 10
21	15. 60	10. 90	19.10	30, 20	15. 00	1830	1440	13.10	0.80	8.90	16.50	21.00
22	17.60	11.00	20.50	20. 40	15. 40	1880	1420	13. 30	0. 60	8.70	20.20	21.20
23	21.00	11.30	21.20	-28.60	15. 00	19.60	14. 10	13.70	0.90	8.45	21.70	21.60
24	21.90	11.70	21.90	27.80	14. 60	20.30	1.110	13. 50	9.80	8.25	22.45	21.80
25	23.00	13, 10	22. 60	27.00	14. 30	21.00	1420	13.30	0.00	8.20	23.40	21.00
26	2.4 .60	16.00	23.00	26. 10	14.10	21.10	14.70	12. 60	10.00	8.00	24. 10	21. 60
27	$2 \mathrm{2i} .50$	18.70	23.80	25.10	14.00	20.80	15. 40	12.20	12.00	7.60	24. 60	20.85
28	25.20	20.50	25.20	24.45	13. 80	19.90	15.80	12.40	12.70	7.60	24. 10	10.40
29	24.50		27.70	23.45	13.70	19.30	15. 50	13.70	13.00	7. 60	24.30	17.70
30	2.4 .40		30.00	22.00	13.80	19.20	15. 10	14. 40	13.70	7.80	23.70	16. 20
31	24.30		31.90		13.90		14.40	c 14.40		7.80		15.70

a No readings, account of ice. Weading changed one-half foot or more. changed less than one-half foot.
1907.
[Gauge, 169.45 miles from Eads Bridge. Zero of gauge, 250.73 feet above Memphis datum plane. Gauge read at $8 \mathrm{a} . \mathrm{m}$.

Day!	Jan.	Feb.	Mar.	Apr.	May.	June.	July.	A 19.	Scpt.	Orf.	Nov.	Dee.
1	a 18.00	30.05	20.f)	31.20	21.30	17.30	24.00	20.50	15.60	10.00	8.60	0.80
2	17.10	36.30	21.40	30.20	22.10	18.30	24.20	20.00	15.40	10.90	8.75	10.20
3	22.15	35.60	22.70	28.00	23.10	18.50	23.50	25.30	15.30	10.00	8.75	10.35
4	25.00	34, 70	23.80	27.10	23.80	10. 6 (0)	22.60	24.100	15.00	11.10	8.50	10. 20
5	27.15	33.80	24.80	25.00	23.90	21.10	22.30	23.15	a 14.90	11.60	8.40	0. 70
6	a 25.25	32.70	25. 50	$2: 3.00$	23.80	23.20	21.60	22. 80	114.75	12.10	8.30	0. 30
7	29.10	(b)	25.00	22.10	24.30	24.60	20.80	21.70	c14. 60	12.65	8.30	8.75
8	30.00	(b)	26.20	21.60	25.20	25. 20	20.30	21.20	14. 80	13. 20	8.30	8.25
9	30. 510	(b)	26. 40	21.00	20.00	26. 30	20.20	20.80	14.20	13.00	8.30	7.95
10	30.70	(b)	26.50	20.60	27.10	25. 70	20. 30	20.50	14.00	13. 00	8.20	7.50
11	30.60	(b)	26.20	20. (\%)	27.00	26.00	20.20	20.140	13.40	13. 40	8.30	7.40
12	30.40	(b)	25. 60	20.80	28.00	26.40	20. 40	19.80	13.00	13. 60	8.35	7.20
13	29.95	(b)	25.20	21.00	27.70	20.80	20.20	19.35	12.50	13.85	8. 40	7.10
1.1	29.60	17.10	20.40	21.60	27.20	27.75	20.20	18.70	12.10	13.85	8.50	7.10
15	29.20	16.40	27.85	22. [1)	26.00	28. 60	20.60	18. 10	c 11.80	13. 60	8.60	7.10
16	29.10	16.15	20.30	22.60	27.10	$a 20.100$	21.10	18. 170	d 11.60	13.20	8.130	7.30
17	29.20	16.20	33.85	22.40	27×10	20.15	21.60	17.70	11.30	12.85	8.80	7.60
18	20.70	16.20	31.50	22.10	28.30	20.60	22.10	17.80	11.10	12.65	9. 10	7.80
10	30. 40	15.45	32.20	a 21.80	28.70	23.00	23.20	17.20	11.00	12.00	0. 60	8.10
20	32.20	15.50	32.80	21.45	28.20	28.40	24.20	17.30	10.70	11.80	10.00	8.80
21	34.00	15.60	33.30	21.45	a 23.90	27.05	25.10	17.90	10. 50	11.40	10.10	9.50
22	35.00	16.20	33.90	21.70	25.10	27.60	25.60	18.50)	10.30	a 10.00	$a 9.75$	10.10
23	37.40	16.10	$a 34.30$	22.00	23.20	27.40	25.90	18. 5.0	10.00	10.60	9.45	10.60
24	38.40	16.20	34.35	22,10	21.40	26. (3)	20.60	18.10	10.00	10. 30	0.35	11.65
25	39.30	11.70	34.30	22.00	19.00	25. 010	20.90	18.40	9.90	a 10. 10	0.25	12.00
26	39.60	18.20	34.10	22.20	18.60	2i. 60	27.40	18.80	10. 10	9.85	0.10	12.60
27	34. 10	19.30	33.90	22.10	17.60	25.70	27.60	18.80	10. 20	(i. 50	8.05	13.10
$2{ }^{2}$	331. 10	20.00	333.60	21.95	111.80	25.80	27.70	18.71	10. 80	9. 10	0.00	13. [0)
20	- 38.50		333.10	21.80	16.50	25.70	27.70	17.60	10.80	9.10	0.15	13.75
310	33.05		32.70	21:30	16.90	25. 40	27.30 26.90	16.60	10.05	8.90 8.80	0. 20	13.80 13.80
31	33.00		31.6		16.95		26. (\%)	15.90		8. (8)		13.60

[^22]Tabulated gauge radings at selected stations betwecn Chain of Rocks and Cairo--Cont id.'
BEECHRIDGE, ILA.-CContimed.
1908.
[Gauge, 160.45 miles from Eads Bridge. Zero of gauge, 259.73 fert above Memphis datum plane. Gauge read at sic. im.]

Note.-Changes of readings referred to in note: at botlom of tables were made by means of comparathe hydrographs.

Appridix No. 18.

DIBCHARGE RESULTG MESBISSIPII AND MLSSOURI RIVERS GRAFTON, ILL., AND ST. CHARLES, MO., TO RED KIVER HANHING, LA., 185! TO 1908.
[Grouped by statons: Dlscharges ehronologically, stathons heographically. Prepared under direction of Capt. G. R. Lakesh, Corps of Bngimeers, U. S. A., recorder of hoard on examinatlon and survey of the MIssissippi River.]
hist of stations.

St. Charles, Mo.
Grafton, III
St. Louls, Mo.
Kaskaskla Chiste.
Barnots.
Chester, III.
Holschen.
'Thobes, III.
Buifalo 1 sland.
Near Calro, III.
Columbus, Ky.

Now. Madrid, Mo.
Polnt Pleasant, Mo
Ashport.
Bullertoin.
Fulton, 'Teun.
Memphts, 'lemin
Ilamptoin Landing.
llelena, Ark.
Old 'lown Bend.
Chleot, Ark.
Arkmasus Clity, Ark.

Greonville, Miss.
Loulsiana Bond.
Wilson lolnt, La.
llays Landing, Miss.
Vleksl)urg, Mlss.
Warrenton, Miss.
Whaterproof Cit-off.
Natchez, Miss.
Red River Landing, La.

Results of discharge observations, Missouri River.
[Mouth 100 miles above Calro.]
ST, CITARLES, MO.
[Section about 600 feet above the bridge. Observations under Ma]. C. R. Suter. 'Tabulation, Report Chief of Engineers, 1887, p. 3083. All gange readingsare referred to the St. Louls City Directrix, which is 433.97 feet above the Calro datum plane. St. Charles 2 aniles above mouth.]

Results of discharge observations, Missouri River-Continued.
S'T. CIIARIES, MO. -.Continued.

"Now section about 1,025 feet aboyo tho bridge.
4Seetton about son feet nbove the bridge.

Results of discharge observations, Missouri River--Continued.
S'I'. ©ILARLES, MO.-.Continted.

Date.	Gauge ing.	Area ofcross section	Depths.		Width -	Mean ity per second	Discharge persecond.	Methors.
			Mean.	Maxit111m.				
1879.	Feet.	Sq. ft.	F'el.	Ficl.	Fect.	Fect.	Cubic feet.	
Sept. 18.	8.9	12, 530	9. 0		1.312	3.18	39.890	Double floats.
19.	8.0 8.3	12,420 11,770	9.6		1,299 1,281 1	3.19 3.07	39,670 36,090	Do. Do.
22	7.7	11, 160	8.8		1,271	2.99	33, 370	Do.
23.	7.7	10,760	8.5		1,271	3.13	33,680	Do.
24.	7.0	10,600	8.3		1,271	3.05	32, 340	Do.
25.	7.5	10, 410	8.3		1,248	3.13	32, 620	Do.
26	7.4	10,280 0 0	8.3		1,244	3.23 3 3	33,200 30 300	Jo.
27.	7.3	9,910	8.0		1,242 1,239	3.09 3.03	30,590 28,050	Do.
30.	7.1	9,570	7.7		1,238	3.16	30,250	Do.
Oct. 2	6.9	9,300	7.6		1,230	3.03	28, 090	Do.
3.	7.1	9, 040	8.1		1,232	2.92	29,010	Do.
4.	7.3	10,300	83		1,243	2.92	30,030	Do.
7.	7.1	10,070	8.6		1,236	2.77	29, 600	Do.
s.	7.1	10,730	8.7		1,235	2.84	30, 450	Do.
9.	7.0	10,330	8.4	1,229	2.77	28, 580	Do.
10.	8.9	10,020	8.2		1,225	2.78 8 88	27, 820	Do.
	6.8 7.1	0,910 10,240	8.1 0.3		1,225 $1,23.4$	2.80 2.03 2.03	28,380 29,900	Do.
14.	7.2	10, 460	0.1		1,252	2.93	31, 160	Do.
	7.2	10, 560	8.5		1,240	3.09	32, 600	Do.
	7.1	10,340	8.4		1,234	2.95	30,400	Do.
17.	7.0 8.9	10,370 0,960	8.1		1,232 1,227 12	2.87 2.81 2.81	20, $800{ }^{\circ}$	Do.
	6.9 6.9	0,960 0,850	8.1		1,227 1,223	2.81 2.97	27, 2000	Do.
	6.0	10, 500	8.5		1,231	2.99	31,350	Do.
22.	7.1	10,300	8.3		1,239	3.06	31, 490	D.
23.	7.3	10,790 10,010	8.7		$1,2.2$ 1,247 1	3.10 3.10	33,400 33,640	Do.
25.	7.4	10,120 11,120	88.0		1,248	${ }_{3}^{3.07}$	34, 190	Do.
27	7.0	9,920	8.1		1,229	3.04	30, 110	Do.
28.	8.8	0,500	7.8		1,223	2.84	27,010	Do.
Now. 9.1	$a 1.0$	0,930				2.44	24, 180	

"Hermann, Mo., gauge.
[Discharge seotlon Is nbout 800 feet helow the Wabash Rallroad bridge, Overbank dischnrge measured on the right bank on June 22 and 23; all other overbank discharges are derived from these. Fero of local gange is two.68 feet ahove the Cairo datum plane. The rod floats wero run malnly nt nine-tenths depthand observed velocities corrected for their actual immersion.]

Dato.	Gauges.			Cross sectlon of dischargo.					
	Stanclard gallge.	Looml. $\left.\begin{gathered}\text { Change } \\ \text { hin 24 } \\ \text { honrs. }\end{gathered} \right\rvert\,$		Aren.		Depth.			
				Water.	Bolow datum.	Mean.	Mean datum.	Maximilm.	Width.
1908.	Fect.	Fact.	F'crt.	STI. 16.	Sq. $f t$.	Fect.	Frel.	Fect.	Fect.
June 17.	29.70	2.98	+4.0. 45	53,085	57, 189	32.0	32. 8	40.0	1,765
13.	29.97	3.25	+. 27	68,3:11	69, 271	33.2	33.7	60.0	1,755
$1!\mathrm{n}, \mathrm{ml}$.	30.25	3.53	+. 30	67, 142	67, 5×1	32.0	32.8	48.0	1,755
19 p .17	30.32	3.60	…...	67,401	57,810	32.8	33.0	48.0	1,755
20.	30. 45	3.73	+. . 20						
21.	30. 60	3.78	+-. 10	68, 412	-39, 412	33.3	33.3	60. 0	1,755
22.	30.05	3.33	-. . 35	67,803	58, 592	32.9	33.1	49. 0	1,755
23 n .111	20.45	2.73	\cdots	57,78.4	69,620	32,9	3.1. 0	6). 0	1,755
$23 \mathrm{p} . \mathrm{m}$	20.35	2.63		58, 123	(i), 1.41	33.1	3.4.2	60.0	1,755
24.	23.10	2.38	$-.32$	68,284	in, 7.41	33.2	34.6	60. 0	1,755

Resulls of discharge observations, Missouri River--Continued.
S'T. (ILARLES, MO.-Continued.

-a Rod flonts.
[The zero of the gange is the St. Jouls City Direetrix, which is 433.95 feet above Cairo datum. The datum line for computhg datum areas of October, 1908 , was taken at 9.78 feet on the gauge. On account of tho change tin the width of the river, the datum line for the observatlons of January, joog, was taken at 0.38 feet on the gange, Price meter No. 22 was used in October, 1908. Price meters Nos. 25 and 241 and Inskell meter No. 100, wheel No. 3N, were used in Jantary, 1009. The discharge section is about 80) feet below the Wabash Railroad bridge at St. Charles, Mo. Observations of 1003 made mader direc: tion of Capt. (r. R. Lakesh, Corps of Engineers, C. S. Army, secretary, Mississippi RIver Commission. Observations of 1009 and reductions mado tunder direction of Fjrst Lient. C. II. Kinight, Corps of Fingineers, U. S. Army, secretary, Mississippl [ilver Commission.]

Results of discharge observations, Mississippi River.

GRAFTON, HIL.
[The altseharges tabulated were measured on the Mississippi River below tho mouth of tho Illinois River (except on four days wheh are spechally noted). The rogular disehargo sectlon was about 3 miles below the month of the lifinois hiver; tho loentlon of sectlon used from Jan. 0 to Feb 3 is not given oxaetly, but was apparently between tho mouth of the lilinols and tho regular seetion. Tho mean area of two aross seetlons was used for float discharges, henco tho moximum sounding is omittod exept when meter was used. Tho gaupe readmes given were observed by the dischargo marty amd when the river was frozen are corrected for thitrkness of tee. The zero of the gauge was 412.55 feet above the Cuiro datum plane. Discharge of Mhsissippl River Jan. 28, above tho month of the Illinols River was 26,514 cuble feet per second.)

Dats.		fange reading.	Area of cross sectlon.	Depths.		Whath.	Mean voloeity per second.	$\begin{aligned} & \text { Diseliargo } \\ & \text { per } \\ & \text { scond. } \end{aligned}$	Method.	
		Mean.		Maxi- mum.						
Nov.	$\begin{array}{r} 1850 . \\ 13 . \ldots \end{array}$		$\begin{aligned} & \text { Fict. } \\ & 1 ; .0 \end{aligned}$	$\begin{aligned} & \text { sq. ft. } \\ & 30,245 \end{aligned}$	F'ret.	Fret.	Frel.	Fict, 1.31	Cubic focl. 13, 652	Rod floats.
Jam.	$\begin{gathered} 1881 . \\ 6 . \ldots . . \end{gathered}$	11.6	22,387	8.0	11.5	2, 81	1.30	31,000	Meter.	
	7.	11.3	21,050	7.9	14.8	2,374	1.27	27,035	Do.	
	8.	14.5	21,787	7.8	1.1 .8	2,770	1.22	20,014	Do.	
	11.	11.1	20, 052	7.5	11.3	2,770	1.10	21,868	Do.	
	15.	13.8	20,037	7.2	1.1. 1	2.77 .4	1.25	25, 062	Do.	
	17.	13.9	20,375	7.3	1.1. 1	2,775	1.33	27,011	Do.	
	19.	13.0	20,200	7.3	11.5	2, 275	1.36	27,412	Do.	
	20.	13.9	20, 312	7.3	1.1. 2	2,775	1,36	27, 520	Do.	
	21.	13.9	20, 000	7.2	11.2	2,775	1.33	26,640	Do.	
	25.	13.9	20, 062	7.2	11.1	2.775	1.311	20, 882	Jo.	
	2 Si,	13.8	20, 02,5	7.2	14.0	2,774	1.34	21, 805	10.	
Fob.	2.	14.1	20, 666	7.4	11.3	2,776	1.35	27,085	Do.	
	3.	14.1	20, 562	7.4	11.2	2,776	1.35	27,805	Do,	
	28.	18.6	11,387	17.4		2,380	2.31	(M), 017	1)ouble floats	
Mar.	1.	19.6	12,375	17.8		2,380	2.30	97, 637	Do.	
	2	20.1	13,732	18.1		2.350	2.64	115,588	Do.	
	5.	19.7	43, 005	18.4		2,380)	2.38	101, 160	Do.	
	7.	20.1	13,337	18.2		2,380	2.58	111, 051	Do.	
	8.	20.1	42, 632	17.0		2,380	2.88	122, 730	Do.	
	9.	20.0	42, 092	18.1		2,380	2.71	116, 105	Do.	
	10.	20.1	42,855	18.0		2,380	2.82	121,017	Do.	
	12.	21.3	43, 112	18.4		2,385	3.22	141, 012	Do.	
	14.	23.0	47,702	20.0		2,390	3.30	160, 311	Do.	
	15.	23.3	10, 005	20.5		2,300	3.33	163, 203	Do.	
	16.	23.7	49, 237	20.6		2,302	3.54	174, 1201	Do.	
	17.	24.0	60, 250	21.0		2,302	3.44	172, 892	1).	
	18.	21.0	50, 010	21.3		2,392	3.34	170,223	Do.	
	21.	2.1	61, 572	21.6		2,302	3.30	173, 117	$1) 0$.	
	22.	23.7	10, 200	20.0		2.391	3.41	117, 701	10.	
	23.	23.1	48,870	20. 4		2.390	3.30	161, 120	1).	
	21.	23.3	47,8i5	20.0		2,300	3.32	123, 811	Do.	
	25.	23.1	17, 207	19.7		2.300	3.25	153, 460	Do.	
	24.	21.1	-00, 787	21.2		2,301	3. 51	1:8,253.	Do.	
	319.	23.1	61,587	22.8		2,305	3.07	216,556	Do.	
Apr.	2	26.0	66, 166	23.7		2,305	3. 88	22, 037	Do.	
	1	$\because 7.3$	57, 5015	21.0		2.395	4.06	233,625	1)0.	
	I.	27.6	(60, 281	25.2		2.305	3.96	238, 670	Do.	
	1.	37.5	(i1, 212	25.5		2.367	4.122	296.083	1)o.	
	8.	28.1	(62, 850	26.2		2,394 2.309	3. 99	251,018	1)0.	
	11.	28.7	61, 0100	25.8		2,309 2.103	4.33 4.00	207, 250	1)0.	
	11.	29.2	61, 0157	26.7		2.403	4. 68	250, 014	1) 0.	
	12.	29.8	85, 825	27.1		2.165	1. 38	288, 160	$1) \mathrm{O}$	
	11.	20.8	67, 812	28.1		2.110	4.04	273, 025	1).	
	111.	30.0	133, 050	26.1		2.116	4.25	268,201	Do,	
	19.	20.8	63, 63.037	26.2	2.116 2.110	4.38 4.21	276,020 205,640	Do,	
	21.	2.1.7	61, 162	215		2, 116	4.30	277,015	Do.	
	21.	29.9	(63, 225	26.3		2.116	4. 12	280, 605	Do.	
	22.	30. 3	63, 637	26.3		2.116	4.30	273, 131	Do.	
	23.	31). 8	(i3, S (0)	21.4		2.411	1.11	281, 340	Do.	
	23.	32.2	(i7, 515	24.0		2,116	4.69	310,309	Do.	
	27.	33.2	73, 720	30.5		2,416	4.38	337,486	Do.	
	28.	33.5	73,815	31.10		2.116	4.41	322, 638	Do.	
	29.	33.7	73, 7320	30.6		2,116	4.47	330, 482	I).	
May	3.	34.0	73, 135	3114		2, 410	4.24	311,132	Do.	
	1.	31.1	73,72i	310.5		2.410	4.00	295, 285	$1) \mathrm{l}$	
	i.	31.2	74,010	311. 6		2, 2116	3.01	291, 364	10.	
	6.	31.2	73, 603	30.5		2.410	3.86	281, 105	$1) 0$.	
	7.	33.8	72, 832	30.1	2, 116	3.76	27.1, 013	$1) 0$.	
	9.	31.9	68, 102	23. 2	2, 2116	4.21	287,378	$1{ }^{1}$	
	10.	30.9	(it), 693	27.6		2.410	4.32	287, 888	10.	
	11.	30. 0	64. 485	26.7		2,414	4.16	267, 87 ?	Do.	
	12.	29.2	111,730	25.1	2,431	4.12	254,273	Do.	

Results of discharge observations, Mississippi River-Continued.

GRAFTON, ILI.-ContInued.

	Date.	Cauge readling.	Area of cross section.	Depths.		Widh.	Mean velocIty per second.	Discharge per second.	Method.
				Mean.	Maximilli.				
May	1881.	F'cl.	Sq. 61.	Fecl.	Frcl.	Fect.	Ferl.	Cubic fral.	
	13.	28.8	611,405	25.3		2, 431	3.89	239,356	Double floats.
	14.	28.7	60, 650	25.0		2, 128	3.93	238, 118	Do.
	16.	28.4	60,090	24.7		2, 431	3.91	234,768	Do.
	17.	28.4	61,775	25.4		2, 428	4.05	2 219,9690	1)0.
	18.	28.6						"209, 228	Do.
	19.	28.8	61,705	25.4		2, 428	4.01	249, 491	Do.
	20.	28.9	60,860	25.0		2,431	4.12	250,547	Do.
	21.	28.9	01, 120	25.1		2,434	4.13	252, 620	Do.
	23.	28.7	60,805	25.1		2,427	4. 22	257, 167	Do.
	24.	28.6	61,495	25.3		2, 427	4.08	251, 115	Do.
	25.	28.4	(60, 780	25.0		2, 427	3.94	239, 697	Do.
	20.	28.0	(6), 115	24.8		2, 425	3.90	231,255	Do.
	27.	27.13	69, 410	24.5		2, 122	3.72	221, 050	Jo.
	28.	27.0	57,215	23.6		2, 123	3. 59	205, 585	Do.
	30.	25.6	61,350	22.5		2, 410	3. 48	189,243	Do.
	31.	25.1	53, 700	22.2		2,410	3.26	175, 112	Do.
June	1.	24.6	52, 680	21.7		2, 419	3.27	171, 809	
	2.	24.2	61, 500	21.3		2, 410	3.26	168, 420	17\%.
	3.	23.9	60, 735	21.0		2, 216	3.10	157,373	10.
	1.	23.16	19, 040	20.7		2, 216	3. 05	152, 621	$1) 0$.
	1.	23.2	18,010	20.1		2,413	2.85	135,322	$1) \mathrm{O}$
	7.	22.8						-138,816	Do.
	8.	22.7	17,037	10.8		2, 419	2.85	136, 527	1)o.
	9.	22.7	17,943	19.8		2, 419	2.86	130,018	Do.
	10.	23.0	48,150	10.0		2,410	2.08	1.13, 7.16	Do,
	11.	2,3,3	19,250	20. 1		2,416	3. 10	117, 038	fo.
	13.	24.0	60, 000	21.0		2, 121	3.10	159,018	Do.
	14.	21.4	61,056	21.1		2,122	3. 18	165, 480	10.
	16.	24.6	-2, 013	21.6		2, 422	3.18	165, 738	Do.
	16.	24.0	62, 5.10	21.7		2, 422	3.39	178, 00.4	Do.
	17.	25.3	52, 635	21.7		2,425	3.54	186, 410	Do.
	18.	25.6	53,917	22.2		2,427	3. 68	193, 282	Do.
	22.	20. 8	55,515	22.9		2,427	3.88	215, 690	Do.
	23.	27.1	56,855	23.4		2, 131	3.75	213, 360	Do.
	24.	27.4	68,555	24.1		2, 431	3.82	223, 383	Do.
	25.	27.5	57,215	23.6		2, 81	3.81	219, 617	1)0.
	27.	27.0	67,850	23.8		2, 427	3. 69	213, 507	Do.
	28.	26.5	64,787	22.0		2, 127	3.56	105, 019	1)0.
	20.	20. 0	51,200	22.4		2, 125	3.49	189,329	Jo.
	30.	25.9	63,175	21.9		2, 425	3.54	188,271	Do.
July	1.	26.0	54, 200	22.3		2, 127	3. 01	195, 582	1)o.
	2.	26.3	64,381	22.4		2,427	3. 69	200, 026	Do.
	4.	20.8	64,760	22.11		2.427	3.64	199,109	Jo.
	5	26.13	54, 000	22.6		2, 427	3. 58	190, 512	Do.
	6.	20.0	63, 125	21.9		2, 427	3. 46	183,771	Rod floats.
	7.	25.4	61,700	21.3		2, 125	3.20	105, 301	Do..
	8.	24.5	40,537	20.5		2, 122	3.02	140,850	Do.
	0.	23.5	46,312	10.1		2, 419	3.05	141,25!	$1) 0$.
	11.	21.0	43,803	18.1		2, 2116	2. 68	117,175	$1) 0$.
	12.	21.1	11, 631	17.3		2,411	2.67	111,310	jo.
	13.	21.6	41, 332	17.2		2, 410	2.60	111,081	Do.
	14.	22.7	44,787	18.5		2, 119	2.91	130, 343	Do.
	15.	23.4	45,806	18.0		2.410	3.10	111,820	1)0.
	16.	24.3	48, 137	10.9		2, 212	3.19	153, 636	Donblo floats.
	18.	25.13	61,000	21.0		2, 431	3.44	. 175,284	Do.
	19.	20.1	62, 187	21.6		2,481	3.60	- 187,063	liod floats.
	20.	20.5	62,012	21.8		2,428	3.80	200, 005)
	21.	27.0	54, 010	22.5		2, 127	3.81	203,061	Ho.
	22.	27.1	65, 035	22.7		2, 427	4.10	229, 281	Jo.
	23.	27.5	[17,005	23.5		2, 127	3.07	220,410	Do.
	25.	27.0	[77,030	23.6		2, 127	3.84	219, 202	Jo.
	26.	20.1	61, 580	22.5		2, 422	3.76	205,291	Double flonts.
	27.	2.4 .6	61, 230	21.2		2, 122	3.18	162,735	God flonts.
	28.	23.1	48,763	20.2		2,413	2.86	130,300	lo.
	20.	22.1	45,862	19.0		2, 110	2.70	123,751	I) 0.
	30.	21.5	4,218	18.4		2. 107	2.50	114,035	Do.
Aug.		20.0	43,018	17.0		2.107	2.52	108,240	Do.
		20.6						c 106,030	Do.

a This is the sum of discharges of the Mississippl (216,055) and Illinols (33.273) rivers; hoth measured abovo the month of the Itlinois. This also includes discharge of as chutent the Mississippl section.
b Sectlons above mouth of Illmols River, as on May 18; Mississippl River discharge 12., 103, Illmols R/ver disehargo 14,083.
e Seotlons above month of Illnols River as on May 18; Misslssippl River discharge 100,966 feet. Illinols River dischargo, 6,670 feat.

Results of discharge observations, Mississippi River-Continued.
GRAPTON, ILI.-Continued.

Results of discharge observations, Mississippi River--Continued.
ISLAND 621 (GRAFTON).
[237 milles above Cairo.]
[Discharge section above mouth of Illinois RIver. Velorities measured with Haskell \& Price current meters. Observations and reduction made under dírection of Capt. Wm. B. Ladue, Corps of Engineers, Secretary Mississippl River Commission. Roport Chief of Engineers 1901, supplement, p. 75.]

Date.	Gauge reading.	Area ol cross section	Depths.		Wldth.	$\underset{\substack{\text { Mean } \\ \text { velocity }}}{ }$ per second	Discharge per second.			Method.
			Mean.	Maximum.			River.	Bank.	Total.	
$\begin{aligned} & 1903 . \\ & \text { Noy. 23: } \end{aligned}$	Fect.	100 sq. lt	Fect.	Feet.	Feet.	Feet.	Cu.ft.	Cu.ft.	Cu	
Right bank...	7.6	160%	9.9	14.6	1,617	1.75	23,000	Ou.f.		Meter.
Left bank.	7.6	16iti. 00	11.3	17.8	1,470	2.08	35,000			Do.
Total.		326.00	10.6		3,087	1.92	63,000			Do
Nov. 24:										
Relt bank.....	7.4	155.00 160.00	10. 8	14.2	1,017 1,470	1.70 2.04	20,000			$\begin{aligned} & \text { Do. } \\ & \text { Do. } \end{aligned}$
Total.		315.00	10.2		3,087	1.87	69,000			Do.

GRAFTON, ILL.

[234 milles above Carro.]
fThe zero of the Grafton Weather Burean gauge, whose readings are tabulated, is 424.09 feet above the Calro datum plane. Obsorvations and reduetion made under direction of Capt. Wm. I3. Ladue, Corps of Englneors, Secrotary Mississippi Rlver Commission. Velocities measured with Haskoll \& Price meters. Roports Chiof of Engincers 1903, supplement, p. 111, and 1001, p. 75.]

		100								
1003.	Feel.	sq. 16.	Feet.	F'cel.	Fect.	Feel.	Cu. ft.	Cit. ft.	Cu. ft.	
June 10...	28.5	1,121	33	40.1	3, 100	2.80	314,000	48,000	a3ij2,000	Meter.
11, a. m.	28.7	1,139	33.5	46, 1	3, 100	2.79	317,000	48,000	a3k $k, 000$	Do.
11, p. m.		1,119	32.9	45.2	3,400	2.77	311,000	48,000	a359,000	Do.
Nov. 19.	8. 5	461	14.2	27.7	3,254	2.11	97, 000			Do.
21.	8.0	452	13.9	20.2	3,2:0	2.00	93, 000			Do.

a Overbank discharge measured on both banks.
GRAFTON, ILL.
[Weather Bureau gaugent Grafton, Ill, the zero is 424.09 feet above the Cairo datum. The datum line for cornputing datum areas was taken at 3.9 foot on this gange. During the October observations Price meter No. 34 was used. In a. m. of January \& Price meter No. 243 was used; in the subsequent observations Price moter No. 243 and Haskell moter No. 105, wheel No. 1, were rim slmultancously and the means of moasurements aro tabulated. Observations of 190 made under direction of Capt. G. R. Lakesh, Corps of Englneers, U. S. Army, secretary Mississippl River Commisslon. Observations of 1000 and reduc. tlons made under direction of First Lient. C. H. Knight, Corps of Engineers, U. S. Army, scoretary Misslasippl River Commisslon.]
ildinois River 1 mile above Moutif.

Dato.	Gauges.				Cross section of discharge.							
	$\begin{aligned} & \text { Stand- } \\ & \text { nrd } \\ & \text { gaugo. } \end{aligned}$	Jocal.	Chango In $2 \cdot 4$ hours.		Area.			Dopth.				
					Water.		Brelow	Mean.		$\begin{aligned} & \text { Mean } \\ & \text { htum } \end{aligned}$	Maxl. mum.	Width.
$\begin{array}{r} 1008 . \\ \text { Oot. } 11 . \ldots \ldots \ldots . \\ 17 . \ldots \ldots \end{array}$	$\begin{array}{r} \mathrm{Fect} . \\ 3.8 \\ 3.7 \end{array}$	Fece.	$\begin{array}{r} \text { Feet. } \\ -0.10 \\ .00 \end{array}$		$\begin{gathered} \text { Sq. } / l . \\ 0,162 \\ 0,011 \end{gathered}$			$\begin{aligned} & \text { Fect. } \\ & 1212 \\ & 11.92 \end{aligned}$		Fect.	Feel.	Feet. 756 766
Dato.	$\begin{aligned} & \text { Scour or } \\ & \text { fill. } \end{aligned}$	$\begin{aligned} & \text { Mean } \\ & \text { velocity } \\ & \text { per } \\ & \text { second. } \end{aligned}$		Dischargo per second.		Method.					Dircetion and force of wind.	
$\begin{array}{r} 1908 . \\ \text { Oot. } 14 . \ldots \ldots . . \\ 17 \ldots \ldots \ldots \end{array}$	Sq. ft .	$\begin{array}{r} \text { Feet. } \\ 1.023 \\ .813 \end{array}$		$\begin{gathered} C u . f l . \\ 0,375 \\ 7,327 \end{gathered}$		Domble floats		8	32	I. Strong. Calin.	

Results of discharge observations, Mississippi River-Continued.
GRAFTON, ILLL-Contlnued.
Mississippi River Above Mouth of Illinois River.

Results of discharge observations, Mississippi River-Continued.
GRAFTON, ILL.-Continued.
Mississippi River Below Mouth of Illinois River.

Results of discharge observations, Mississippi River-Continued.

ET. LOUIS, MO.

Abstract

[Nores, - The gauge readings heroln tabulated aro all reforred to tho same zero, that of the Unlted Statee Englneer gauge at foot of Market street, St. Louls. All readings aftor 1873 were taken on this gauge the gauge zero is the low water of 18 e3 and is 400.23 fent abovo the Calro datum plane. For readings of the gauge at disoharge seotion of 1880-81, sco Report of Chife of Engineers, 18\$3, pago 2257. 'The standard gauge is about 4 milles below the disoharge section of $1850-\mathrm{SI}$. Locallons of disuhargo sections and authorittes are as follows: The Mississippi River Commission is anthority oxcopt otherwlso noted. Results of measurements to 1873, incluslve, are from Report of Chiof of Englncers, 1873, page 472. DIschargo of 1804 was measured by City Engineer Domer at St, loulsj the exae locration not slated. Discharges of 1872 and 1873 were measured under dircotlon of Col, J. 11 . Slmpson; In 1872 opposito Carondelot (tho southern part of St, Louls), and in 1873 bolow the Jofferson Barracks; tho harracks are about 2 milles bolow the southern limits of the city of St. Louls. The dischargo section of $1880-81$ wis about one-otghth milo above the reservolra of the elty water works in tho northern part of St. Lonts. The resills of theso observalions wero published in Report of Chiof of Lingineers, 1883, page 2257. At the higher stages of tho river the dischargo sentlon included a slough on the llilnols sido of tho river; tills slough was olthir full of dead water or dry at stages bolow about 19.5 feet on the gauge hereln tabulated. At tho higher stages when the slough is discharging, its width, arca, and disoliargo are lnoluded in the gitantities tabilated, and tho mean voloolty is derlved therefrom in the usual way by dividing total discharge by total area. 'The discharge sectlon of May 20 , 1892, was at the Merchants lisidge, about one-half mile bolow tho section of 1880-81. The discharge sectlon of the following day, May 21, 1802, was at the littsburg dike about 42 miles below the Merohnints Bridge. The discharges of 1802 are only approximato; results in Report of Chict of Engineers, 1893, pago 3682. Tha northern limit of tho city of St. Louls is about 5 miles below the mouth of the Missourl filver; the ofty limits inolude about 19 miles of river front.)

[101 miles noova Cairo.]

Results of discharge observations, Mississippi River-Continued.
BT. LOUIS, MO.-ContInued.

	Date.	Gauge reading.	Area of oross section.	Dopths.		Width.	Mean velocIty per second.	Disoharge per second.	Method
				Mean.	Maximum.				
1881.		Fuef.10.9			Feel.	Heel. 1,649	Feet. 4.27	Cubir fect. 128,000	Rod flonts.
Feb.	25.		310,600	18.1				
	26..	10.4	30, 100	10.2		1,655	4.03	120,000	Do.
	1.	14.8	20, 100				4.73	138, 000	Ice cakes.
Mar.	$2 .$.	16.0	29, 100				4.20	124,000	Do.
	8.	16.8	40, (k)0				4.02	107,000	Do.
	9.	16.4	411, 000				3.04	193,000	Do.
	10.	14.9	40,000)				4.12	20?, 000	Do.
	12.	$\begin{aligned} & 10.4 \\ & 10.4 \end{aligned}$	60, 100	23.0		2,175	4.80	245,000	Rod flonts.
	$14 .$.		62, 100	23.1		2,228	6. 05	315,000	Do.
	16.	20.1	60, 100			3,135	5.73	349,000	Do.
	17...	20.6	62, 000			3,145	6.10	387,000	Do.
	21.	$\begin{aligned} & 21.6 \\ & 21.1 \end{aligned}$	61, 800			3,234	6.99	370,000	Do,
	22..		02, 100			3,218	C. 12	380, 000	Do.
	23.	20.1	65, 700			3,235	6.72	370, 000	Do.
	21.	20.4	63, 500			3, 234	6.79	368, 000	Do,
	25.	20.6	0310100			3,233	6.03	361, 000	Jo.
	20.	21.0	00, 100			3, 2.45	6.84	380,000	Jo,
	28.	$\begin{aligned} & 20.0 \\ & 27.0 \end{aligned}$	61, 000			3, 2.14	6.00	303, 000	Do,
Apr.	13.		84.100			3,100	5.82	480,000	Do,
	14.	$\begin{aligned} & 27.0 \\ & 27.1 \end{aligned}$	02, 100			3,260	6.60	624,000	Jo.
	11.	27.1 27.6	86,100			3,200	0. 47	557,000	DO,
	13.	27.8	03, 100			3,270	6.70	623, 000	Do,
	18.	$\begin{aligned} & 27.4 \\ & 20.0 \end{aligned}$	02,6100			3,280	6.11	693,000	Do.
	10.		00, 100			3,298	6.70	616,000	Do,
	20.	20.3	84,700			3,277	6.14	510,000	Do.
	21.	$\begin{aligned} & 20.2 \\ & 20.0 \end{aligned}$	79,600			3, 258	6.24	100,000	Do.
	22.		88.100			3,273	5.05	626, 000	Do,
	23.	27.4	92, 010			3, 340	0.24	674, 000	Do,
	25.	$\begin{aligned} & 20.8 \\ & 20.8 \end{aligned}$	97, 010			3, 288	6. 14	690, 000	Do.
	26.		98, 900			3, 315	6.56	638, 000	Do.
	27.	30. 2	101,900			3, 3.906	6.78	711,000	DO.
	28.	$\begin{aligned} & 30.13 \\ & 30.8 \end{aligned}$	103, 1160			3,208	0.32	660, 000	Do.
	29.		104, 000			3,246	13. 38	600,000	Do,
	30..	31.1	105, 700			3,27i	0.37	073,100	1)0,
May	1.	33.2	120, 000			3,345	7.11	800, 000	Jo.
	6.	33.6	122,500		3, 347	0.28	770, (000	Do.
	9.	30.0	08,300			3,331	6.01	691,000	$1) \mathrm{O}$
	10.	28.4	80,500	3,300	6.35	179,000	1)0.
	11.		86, 1×10			3,305	5.50	181,000	गo.
	12.	20.5	82, $70 \times$			3,207	6.30	413,000	1).
	10.	25.3	70,500			3,205	6. 10	390,000	Jo.
	17.	25.0	78, 500			3,291	5. 13	403, 000	Do.
	18.	$\begin{aligned} & 25.8 \\ & 25.0 \end{aligned}$	78,300			3,232	6.09	399,000	I) 0.
	19.		78,000			3,250	5.10	402,000	1)0.
	20.	$\begin{aligned} & 25.0 \\ & 25.0 \end{aligned}$	81, 300			3,272	6. 10	419,000	$1) 0$
	21.	- 24.0	81,700			3,272	6. 1.4	42.0,000	$1) 0$.
	24.	24.0	78, 000			3,272	6. 18	407,000	$1) 0$.
	25.	25.0	78,800			3,204	b. 10	100, 000	$1) 0$.
	26.	$\begin{aligned} & 25.0 \\ & 24.0 \end{aligned}$	70,000			3,251	6.31	119,000	1)0.
	27.		77,700			3,272	5.03	301,000	1)0.
	28.	23.8	74,100			3,209	5.08	376,000	$1) 0$.
	30.	22.2	37, 000			3,179	4.82	328,000	1)o.
	31.	21.621.2	65, 000			3,153	4.74	311,000	1)O.
June	1.		04, 400			3,150	4.88	314,000	Do.
	2.	20.7	65, 800			3,007	4.60	303,000	Do.
	4.	21.3	65,700			3, 118	4.82	317,000	Do.
	6.	21.8	67,400			3,18.4	1.88	320,000	I) 0
	7.	21.8	62, 600			3,182	6.04	310,000	Do.
	8.	21.0	61,300			3,107	6.06	325,000	Do.
	9.	20.9	63, 600			3,170	4.91	312,000	$1) 0$.
	10.	20.0	02, 1000			3,145	4.80	300,000	Do.
	13.	21.8	66, 600			3, 107	4.81	320,000	1)o.
	14.	22.5	60, 400			3,227	5.08	363,000	1 1).
	15.	22.1	07, 800			3,209	4.79 5	324,000	$1) \mathrm{O}$
	16.	22.3	30, 000			3, 2.05	5.16	361, 000	I) 0.
	17.	$\begin{aligned} & 22.0 \\ & 22.5 \\ & 22.8 \end{aligned}$	66, 000			3,200	5.21 4.81	349,000	Do.
	20.	22.8 24.6	-70, 700			3, 2204	4.81 5.34	336,000 410,000	Do.
	22.	24.5	70,000			3,272	6.50	438,000	Jo.
	23.	24.5	70,700			3,271	5.35	410,000	Do.
	24.	24.1	73, 000			3,272	5.21	388,000	Do.
	25.	24.6	77, 500			3,272 3,214	5.24	111,000	Do,
	28.	2.7	74, 100			3,2:14	5.60	407,000	Do.

Resulls of discharge observalions, Mississippi River-Continued.
ST. LOUIS, MO.-Continued.

Date.		Gauge read. ing.	Area of oross sec. tlon.	Depths.		Wldth.	Mean velocity per socond.	Discharge per second.	Method,	
		Mean.		Maximum.						
	1881.		Freet.	Sq, feet.	reet.	Fect.	F'eet,	Feet.	Cubic feet.	
June	29.	23.4	72,000		3,225	5.15	375,000	Rod floats.	
July	1.	23.0	71, 200			3,228	6.70	406,000	Do.	
	2.	24.0	73, 200		3,271	6. 48	300, 000	Do.	
		24.7	$73,8(4)$		3,272	5. 59	130,000	Do.	
	6.	24.2	72, 1114)		3,260	6. 65	404,000	Do.	
	7.	23.4	70, 40)		3,230	5. 23	308, 000	Do.	
	11.	19.0	62,700		2,127	4.89	277,000	Io.	
	12.	18.2	40,000		2, 121	4.11	215,000	Do,	
	14.	18.8	63, 000		2,108	4. 43	250,000	De.	
	16.	20.5	67,600		2, 143	6.01	305, 000	I)	
	18.	21.6	58, 510			2,172	4.88	201,000	5o.	
	19.	21.8	69, 700			2,105	4.79	311,000	1 Po,	
	20.	22.1	60, ${ }^{\prime} 10$			3,150	4.77	314,000	Do.	
	23.	22.4	69, 010			3,171	6.16	340,000	Do.	
	26.	21.2	64,300			3,0117	4.88	314,000	Do.	
	28.	18.8	61,700			$\cdots, 140$	4.74	258,000	Do,	
	30.	16.6	17, 000			2.020	4.38	214,000	$1) 0$,	
Aus.	2.	16.5	45,400			2,020	4.10	188, 000	I) 0.	
	4.	14.8	43,300			1,810	4.40	101,000	I)0.	
	5.	14.4	43, 000	24.2		1,811	4.08	170,000	$1) 0$.	
		14.0	43,200	24.1		1,700	4.20	185,000	$1) 0$.	
		13.2	40,700	23.2		1,765	3, 68	110,00\%	Do,	
	9.	12.8	40,400	23.2		1,7.11	3. 40	137, 060	1)0.	
	10.	12.4	40, 000	23.1		1,731	3.21	120, 000	1)0.	
	11.	12.1	39,700	23.2		1,71.4	3.41	135,000	Do,	
	12.	11.8	30,600	23.1		1,712	3.64	140,000	Do,	
	13.	11.5	37,700	22.1	.	1,705	3.20	124,000	$1) 0$.	
	16.	10.8	36, 400	21.13 ${ }^{\text {a }}$	1,683	3.22	317,000	$1) 0$.	
	10.	10.0	34, 600	20.8		1, 060	3.31	114,000	Io,	
	17.	10.4	34,000	21.0 ${ }^{\text {a }}$	1,6185	3.16	110,000	1)0,	
	18.	10.4	35,100	21.1	1,605	3.12	110,000	Do.	
	10.	10.3	34, 500	20.8	1,062	2.07	103, 000	Do,	
	20.	10.2	35,000	21.3	1,044	3.08	103,000	Do.	
	22.	10.0	35, 200	21.0		1, 275	3.05	106,000	1)o.	
	23.	0.0	34,300	21.0	1,1435	3.17	109,000	$1)$.	
	24.	0.0	32, 5001	10.0	1,035	2.02	05.000	$1) 0$.	
	25.	0.8	32,500	10.8	1, 011	2.02	05, 000	$1) 0$.	
	20.	0.6	30, 000	18.8	1,043	2.88	88,000	$1)$	
	27.	0.5	31,700	19.5	1,024	2.04	- 03, 000	IVO.	
	29.	0.2	20,000	18.5	1,014	2.80	80,000	Do.	
	30.	0.0	30,700	10.1	1, 003	2.82	80,000	Io.	
	31.	8.9	30,200	18.8	1,065	2.81	85,000	Do.	
Sopt.		8.8	30, 600	10.0		1, (1)5	2.04	90, 000	Do.	
	2.	8.8	30, 100	18.0	1,005	2.80	88,000	$1)$	
		8.0	20,700	18.5	1,008	3.17	01,000	$1) 0$.	
		8.8	20, 500	18.4	1,600	3.17	03,000	Do.	
		8.8	29, 200	18.2		1,000	3.05	80,000	Do.	
	7.	8.8	30, 300	18.9		1,002	3.01	01,000	Do.	
	0.	0.1	30,300	18.0		1, 002	3.04	92,000	Do.	
	10.	9.3	30, 300	18.9		1, (002	3.75 3.41	114,000	Do,	
	12.	0.3	30, 200	18.6		1,620	$\left\{\begin{array}{l}3.41 \\ 3.05\end{array}\right.$	110,000	Meter.	
	14.	10.2	31,000	10.5	32.0	1,620	4.01	127,000	Do,	
	16.	10.4	32, 100	30.4	30.5	1,050	$\left\{\begin{array}{l}3.76 \\ 3.60\end{array}\right.$	121,000	Rod ilonts. Meter.	
		10.8	31,800	10.0		1,009	3.07	117,000	Rod floats.	
	17.	11.1	31,800	18.9		1,083	3.80	123,000	Do.	
	19.	11.4	32,300	10.0		1,008	3.81	123,000	Do.	
	20.....	11.5	34,003	20.1		1,005	4.08	130,000	Do,	
	22.	11.8	34,000	201	20.5	1,005	4.33 4.02	1107,000	Moter.	
Oct.	11...	20.8	$6^{6} 2,500$		45.0	3, 013	6.614	201,000	120.	
	12..	21.0	- 32,800	...	46.0	3,013	6.81	307,000	$1) 0$.	
	14..	20.8	62, 700	44.5	3,013	6.07	207,000	Do.	
	27.	25.1	79,000		55.5	3,305	6.82	645,000	DO.	
	28.	24.3	79,000		65.5	3,280	5.80	463,000	Do.	
	31.	24.1	74,700			3, 188	6. 82	140,000	1)0.	
Nov.	1.	24.0	72, 100		65.0	3, 188	6.35	468,000	I)O.	
	4.	24.4	72, 600	,	65.5	7,220	7.62	653,000	Do.	

Results of discharge observations, Mississippi River-Continued.
ST, LOUIS, MO.-Continued.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Date.} \& \multirow[b]{2}{*}{Grange read. ing.} \& \multirow[b]{2}{*}{Aren of oross sec. tlon.} \& \multicolumn{2}{|c|}{Depths.} \& \multirow[b]{2}{*}{Width.} \& \multirow[t]{2}{*}{Mean veloc. ity per scoond.} \& \multirow[b]{2}{*}{Dtacharge per second.} \& \multirow[b]{2}{*}{Method.}

\hline \& \& \& Mean. \& Maxinum. \& \& \& \&

\hline 1892.
Muy

$20 . \ldots \ldots \ldots .$. \& Weet.
35.7
35.2 \& Sq. feet.
104,000
94,400 \& Feet.
54.7
63.6 \& Feel.
78.0
85.0 \& Feet.
1,001

1,762 \& \[
$$
\begin{aligned}
& \text { Iect. } \\
& 9.62 \\
& 12.15
\end{aligned}
$$

\] \& | Cubde feet. |
| :--- |
| a $1,043,000$ $1,146,000$ | \& | Metor. |
| :--- |
| Double tloats. |

\hline Oot. 25............. \& 3.0 \& 22,000 \& \& $\cdots \cdots$ \& 1,855 \& 2.20 \& 48,000 \&

\hline 1)ec. 16............ \& 6.6 \& 27,700 \& \& \& 2,000 \& 2.41 \& 67,000 \& IRod floats.

\hline 17............. \& 6.0 \& 20, 800 \& \& \& 2,062 \& 2.40 \& 72,000 \& Do.

\hline
\end{tabular}

Victor Streiet.

Sopt. $20 \ldots \ldots \ldots \ldots \ldots$

Lefgemanch: Sthbet,

Sept. $30 \ldots \ldots \ldots \ldots . \ldots$

Arsenal, Isiand.

Ehoineer Derot.

Dec. 23.	0.3	33,300	13.1		2,510	2.88	06,000	Rod slonts.
J®n, 12.............	4.1	20,100	10.5		2, 193	2.76	72,000	Do.

Mercilants Bmidah.

Aug, $\begin{array}{r}1809 .\end{array}$	13.3	40,100	10.7	2,350	3.83	178,000	Rod flonts.

Near Riveit Des Perks.

Oot. 7.1800.	4.0	31,200	20.8	. \cdot	1,497	1. 1.8	61,000	Rod floats.

a 43,000 ouble feot of this was disehargod along line of rallroad on loft bank and mainly estimatad; lis area and whith are not Included in this tabio.
b Tho sootlon of 1805 was 18 miles below the clty. L 2 pport Chief of Engineors, 1806, p, 1751.
c Obsorvatlons and roduction mado undor dirootion of Maj. IT. II. Iandbury, Corps of Englneara, Report Chiof of Enginears, 1897, p. 2041. Sootlou was near Sydney atreot.

Results of discharge obscrvalions, Mississippi River-Continued.

B'I. LOUIS, MO.-Continued.

Foot of Arsheal Streft.
[Gauge readings are those of the U. 8. Engineer gango at Markot street, St. Iouls, whose zero is 40.22 feet above the Calro datum plane.]

Dato.	Gauge 'real-. ling.	Area of oross section.	Dopths.		Wldth.	Mean velocIty per second.	Discharge per socond.	Method.
			Mean.	Maximilli.				
$\begin{aligned} & \text { Fel), } \quad \begin{array}{l} 1000 . a \\ 5 . . . \end{array} . \end{aligned}$	Frect. 0.0	Sq. fect.	Weel. 7.4	F'ect.	Feel. 1,025	$\begin{aligned} & F \cdot e c t . \\ & 2.41 \end{aligned}$	Cubir feet.	
Mar. 10...	18.7	85, 130	25.8		2,537	4. 60	295,000	Do.
14.	23.2	77, 000	28.8		2,073	6. 30	408,000	Do.
23.	17.0	00, 400	23.0		2,825	4.17	252,000	Do.
28.	15. 0	51, 100	21.0		2,510	3.70	208, 000	Do.
Apr. 3.	14.3	52, 010	20.8		2. 4193	3. 68	100,000	Do,
5.	14.5	63, 800	21.5		2, 604	3.08	108,000	Do.
7.	16.7	67,200	22.8		2,509	3.82	218,000	Do.
12.	16.0	66, 500	22.1		2,622	3.90	220,000	1)0,
14.	18.2	(32, 800	2.18		2,532	4.32	271,000	1).
17	10,7	67, 610	22.8		2,531	3.09	230,000	1).
10.	16.3	63, 3100	21.1		2,507	3. 82	205,000	Do,
21.	15.0	6i3, 300	21.1		2,524	3.88	207,000	Do,
21.	10.8	66, 100	22.3		2,533	3.81	216,000	I) 0
26.	17.1	57,700	24.7		2,530	4.10	237,000	Do.
28.	17.0	56,100	22.4		2,534	3.85	218,000	Do.
May 2.	K. 4	53, 100	21.2		2,500	3.80	202,000	I) 0.
4.	16.7	83, 000	21.0 ${ }^{\text {a }}$	2,522	3.01	207,000	Do.
10.	16.9	64, 700	21.0		2,520	3.81	208, 000	$1) \mathrm{O}$
12.	15.6	52, 900	20.8		2,638	3.75	198,000	$1) 0$.
14.	16.4	65, 300	21.7		2, 652	3.83	2.12,000	[0.
16.	14.7	60, 200	20.0	2,510	3.15	183, 000	Do,
18.	14.0	48,200	10.5		2,17.1	301	174,000	Do,
21.	14.2	48,200	10.2	\cdots	2,511	3.74	180, 000	Do,
23.	14.1	48,200	10.2	2,515	3. 80	183, 000	Do,
25.	13.0	40,700	18.7	-	2,500	3.64	170,000	Do.
28.	13.7	44,300	17.8		2, 101	3. 40	153, (0)0	$1)$.
June 1.	13. 1	45,200	18.1		2, 50.1	3. 60	183, 000	Do.
4.	12.8	14,800	17.9		2,406	3. 53	158,000	Do,
B.	11.0	42,200	17.0		2,483	3.38	143,000	Do,
11.	10.8	40,000	10.2		2.476	3. 30	132,000	$1) \mathrm{O}$
13.	11.0	40, 100	10.2		2,478	3. 35	134,000	Do,
15.	13.8	47,300	18.8		2,510	3.70	177,000	1)0,
18.	11.5	10,710	11.3		2.488	3.47	111,000	1) 0
20.	11.2	40,300	11.2		2, 480	3.11	138,000	$1) \mathrm{O}$
22.	13.3	45, 500	18.1		2,514	3.70	172,000	$1) 0$.
25.	14.11	48, 0×10	10.0		2,522	3. 89	187,000	$1) \mathrm{O}$
28.	13.1	11, 1100	17.8		2,511	3. 60	163, 000	1)0,
July 2.	11.4	30,800	16.0		2, 480	3. 43	137,000	$1) 0$.
-1..	11.3	30, 000	11.1		2, 480	3. 38	135,000	$1) 0$.
9.	10.7	38, 100	15.5		2, 173	3. 33	127,000	170.
11..	10.2	37, 100	16.2		2, 485	3. 33	125,000	$1) \mathrm{O}$
13.	10.5	38,200	15.5		2, 17.1	3.31	126,000	1)0.
10..	0.8	36, 000	15.0		2, 463	3. 22	110,000	$1)$
18.	0.6	37,100	15. 2		2, 1135	3.22	121,000	$1{ }^{1}$
20.	0.2	35,700	14. 5		2, 4.4	3. 08	110,000	$1) 0$.
23.	11.0	42,000	10.8		2, 48.1	3.59	151,000	Do.
25.	12.0	44,300	17.7		2, 612	3.63	162,000	Jo.
30.	12.0	42,500	17.1		2, 403	3.40	145, 000	Do.
Aug. 1.	11.3	11,000	10.4		2, 405	3.36	138,000	$1) 0$.
3.	10.5	39,200	16.0	2,468	3.17	124, 000	10.
7.	8.4	31,500	14.1		2, 442	2.05	102,000	170.
10..	7.1	31,900	13.1		2,433	2.81	00,000	$1)$.
21.	8.9	30,600	14.0	2,450	3.07	112,000	$1{ }^{1}$
24.	9.2	30, 000	15.0		2,467	3.00	111,000	Do.
28.	8.0	30,700	1.1 .0		2, 118	3.05	112,000	Do.
31..	0.6	38,300	15.0	2, 471	3.06	117,000	Do,
Bopt. 4..	10.1	40,000	10.1	2, 483	3. 08	123,000	Do.
7..	0. 0	38,500	16.15	2, 478	3. 07	118,000	Do.
12..	7.3	32, 100	13.1	2, 444	2. 84	94,000	10.
14..	0.7	30, 500	12.13	2, 424	2.70	85,000	Do.
18.	6. 0	20,000	12.0	2, 410	2.82	82,000	Do.
21.	0.3	20,700	12.3	2, 423	2.77	82,000	Do.
28.	7.6	32, 400	13.2		2,455	2.00	94,000	1 Do.
Oot. 28.	8.4	34,200	13.9		2, 458	2.07	101,000	$1)$
Oot. 2.	11.1	40, 800	10. 4		2,404	3.24	132,000	Do.

Resulls of discharge observation:, Mississippi River-Continued.
BII. I,OUIS, MO.-ContInued.
Foot of Arsenal Stbent-..Continued.

[^23]
Results of discharge observations, Mississippi River-Continued.

BT. LOUIS, MO.-ContInued.
Foot of Arsenal Strert-Continued.

	Date.	Gange readling.	Area of oross sectlon.	Depths.		Width.	Mean velocIty per second.	Discharge per second.	Method.
				Mean.	Maximuin.				
	1002.	Fieet.	sq. feet.	F'eet.	Feet.	Feet.	Feet.	Cubic feet.	Rodflor
Jan.	16.	1.3	20,500	8.9		2,319	2.15	44,000	Rod flonts.
July	18,10.	26.4	78,700	20.4	41.0	2,077	5. 11	- 428,000	Moter.
	18,19.	26.4	78,600	30. 3		2,600	5.43	427,000	Rod floats.
Apr.	1003. 24.	22.3	67, 800	25.0		2,617	4.65	312,000	Do,
	27.	20.3	64,000	25. 2		2, 663	4. 18	270,000	Do,
	29.	10.4	61,200	24.2		2,535	4.00	245, 000	Do.
May	4.	17.8	59, 000	23.4		2, 618	3.87	228,000	Do.
	19.	21.0	70, 100	27.3		2, 6784	4.53	317, 000	DO,
	20.	21.2	68, 100	26.5		2,682	4.41	302,000	Do,
	22.	20.5	67, 800	20.4		2,563	4. 33	293, 000	Do,
	25.	20.6	66, 500	25.9 \cdot	2, 665	4.32	287,000	Do,
	26.	22, 3	70,500	20.8		2, 627	4.47	315,000	Do,
	28.	24.6	76, 100	28, 0		2,720	4. 81	366, 000	Do,
June	3.	31.3	104, 500	27.1		3,854	6.85	611,000	$1) 0$.
	29.	21.4	64,000	25.0		2,556	4. 64	291,000	Do.
	30.	20. 9	62, 400	24.4		2,568	4. 55	284,000	Do.
July	2.	20.7	65, 000	26.4		2, 659	4.43	288,000	Do,
		17.6	56, 700	21.9		2, 510	4. 11	220,000	$1) 0$.
	8.	17.0	64,800	21.0		2, 530	3.03	216,000	DO.
	11.	10.0	65, 200	21.8	-	2,636	3.91	210,000	Do.
	13.	10.0	52,000	21.3	. \cdot.	2, 485	3.83	202, 000	Do.
	15.	10.0	51, 800	20.7	2, 181	3.80	201,000	1.0.
	17.	18.3	(6), 200	23.9		2, 622	4.10	240,000	Do.
	20.	10.4	(32, 200	2.16	2,629	4.21	262,000	I) 0
	22.	18.9	(0), (0)0	24.1	2, 620	4.02	246,000	Do.
	24.	10.2	61, 000	24.1		2,629	4.19	256,000	Do,
	27.	20.6	60, 110	25.9		2,640	4.28	283,000	Do,
	31.	17.7	50, 600	22.7		2, 100	3.89	220,000	Do.
Alig.	5.	16.8	52,500	21.1		2, 486	3.70	104,000	Do.
	13.	14.9	48,300	10.5		2, 484	3.02	175,000	Do.
	18.	17.2	55, 300	22.0		2,609	4.02	222,000	DO,
	18. 10.	17.4	57, 100	23.0 ${ }^{\text {a }}$	2, 606	4.09	235,000	Do.
	25.	17.8 16.0	60,100 63,500	24.1 25.5	2,610 2,487	4.12 3.15	249,000 201,000	Do.
	27.	16.1	52,500	21.1		2, 480	3.70	101,000	Do.
Sopt.	1.	18.5	61,000	24.0t..	2,617	4.07	252,000	Do.
	4.	20.3	68,000	26.7	…....	2,652	4.41	302,000	Do,
	9.	17.8	60, 700	24. 2		2,600	3.00	237,000	Jo.
	11.	17.3	60, 400	24.1	. \cdot. ${ }^{\text {a }}$	2,503	3.81	230,000	1)0.
	14.	21.0	72, 100	28.2		2, 600	4.27	309,000	$1) 0$.
	15.	20.0	71,600	27.8	.	2,560	4.33	309,000	Do.
	18.	21.0	60, 700	26.0		2,505	4.45	307,000	$1)$.
Oot.	13.	21.8	73,500	28.5		2,675	4.31	317,000	Do.
	14.	21.5	71,000	27.0		2,673	4.31	300,000	Do.
	20.	18.3	04, 100	25.4		2, 610	3.70	237,000	$1) 0$.
	20.	10.3	59, 100	23.7		2, 40.4	3.60	210,000	$1) 0$.
Nov,	2.	16.2	67, 600	23.1		2,490	3.32	101,000	Do.
	3.	15.0	65, 700	22.4		2,489	3.41	100,000	Do.
	9.	15.2	67, 300	23.0		2,402	3.14	107,000	Do.
	12.	14. 1	65, 800	22.1		2,487	3.20	178,000	Do.
	20.	10.3	44,200	18.0		2,449	2.08	132,000	Do.
	23.	9.4	41,100	16.8		2,443	2.85	117,000	Do,
	28.	6.8	36, 800	14.7		2,429	2.69	96,000	De.
Deo.	4.	5.1	30, 010	12.4		2,411	2.31	69,000	Do,
	23.	2.3	22, 100	9.2		2, 101	2.33	51,000	Do.
	23.	2.7	22,600	9.4		2,401	2.43	55,000	Do.
M'ar.	1004.b								
	80....	10. 0	42,800	12.4	2,450	3.23	138,000	Do.
	31.	25.2	85, 400	32.1		2,003	4.98	425,000	Do.
Apr.	2.	24.5	82,200	30.9		2, 658	B. 08	418,000	Do.
	6.	22.9	77, 300	29.6		2,603	4.68	852,000	Do.
	12.	23.6	78, 1000	30.0		2,625	4.80	282,000	Do.
	15...	23.5	79,000	30.1	2,020	4.05	390, 000	Do.

a 'Ihls result from obser vations and reduction made under direotion of Secratary of Mississlppl River Commilasion, Report Chiet of Engineers, 1903, supplemont, page 111.
o Observations and reduotion mado under direotlon of Ma. Thos. L. Casey, Corps of Enginearn. Keport Ohled of Englncors, 1004, pages 2136-2137.

Results of discharge observations, Mississippi River-Continued.
S'T. LOUIS, MO.-Continued.
Foot of Arsenal Btabet-Continued.

	Date.	Gange reading.	Area of oro3s sectlon.	Depths.		Width.	Mean velocity per second.	Disoharge per second.	Method.
				Menn.	Maxlmum.				
	1904.	Fiet.	sq. feet.	Feet.	F'ect.	Ficti.	Feet.	Cubic feet.	
May	18..	21.8	68,000	20,8	2,573	4. 80	330,000	Rod floats.
	18.	21.5	67, 100	26,4	. \cdot.....	2,544	4.87	327,000	Do.
	27.	18. 5	60,200	23.7		2,510	4.40	205,000	Do.
June	1.	23.7	71,400	27.7		2,581	5. 28	377,000	Do.
	14.	24.5	74,300	28, 6		2,603	5.18	385, 000	$1)$.
	21.	25.1	76, 000	28.8		2,625	5.15	300,000	10.
	23.	25.0	75,800	28.9		2, 623	5.10	386,010	Do.
	29.	22.7	72,(00	27.0	2, 678	4. 84	348,000	Do.

[U. S. Engineer gauge at foot of Market streot, Sit. Louls, Mo, Elevation of gauge zero doo. 22 feet above the Calro datum plane.]

Observations and reduction under direction of Col. W. H. Bixl)y, Corps of Enginoors, U. S. Army.

Results of discharge observations, Mississippi River-Continued.

ST. LOUIB, MO.-ContInued.

Dato.		Gauge readlag.	Area of cross section.	Dopths,		WIdth.	Mean velocIty per socoud.	Discharge per second.	Method.	
		Mean.		Max1mum.						
July	1904.a		Feel.	Sq, feet.	Feet.	Feet.	F'et.	Fect.	Cublc feet.	
	1.....	24.2	75, 500	29.0		2,007	6. 10	392, 000	Rod floats.	
		21.6	68, 300	20.6	. \cdot.	2,569	4.61	308, 000	I) 0 ,	
	8.	21.1	04, 800	25.3	2,557	4.65	305,000	Do.	
		21.4	67, 300	20, 3	. . .	2,503	4.61	310,000	Do,	
	21.	20.3	01, 100	24.0		2,647	4.43	271,000	Do,	
	22.	19.0	61,000	24.4	2,514	4.26	204, 000	Do,	
	25.	17.2	56, 400	22.4	.	2,520	4.11	232, 000	DO.	
	27.	10.5	54, 900	22.0		2, 601	4.00	220,000	Do,	
	29.	14.8	50, 600	20.3		2,403	3.83	193,000	Do,	
Aug.	1.	12.9	45,800	18.4		2.482	3, 63	168,000	DO,	
		11.8	14,000	17.8	-.....	2.174	3. 36	148,000	Do,	
	5.	11.6	43, 600	17.6	2, 173	3.39	148,000	Jo,	
	0.	10.0	39, 100	15. 0		2, 160	3.11	121,000	1)0,	
	10.	9.6	37,500	15.3		2,454	3.07	115,000	Do,	
	12.	8.1	36, 000	15.0		2,463	2.97	109,000	$1) 0$	
	16.	8.2	37,700	15.4		2,455	2. 0.1	111,000	1)0,	
	17.	8.4	38, 800	15.7'	2.450	2.08	115,000	1).	
	22.	11.2	14,200	17.9		2, 172	3. 35	148, 000	10,	
	24.	12.4	- 47,300	10. 1		2.480	3.14	103,000	10.	
	24.	12.5	48,300	19.4		2, 187	3. 65	171,000	10.	
	29.	10.0	40,800	10.6		2, 1610	3.18	130,000	$1) 0$.	
	31.	8.2	37, 100	15.1	2, 150	2.96	110,000	10.	
Bept.		7.7	30, 100	14.7	2,453	2.03	100,000	Do,	
		7.7	36,100	14.7	2,464	2.98	107,000	Do,	
	7.	7.2	32,800	13.4	2, 454	2. 88	94, 000	Do.	
	10.	6.8	33,800	13.0	2, 442	2.83	96,000	Do,	
	12.	0.8	31,700	13.0	2,412	2.83	90,000	Do.	
	20.	0.6	30,600	10.1	.	2, 408	3.20	120,000	Do.	
	21.	11.1	43,500	17.6		2,475	3.47	151,000	Do.	
	24.	0.6	11,000	13.8	2,468	3.10	127,000	I) 0	
	28.	10.9	45, 800	18.5		2,475	3. 2.5	110,000	$1) 0$.	
	20.	11.0	44, 800	18.2		2,475	3.25	146,000	Do,	
Oot.	3.	10. 6	14,100	17.8		2,476	3.22	142,000	I)	
	7.	8.8	38, 200	16.5	-	2, 101	3.00	117,000	Do,	
	11.	7.8	36, 800	14.0	-1...	2,453	2.05	108,000	Do.	
	12.	7.6	37, 070	15,0		2, 460	2.07	110,000	Do.	
	17.	6.7	34, 260	14.0		2,445	2.75	94,000	Jo,	
	18.	6.7	3.1,700	14.2	.	2,145	2.74	05,000	Do.	
	24.	7.1	3.1, 000	14.2		2,461	2.84	00,000	I) 0	
	20.	7.7	36, 000	15.0		2, 169	2. 00	107,000	1)0,	
Nov.		0.8	41,800	16. 9		2,178	3,11	132,000	1)\%,	
	2.	0.7	42,300	17.1		2, 478	3. 12	132,000	$1)$	
		8.9	10, 6100	10.4		2,407	2. 03	110,000	Do.	
	22.	0.4	33, 200	13.6		2,433	2.74	91,000	Do.	
	23.	6.2	33, 000	14.0		2, 428	2. 08	91,000	Do.	
	20..	5. 6	31, 600	13. 0		2, 421	2.70	85,000	1).	
	28.	5.3	31, 100	12.8		2, 420	2.57	80, 000	DO.	
	30...	6.1	30, 100	12.1		2, 421	2.65	80,000	Do,	
Deo.	5...	4.3	20,300	12.1	2,410 2,115	2.58	76,000	Do,	
	8.	4.3 3.8	30,000 28,200	12.4 11.7		2,415	2.46	60,000	1)0.	
	-10.	3.6	28,100	11.0		2,410	2. 46	00, 000	Do.	
	20.	0.5	21, 200	8.0		2,375	2. 02	43,000	Do.	
	21.	0.4	21, 000	8.8		2,372	2.03	12,000	Do.	
	22.	0.2	20,300	8.6		2,372	1.93	39,000	I) 0	
Jan.	1905.	1.5	23,300	0.7		2,300	2,31	54,00)	Do.	

a Obsorvations and reduction made undor dircotlon of Maj. Thos. I. Casey, Corps of Engineera. 'dabuLation in manusoript recelved from Major Cesey, Aprll 20, 1805,

House Doc. No. 50 ; Eist Cong., Ist: Sess.

Resulfs of discharge observations, Mississippi River-Continued.
FERRY IN KASKASKIA CHUTE,
[125 miles above Calro.]
[U. B. Engineer gauge at foot of Market strcot, St. Louls, Mo., whose zero is 400.22 feet above the Calro datum plano.]

NEAR BARNEN'IS.
[120 miles above Cairo.]
[U. S. Fngineer gauge at foot of Market strect, St. I,ouls, Mo., whose zero is 100.22 feet above the Cairo datum plane.)

$1897 .{ }^{\circ}$ Nov. \qquad	3.6	20,000	15		1,308	2.61	54,000	Rod floats.

CIIES'LINR, ILI.
[115.5 miles above Calro.]
[U. B, Enginear gauge at foot of Markot street, St, Iouls, Mo., whose zoro is 400.22 feet abovo the Cairo datum piane.]

$\begin{array}{ll}1808 . a \\ 100 . & 7 \ldots \ldots . . .\end{array}$	2.0	33,200	17.8		1,000	1.82	(11,000	Rod floats.
$\begin{array}{ll} & 1800 . \\ \text { neo. } & 7 \ldots \ldots \end{array}$	4.8	35,000	17.3		2,020	2.15	75,100	Do.
	37.0	107,700	30.0		2,700	7.70	820,000	10.
10...	38.0	114,600	42, 5		2,700	7.70	885,000	10.
11.	38.0	116,000	13.0		2,700	7.76	$0(\mathrm{H}, \mathrm{CO})$	Do,
13.	37.1	115,600	42.8		2,700	7.37	000, (0)	Do,
18..............	30.0	100, 100	37.2		2,607	0.26	628,000	Do.
1004. ${ }^{\text {b }}$								
Aprll 29............	33.6	103,000	38.1		2,704	7.47	769,000	1)0.
30, , m......	33.5	103,000	38.1		2, 700	7.82	774,000	Do.
30, p, m......	33.4	102, (100	37.7		2,706	7.63	768, 0×0	Do,
May 2, $\mathrm{m}_{\text {, in,..... }}$	32.8	101,800	37.0		2,705	7.00	713,000	Do.
2, p, m......	32.7	101,700	37.6		2,705	0.98	710,000	$1) 0$.
3, n. m......	32.3	103,300	38.2	2,704	0.68	690,000	$1) 0$.
3, p, m......	32.2	09, 700	314.0	2,701	0.63	601,000	1) 0
4............	31.4	100, 200	37.1 ${ }^{\text {a }}$	2,703	0.58	650, 000	1)0,
\%............	30. 2	09, 500	314.0	2,7(0)	0.05	002, 000	1) 0 ,
6............	28.0	03, 600	34.7	2, 607	8. 86	617,000	Vo,
7............	27.0	91, 100	33.8		2, 693	5.80	520, 000	1) 0.
0............	20.6	81, 200	31.3		2,1830	5.14	458,000	Do.
July 12............	28.1	91,000	34.0		2,701	5.01	515,000) 0.
13, A.m.....	28.3	04, 400	31.0	2,701	5.14	513,000	1) 0
13, p, m......	28.2	04,200	34.9	2,702	6.63	530,000	
14............	27.2	03,800	34.7	2,701	6.38	50.1,000	1) 0.
15............	25.8	01, 500	33.0		2,702	6. 10	475,000	Do.

HOI, SCITEN IANDING.

[04 milles aboc 70 Calro.]
[U. B. Fngineor galige at foot of Markot street, St. I.ouls, Mo., whose zero is 400.22 foet alrove the Calro dntum plane.]

[^24]
Results of discharge observations, Mississippi River-Continued. THEBES, ILL.

[44.5 mlles above Cairo.]

(The discharge section is about center of streat Immediately below Chioago and Fastern Illinols Rallread depot. It is about 9 miles below Cape Girardeau, Mo. The overbank discharge was measured on right bank along rallrond, parallel to river, abont $2 \frac{1}{2}$ milles below Cape Girardeau. Velocllies measured with Haskell metor and dowblo floats. M, IR. C. gauge at Cape Girardeau, whose zero is 324.97 feet above the Cairo datum plane. Observations and reduction made under direction of Capt. Wm, B. Ladue, Corps of Engineers, secretary of Misissippl River Commission. Tabulation In Report Chiof of Engineers, 1903, supplement, p. 112, and 1905, p. 115.]

Date.	Gauge reading.	Area of cross sectlon.	Depths.		Wldth.	Mean voloclty jer second.	Dischargo per second.			Mathod.
			Mean.	Maxi111111.			Rlver.	Bank.	Total.	
1003.	Fect.	Sq. ${ }^{\text {fa }}$	Feet.	Feel.	Fect.	Hect.	Cu, 16.	Cu.ft.	Cu. ft.	
June 6	31.83 33.73	98,000 102,600	37.9 30.7	49.8 52.4	2,588	7.03	691,0¢0 750,000	a 1,000	75i,000	Moter.
	34.43	104,800	40.5	62.8	2,588	7.01	831,000	- 1, 000	835,000	DO.
$10, \mathrm{a} . \mathrm{m}$.	34. 03	- 105,200	40.7			8.17	880,000	a 7,000	887,000	D) $11 b 1 a$ floats.
10, 1 , m.	35. 23	- 105, 200	40.7			8. 40	884,000	a 7,000	891,000	Motor.
11......	35. 43	105,700	40.9	62.4	2,580	8. 49	898,000	a 9,000	907,000	Do.
12, m. m.	35.83	\% 105,700	10.0			8. 18	805,000	a11,000	876,000	Doいblo floats.
12, p, m.	35. 08	- 105,700	10.9			8. 50	905,000	111,000	918,000	Meler.
13.....	30. 13	105,700	10.9	62.8	2,580	8. 60	909,000	112,000	921,000	Do.
14.	38. 33	c 105,600	40.8			9. 47	1,000, 000	11,000	1,014,000	Do.
15.	36.13	105,600	40.8	52.7	2,580	9. 42	905,000	14,000	1,009,000	1)0.
$\begin{array}{r} 1004 . \\ \text { Apr. } 29 . \end{array}$	33.0	09,500	38.3	52.2	2,000	7.21	721,000			Do.
30.	33. 8	101,600	39, 1	51.5	2,600	7. 12	771, 0×0			1).
May 1.	31.1	101, 700	40. 3	52.5	2,000	7. 00	805, 0100			In.
2	3.1. 0	101,000	40.3	52.9	2,000	7.36	772,000			$1) \mathrm{O}$
3.	33.0	105,300	10.7	54.1	2,600	7. 43	7813,000			Do.
4.	33.4	103,300	39.7	53.1	2,600	7.29	753,000			$1{ }^{1} 0$.
6	32, 0	101,500	30.0	65.2	2,600	6.78	683,000			[10.
	32.0	100, 400	38.6	51.8	2,600	6. 36	638,000			10.

a All overbank discharges ware deduced from observations made oa Juno 15.

- Intorpolated.
c Usod nrea of June 16.
f'The discharge section is at stront Immedintoly above Chicago and Eastern Illinols Rallrond depot. It is about 9 milas bolow Capo Girardenil, Mo. Velocitiss meissured with l'ricomoters Nos, 22 nind 43 and doublo flonts. M. R, C. gauge at Capo (Ilrardoan, Mo., whose zoro is 324.97 Peot abovo tho Calro datum plano. Obsorvathons and roductions made under direetton of Capt, (F . R. Lakesh, Corps of Engineors, secrotary of Misissippi IIVer Commisslon. Zero of local gatgent discharge seotion is 335.88 foot above the Cairo datim plame.)

Date.	Canges.			Cross suction of dischargo.					
	Standard gange.	I,ocal.	Change III 24 hours.	Aroa.		Dopth.			
				Wator.	Bolow datum,	Mean.	Mbal datum.	Maxmull.	Width.
	Ficet. 30. 10	Fiect. 13.55	F'el.	Sq. feel. 93, 100	Sq. fert. $101,572$	Feet. 37.7	Ficel. 41.1	$\begin{aligned} & \text { Fecl. } \\ & 5.5 .0 \end{aligned}$	$\begin{aligned} & \text { Fecl. } \\ & 2,470 \end{aligned}$
6, 1.1 l .	30.20	13.65 13.01	$\because 0.00$	02, 130	100,161	37.3	10.7	63.0	2,170
8, n, iil.	30. 20	13.01	. 00	80,080	08,304	30.4	30.8	51.0	2,470
$8, \mathrm{p} .11$.		13.61							
0, a, II.	30. 30	13.69 13.69	$+.08$	92, 312	100, 408	37.1	40.7	62.0	2,170
10, 1......	30. 20	13.6 13.70	+. 01	87,055	00,057	35.0	38.0	48.0	2,170
11.	30. 30	13.74	-1. 04	88,385	90, 389	35.8	30.0	80.0	2,470
12.	30. 30	13.81	+. 07	88,005	95, 805	35.7	33.8	18.0	2, 170
13.	30. 40	14.00	+. . 19	87,202	04, 1583	35.3	38.3	48.0	2,470
11.	30.90	14.35	+. 35	87,075	01, 471	38.6	33.2	40.6	2,170
$16, \mathrm{n}, \mathrm{m}$.	31.30	14. ©0	+. . 25	89,005	05, 784	36.1	38.8	48.0	2,470
$15, \mathrm{p} . \mathrm{ml}$.		14. 15							
16.	31.80	15.00	+1. 40	01,438	06, 328	37.0	39.0	18.0	2,170
17.	32. 30	18.60	+. . 60	92,730	06, 3 So	37.6	30.0	10. 0	2,170
18.	33. 00	16.05	+. 15	03,370	05, 014	37.8	34.8	61.0	2,170
10.	33. 10	10.30	+. 3.35	05,210	J (i, 800	38.5	30. 8	40.0	2, 470
$20, ~ \wedge .17$.	33. S0)	16. 13.5	+. . 35	01,045	05,711	38.1	38.7	10.0	2,170
20, 11. 11.		10.67							
31.	31.10 34.10	16.83	.+	98, 572	05, 043	38.7	38.8	48.8	2, 170
23.	34.10 34.10	10.94 10.88	+ $\cdots .11$ \cdots	8., 112 00,202	06,611 00,292	38.6 30.0	38.7 30.0	10.0 10.0	2,170 2,170
24.	33. 00	10. 02	$\cdots . .08$	0,	0,420	30.0	3, 0	10.0	2,170

Results of discharge observations, Mississippi River-Continued.

THEBES, ILI,--ContInued.

Date.	Scour or flll.	Mean volocity per second.	Dis. charge per second.	Method,		Direction and force of wind.
$\begin{aligned} & 1008 . \\ \text { June } & \text { 6, } \\ \text { a. } & 11 \mathrm{l} . . \end{aligned}$	sq. seel.	Fect. 0.74	Cu. feet. 627, 269	Double floats. . . .	13828	
Jun 6, p. m...		$\begin{aligned} & 6.38 \\ & 6.38 \end{aligned}$	593, 5 5 4	Double foats. ${ }^{\text {a }}$	10 28 10 \ldots	VI. IIght. V. Brisk.
7.......	$\cdots \cdots 118{ }^{\circ}$	7. 32	674, 730	Moter.	$15 \cdots$	Do.
8, a, m.	-2,150	7.37	602, 773 10	1436	V1. Strong,
$8, \mathrm{p} . \mathrm{m}$.		7.77	699, 333 10	$15 . .$.	VII. Sirong.
9, a. m.	+2,165	7.59	700, 460 10.	13 30	IX. Light.
9, p, m.		7.69	710, 100 do.		Calm.
10..	$\cdots 4,112$	7.74	880, 102do	$13{ }^{13}$	V. I, ight.
11.	+ 331	7.67	678, 10.4 do.	14	Calm.
12.	$\cdots .493$	7. 69	tirs, 819do.	$13{ }^{13} 13$	VI. Brisk,
13.	$\cdots 1,212$	7.80	ciss, 818do.	1543	VI, Strong.
14.......	-182	7.67	674, 8.801do.	1430	XI. Ifght.
$16, \mathrm{n}, \mathrm{m}$,	$+1,313$	7. 19	673,390	Doinblo flonts.....	13 30	X. Brisk.
15, p. m.		7.85	705, 400	Moter and double floats.	13	
11.	+. 54	7.16	652, 778	Donblo floats.	1238	IIT. I, ${ }^{\text {dight, }}$
17.	+ +58	7. 75	718, 151 do	13.34	IV, J.lsht.
18.	$\cdots .172$	8.10	757, 039	. ${ }^{\text {do }}$	11.42	VI, Strong,
19...	+ 070	8. 55	813,082	Moter.	11.38	VI, light.
20, A. m.	$\cdots 1,179$	8.93	847, 701	Meter and donble flomts.	1240	VII. Jight.
20, p. m.		8. 18	805, 1.11	Doublo floats. . . .	11.	Do,
21.	4.232	8.33	706, 391do.	12 ll	VI. Light.
22.	\cdots - 102	8. 60	820, 627	$\text { . . } 10$	1414	
23.	+ 751	8.30	805, 437	. do	1340	VII. I, ifht.

HUF゙MAO ISLANJ.
[30) mitles move Cadro.]

Results of discharge observations, Mississippi and Ohio rivers.
OAIRO, II,
(Col. W. I. Abbot is authority for discharge of isss, whith is given for bolow the mouth of the ohlo River, seo Report Chlof of Enginmors, 18it, 1. 339. Thin stane is here assumed to he maxhmum for that year. Tho 1891 disoliarges ara prlated in Roport Chiof of Eugheers, 1s92. P. 3127 ; tho measurements wern
 River bolow the month of tha Ohfo. All the gange readngs were taken at caro mad aro roferred to the present Unted states anfiner gatgo thero, whose zoro is 200.8 s teot abovo tho Catro dathan phane, survoy MIssissippl River.)

[^25]
Results of discharge observations, Mississippi River--Continued.

COLUMBUS, KY.
[The discharges of 1801 to 1803 were all measured at the same place, except that the Missouri end of seotion was moved upstream about 60 feet $\ln 1593$. 'rhis location is about 300 feet abovo the rallroad frolght dopot in Cohmbus, and abont 2200 feet below the seetlon of 18515.2 . Tho 1891 series is printed in Report of Chiof of lingincers, 1892, page 3127; tho 1592 serles in Report of chfof of Eingincers, 1893, page 3ti82. The 1893 serles will nypear in Report of Chidef of lingheors for 1894 . Tho gange rondings given are all as observed on the belmont gange by the diseharge partles. The zero of this gange to 1800 was 287.14 feet above the calro datum phane, In November, 1892, the low-wnter section was found to be at this elevation, but the upper sections were 88 . sh feot above tho (hairo datum and the low-wator sectlon was changed to agree with the upper ones; tho gaugo has been matntalned at the same alovation since 1802.
 above than Calro datitm phane. lirom lkiz to 1882, inclusive, the gathos of tho disoharge partles were at diforont alevations, and to reduer them to tho present M. R. (\because gabig at Bolmont, whoso zero is 280.85
 A.'s gango, 1857-is, 2 feet have bern alded; Mafor Stler's gatge, 1879, 3.05 fect have beon subtraeted;

	Date.	Gange rem. ing.	Area of eross section.	Dopths. Momin. Maxi.	Wldth.	Moan voloc. liy per secold.	Discharga por second.	Method.
	1857.	Prel.	Sq. /eel.	Ficel. Pret.	Fect.	Fiect.	Cubic feel.	
Dee.	11.	23. 1				6.74	602, (00)	Doriblo flonts.
	12.	25.1				6.41	810,000	lo.
	11.	29.6				7.05	015,000	Do.
	15.	31.0				7.68	1,031, 000	10.
		32.0				7.09	1,138,000	Io.
Jan.	13.......	2.1 .4				$\therefore 20$	Bisk, (kM)	Ho,
	11.	23.5				4.00	(ixi, ik) 0	Do,
	16.	29.18				4. 70	5 $53.3,000$	Do.
	18.	23.2				6. 01	(117,000	Do,
	10.	23.9				5. 13	(i. $10,0 \times 0$	10,
	20.	2.13				6.45	bitio, (0)	10.
	23.	23.0			4.91	603, 000	10.
		?(0) 7			1. 17	538, 0×0	10,
	27.	\%(1). 0				1. 14	615,000	10.
	29.	19.3				1. 12	(A)7, 0×0	150.
	30.	19.7				4.10	[311,000	Do,
Fob,		19.3				1. 12	[07,000	10.
	5.....	19.0				4.23	182, 000	Do.
	6.....	18.13			...	1. 10	171, 000	1)0,
	8....	18.1				4.35	170,000	Do,
	$11 . .$.	17.8				1.14	4131, 0100	[10,
	18.	18.0	4. 12	dii, (4)0	10,
	20	18.3				1.05	A 16.510×0	10.
	23.	16.9				3. 3.2	.190, 060	Do,
	2.15	16.3 16.9			3. 0	101, 0100	10.
	25.	16.9				3. 72	396,1000	$1) \mathrm{O}$
Mar.		18.18 19.1				3.72 4.85	$\lim _{625,000}$	100.
	5.	90.8				1.83	S 810,1000	1)0.
	9.	20, 3				1. 67	331, 0×0	$1)$.
	10.	20.0				4. 203	820,000	$1) \mathrm{O}$
	11.	20.1				4. 13.4	830,000	Do.
	13.	20.8				4.68	659,000	$1) 0$.
	13.	21.7				4.87	6s. 1,000	$1) 0$.
	Is.	29.3				6.01	607, 000	$1) 0$.
	29.	31.1				6. 00	031, (x)	170.
	23.	$3: 9$				7.34	1,061, (000	1\%
	3.4	31.2				7. 10	1,099,000	$1) \mathrm{O}$
	25.	35.2				7.10	1,104,000	$1) \mathrm{O}$
	20.	331.0				7.47	1,130,000	$1) 0$.
	20.	314.7				7.24	1, 105,000	Do,
Apr.	1.	315.3				7.08	1,050,000	$1) \mathrm{D}$
	2.	34.0				6. 59	$00 \mathrm{O}, \mathrm{OXO}$	$1) 0$.
	3.	32.1				6, 183	017,000	Do,
	0.	25.4				6. 61	710,000 710,000	1)0,
	7.	23.1				6. (0)	623,000	Do.

 presont Mississippl Rlvor Commisilon gampant Bomont, aeross tho rlvor from Columbus; tho earg of this sange ls extiss fot abovo tho ('alro datime plano.

Results of discharge observations, Mississippi River-Continued.
COI,UMBUS, KY.-.Continued.

	Date.	Gange readling.	Area of cross section.	Dopths.		Wldth.	Mean veloelty per second.	Djschargo per second.	Sothod.
				Mean.	Maximuml.				
Apr.	1858.	Feel.	Sq. feet.	Fcct.	Fect.	Itat.	rect.	Cubie fret.	
		21.3					1.77	54is, 000	Double lloats.
		25.2					6. 35	682,000	
	15.	27.6					1i. 0.4	800,000	Jo.
	21.	33. 38					7.11	$1.031,000$ $1,0 \div 1,000$	Do.
		36.4					7.37	1, 12, 0,0100	1).
	24.	38.7					8. 012	1,241,000	Do,
	27.	39.3					7. 41	1, 233,000	Jo,
	30.	38.1					7. 15	1, 113, (000	1)o.
May	1.	36.9					1. 8.5	1, $1 . x), 000$	10.
		31.5					¢. 198	N1:3, (x)	1) 0.
		30.0 25.8					S. 16	73:000	1)0.
	7.	28.3					-. 31		10.
	8.	28.4					5. 55	\%ST, (4)0	1).
	11.	31.4					1i. 31	SSu, (140)	
	12.	33.0					i. 61	Gisi, (k)	110.
	13.	33.6					ii. 10	970, 000	$1) \mathrm{O}$
	11	34.2					1. 6.3	1,002, (090	10.
	$1 i$	35.0						1,011, (060	I) 0.
	18.	35.0					6. 77	1, (0)R, (x)0	Do.
	10.	34.9					6. 76	1,100, 0000	IVO,
	21.	34.7					ti, tii	932,000	Do,
	25.	36.2					7. 11	1, 1275.000	Jo.
	27.	37.9					7.29	1, 133, $(x) 0$	1).
	29.	38.3					7. 20	1, 1.11, 0100	1)0,
June	1.	39.1					7.31	1,143,000	Do.
	2.	33. 1					7.35	1,151,000	170.
	3.	3 S .6					7. 10	1, 161,010	$1)$
	7.	39.0					7. 515	1, 20xi, 0000	$1)$
	8.	40.1					7.63	1,222, 1000	1)o.
	12.	+10. 4					7.60 7.68	1, 2. 11.000	1)0,
	14.	41.8					8.04	1, $315,1 \times 00$	10.
	15.	42.1					S. 19	1, 3.19, 0100	Do,
	16.	42.3					S. 811	1,368, 1000	Jo.
	17.	42, 5					S. 17	1.403, $\times 10$	1)0.
	18.	12. 7					S. 15	1. $1031 \times 1 \mathrm{NK}$	Jo.
	10...	42.7					8. 13	1. $4(0), 000$	10.
	$22 .$.	12.0					8.31	1,333, (x)	1 O
	25.....	42.2				7.80	1, mid, (x)	10.
	28...	40.0					7.67 7.23		10. 10.
		38.7					0, 0.1	1, $0!1 \times 10$, (x)	10.
	30..	37.0					(i, '1)	919\%,000	$1)$
July		35. 3					5. 612	$8.11,(x)$	1)o.
	2.	32.8					6.14	$7 \% 0.0 \times 0$	110.
	3.....	31.8					4.81	$00^{01,00}$	1)0.
	6.....	28.0	,				4.63 1.60	$619,1 \times 10$ 602,000	$1) 0$. 10. 10.
	$7 .$.	25.7					1. 12	56, 8,000	1)0,
	8.	24.0					4. 21	(333, 100)	Do.
		24. 2					3.99	5	$1) \mathrm{O}$
	12....	22.8					3. 912	477, 0×0	$1) 0$.
	13....	22.4					3.83 3.81	Sij, (x) (liti, (x)	1)0. 1) \%
	11...	22.1 22.2					3.81 3.81	$.16 i 4,0 \times 0$ $(6 i 0,(X)$	No. 10. lo.
	10.	21.0					3. 60	443, (0)	$1) \mathrm{O}$
	17.	21.6					3.65	425,000	1)0.
	110.....	21.0					3.70	$418,0 \times 0$	150
	20.....	9.7					1.0 .4 4.15	$193,(x)$ $621,(000$	10.
	${ }_{22} 1 . .$.	3.4				4.15 4.6 .4	bil, (0) SOti, (10,
	24.	20.8					4.88	0330, (x)	Do,
	20.	27.0					1.99	60\%, 6 kNO	1)0,
	27.....	28, 2					1. 97	Bits, (x)0	$1) 0$
	28.	28.2					1. 01 1.01 1.01		no.
	20. 30.	27.0 27.1 20					1.81 1.14 1.4	662, (x) (11, (x)	no,
	31.	20.3					1.63		$1) 0$.
Aug.		3.14					4.22	633, 13×0	110.
		23.8					1. 13	611.0×0	1)0.
	4.	43. 2					$1.01)$	193,000	Do.
	II, 10\%, 50, $81 \cdot 1 \cdots \cdots \cdots$								

Results of discharge observations, Mississippi River-Continued.
COLUMBUS, KY.-. Continued.

Date.		Gange read. ing.	Area of oross section.	Depths.		Wldth.	Mean veloclty per second.	Discharge per second.	Method.	
		Moan.		MaxiIntill.						
Alig.	1858.		Fect.	Sq. feel.	Fect.	Fect.	Feet.	Feel.	Cubic feel.	
		22.7					3.03	4S0, 010	Double floats	
		22.5					3.04	479,000	1)o.	
		22.3					3.117	480, 000	Do.	
		22.9					4. 105	196, 000	Do.	
	10.	23.1					4.05	406, 000	1)o.	
	11.	20.1					4.14	495, 000	$1) \mathrm{O}$	
	12.	22. 22.3					3.93 3.38	480,000 468,000	Wo.	
	14.	21.8					3.9 3.90	f(6is, 010 $.43,000$	Wo.	
	16.	$\because 0.9$					3. 16	432, 000	Do.	
	17.	20.6					3.75	411,000	110.	
	18.	20.3					3.35	391, 000	Do.	
		19.1					3.33	$385,0(0)$	10.	
	20.	19.5					3.33	3383,000	10.	
	21.	18.9					3.28	360, 000)	10.	
	23.	17.9					3. 26	3614, 0100	$1) 0$.	
		17.3					3. 08	340, 000	130.	
	25.	16.7					3.05	333, (x)0	100.	
	26.	lii!					2.80	3300,000	110.	
	27.	15.7					2.75	$2(1) .9015$	10.	
		15.0					2.35	268,000	110.	
Sopt.	2...	14.7 13.9					2.87 2.49	280,000 $257,(X K)$	170	
		12.9					2.33	235, 0(0)	110.	
	7.	12.4					4.20	228,006	1)0,	
	8.	11.9		.			2.24	221, (00)	17.	
	9..	11.5		-			2.24	210,000	10.	
	10..	11.2		.			2.28	292, (0)0	10.	
	11.	11.0		.			2.18	212,000	110.	
	13.	11.1		.			2.17	211,000	110.	
	14.	12.4		-			2.48	217, (X)	Do,	
	15..	13.4		- .			2.51	250, 00x)	Do.	
	16.	13.5		.			2.80	206,000	1)o.	
	17.	13.5					2. 60	256, 000	$1) \mathrm{O}$	
	18....	13. ${ }^{13} 7$.	.		2. 30	254,000	Do.	
	20....	12.7					2. 18	210,000	Do.	
	$21 . .$.	12.3					2.30	238, 000	$1) \mathrm{O}$	
	$22 . .$.	11.1 11.9					2. 313	233,000	Do.	
	24....	10.5					\%	223,000	Do.	
	27.	0.3					1.08	185, 000	10.	
	29.	8.8					1.00	181,000	Do.	
	30.	8.5					1.00	174,000	$1) \mathrm{O}$	
Oot.	L.	8.3					1.94	177,000	1).	
	2.	S. 1					1.78	102,000	$1) 0$.	
	1...	7.7					1.77	159, 000	$1) \mathrm{O}$	
	6...	7.3					1.67	110,000	$1) 0$.	
	$8 .$.	6.15					1.80	110,000	1)o.	
		B. 7					1.66	140,000	$1) \mathrm{O}$	
	11.	3. ${ }^{1} 1$					1.62	141,000	Do.	
	12...	6. 0					1.07	141,000	Do.	
	13...	5.9					1.56	134,000	Do.	
	14.	5.8					1. 50	137,000	Do.	
	15.	5. 0					1.55	133,000	$1) \mathrm{O}$	
	10.	5.5					1.61	120,000	Do.	
	18.	5.3				1.56	130,000	Do.	
	19.	5.2					1.68	134,000	Do.	
	20.	5.1					1. 60	136,000	Do,	
	21.	5.1					1.54	131,000	Do.	
	22.	5. ${ }^{2}$					1.68	134,000	1 Do.	
	23.	5.8					1. 56	132,000	10,	
	25.	5.4					1.55	132,000	Do.	
	26.	5.6					1.58	135,000	Wo.	
	28.	6.7					1. 0.4	110,000	Do.	
	$20 .$.	5.9					1.62	110,000	1 O	
	30....	6.0					1.67	114,000	Jo.	
Nov,	3....	10.0					2. 10	230, 000	170.	
	4....	11.3					2.02	285, 000	$1) 0$.	
	$5 .$.	13.8					3. 15	36.1, 000	$1)$	
	$8 .$.	18.0					3.05	142,000	Do.	
	'...	17.0					3.80	431,000	$1) 0$.	
	10...	17.6					3.70	420, 000)0,	
	11.	17.1				3.78	117,000	1)0.	
	12....	17.0					3. 85	400,000	130.	
	16.....	15.0			,		3. 10	358,000	Ho.	

Results of discharge observations, Mississippi River--Continued.
COLUMBUS, KY.-Continued.

Date.		Gauge reading.	Area of cross section.	Depths.		Width.	Mean veloclty persecond	Discharge per secund.	Method.	
		Mean.		Maxi- mum						
	$\begin{array}{r} 187 . \\ 28 . \ldots . . \end{array}$		$\begin{aligned} & \text { Fect. } \\ & 22.8 \end{aligned}$	$\begin{aligned} & \text { Sq. feet. } \\ & 121,500 \end{aligned}$	Fect. $\cdots \ldots .0$	Fect.	Feet.	$\begin{gathered} \text { Feet. } \\ 4.23 \end{gathered}$	Cubic feet. $514,000$	Doublo floats.
Mar.		22.4		62. 49		2,4io			Do.	
		21.6	118,700				3.02	405, 000	Do.	
		21.2 21.3	118,200 118,300				4. 03	480, 0000	1 DO	
		21.3 21.4	118,300 118,300				4.03 4.02	480,000 470,100	Do.	
		21.3	118, 040				3.97	409,000	Do.	
		20.9	117, 100				4.00	479,000	Do.	
		20.7	110, 600				4.07	474,000	Do.	
		20.7 23.0	116,400 122,000				3.04 4.40	1591,000 537,000	No.	
		25.1	134,200	66.00		2,410	4.82	017,000	Do.	
		26.2	1336,200	65. 45		2, 110	4.05	675,000	Do.	
		20.5 28.4	137,700	${ }^{56} .14$		2.100	4.91	676,000	Do.	
		29.1	138, 700	6.138		-2,370	5.37 5.7	745,000	Do.	
	27.	29.4	139, 800	63. 34		2,400	5.34	746,000	Do.	
	28.	20.3	$1.11,010$	64.73		2, 400	5.26	742,000	Do.	
	30.	29.3 28.7	$1.12,600$ 135	54. 24		2,400 2,400	5.26 6.29 8	750,010 732,000	Do.	
Apr.		28.4	142,300	65. 189		2,400	5. 10	734,000	Do.	
		28.4	130,200	52. 18.8		2,470	6. 10	705,000	Do.	
		28.8	138, 500	62. 48		2, 16	6. 30	731,000	I).	
		28.4	137, 1100	52.05		2.450	6.25	722,000	Do.	
	11.	20.3 20.3	133, 400	${ }^{62} 68$		2,150 2,150	4.73	631,000	Do. Do.	
		27.2	139, 3(10)	5.426	2.450	5.05	009,000	1).	
	14.	27.8	131, 160	51.02		2, 150	5. 09	687,000	Do.	
		27.8 27.5	134,100 132,140 18	52.20 51.08		2, 2,450	4.80 4.88 8	652,000 662,000	Do.	
	21.	27.3	131, 160	51.08		2,430	5. 00	655,000	Do.	
		?6, 6	133, 100	63.10		2, 4.10	4.72	631,000	Do.	
		210.0	131,200	51. 41		2, 460	4.98	651,000	Do.	
	24.	25.1 24.0	12, 124.109	31.06 31.39		? ${ }^{2}$, 450	4. 12 4.18 18	563,000 520,000	Do.	
	27.	? 2.0	120, $7(6)$	62. 18		2.450	4.05	190, 000	10.	
		31.1	119, 610	52.81		2,450	3. mo	4 413,000	「0.	
May		18.8	$113,8(1)$ 11,800	51.32 58.20		2, 2×10	3.77 3.103 18	429,000 405,000	170.	
		18.0	111, 000	32. 68		2, 150	3.38	375, 0100	10.	
		15.2	1(0), 200	50.88		2, 450	2.99	209, 000	Do,	
		14.6	9.9, 006	5006			2.97	203,000	Do.	
		14.1 13.1	-99,200	31.91 40.90		2, 2.150	2.9 .1 2.77	201,000	Do.	
	10.	13.3	100, 200	61.09		2, 450	2.68	250,000	10.	
		13.0	05, 4 (k)	1072		2, 450	2.05	253,000	$1) \mathrm{O}$	
		13.0	00, 300	50.43		2, 450	2.105	255, 000	$1) 0$.	
		12.8	00, 500	62. 03		2, 150	2.71	273,0000	$1)$	
		12.5 12.3	901, 000	62, 410		2,450 2,450	2.73 2.87 2.	2050 20000 20000	Do.	
		12.2	96i, 400	- 51.16		2 2,450	2.13	25:3, 1000	10.	
		12.2	(36), 200	50. 80		2, 400	2.10 .5	255,000	1 O	
		12.2	95, 900	${ }^{62} .102$		2, 460	2.133	251,000	D0.	
	$2:$	11.8	-08, 080000	\$2.55		2, 2 , 450	2.183 2.60	250,000 255,000	D0.	
	23.	11.4	$0.1,000$	61.50		2. 450	2.60	244,000	no.	
		11.2	83, 010	61. 13		2.150	2. 10	224,000	Do.	
	25.	11.2	93.200	51. 13		2.450	2. 17	230,000	1 D.	
	26.	11.2	92,700	51.21		2.450	2. 45	227,000	no.	
		11.3 11.2	00,500 94,100	52.62 52.20		2, 2,450	2.51 2.50	242,000 230,000	Vo.	
	20.	11.3	05, 100	52. 12		21. 450	? 2.80	238, 000	1 O	
		11.7	04,300	51. 37		22,450	2.57	243,000	Do.	
Juno		14.2	103, 000	$6^{63} .83$		2.150	3.07	318,000	10.	
	3.	14.8	101.000)	52. 10		2.450	3. 10	324,000	1)0,	
		${ }_{15}^{15.2}$	$10,2,7(0)$ 103,400			2, $\begin{aligned} & 2,150 \\ & 2,150\end{aligned}$	3.12 3.19	319,000 330,000	No,	
		10.3	100, 100	52. 43	2,440	3.30	302,000	Do.	

a The observations of 1870 wne mado under ilfrection of Ma). (\therefore. R. Suter, at request of Boad of Engincars
 Gaugo reallags aro reforred to present Mississipph River Commlsilon gauge it Belmont. The dischargo section of 1870 is about 1, ,Bot feol, above the rallroud dopot at tho lower ond of the town of Columbus, and ilbont 1,300 feot above the sectlon of 1903.

Results of discharge observations, Mississippi River-Continued.
COIUMBU8, KY.-Continued.

 gaugo rondlugs are reforred to tho present M. R. C. gange at Belmont.

- Ceter veloellies observod at mild dopth and not correctod.

Results of discharge observations, Mississippi River-Continued.
COLUMBUS, KY.-Continued.

Date.		Galige readIng.	Area of cross section.	Depths,		WIdth.	Mean velocity per secoud.	DIscharge por second.	Method.	
		Mean.		Maximum.						
Mar.	1882		I'eet.	Sq. feel.	Feet.	Feet.	Fecl.	Freet.	Cubic feet.	
	4...	44.0	186,500	70.0	98.0	2, 8.10	7.84	1, 403,000	Rod lluats.	
		43.4	186, 100	70.1	05.5	2,054	7.62	1, 430,000	IDo.	
		43.1	184,000	69.3	89.5	2,653	7.62	1,403,000	1)0.	
		42.0	180, 600	68, 4	89.5	2,041	7.69	1,390, 000	Do,	
	10.	42.5	181, $8(0)$	68.8		2,041	7.22	1,324,000	DO.	
	11.	42.4	178,000	87.7	88.5	2,030	7.35	1,313, 000	Do,	
	13.	42.5	185, 100	70.0	92.5	2, 344	7.35	1,301,000	Do,	
	14.	42.6	185, $8(0)$	70.2	92.5	2,040	7.09	1,317,000	10,	
	15.	42.7	188, (\%)	70.3	89.0	2,043	7.12	1,380,000	Do.	
	16.	12.0		70.2	(12.0	2,0.13	7.35	1,366,000	1)8.	
	17.	42.4	187, 100	70.9	88.5	2,045	7.14	1,339, 000	Do.	
	21.	11.1	182, 900	08.7	84.0	2,035	B. 39	1, 108,000	Meter.	
	22	40. 5	187,500	71.2	90.0	2,03.4	6. 09	1, 142, 000	$1) 0$.	
	23.	39.8	18.2, 400	69.3	86.0	2,032	6.77	1, $0033,0 \times 0$	$1)$.	
	24.	39.1	183,200	09.1	87.0	2,030	5.81	1, (085, (0)0	Do,	
	25.	38.6	1711, $8(0)$	67.3	82.0	2, 027	6.16	9060, 000	1)0.	
	27.	34. 2	178, $9(0)$	08.1	82.0	2,025	6.60	1,001,000	1).	
	28.	$33^{4} 1$	178,900	68.1	82.0	2,024	6.13	972, 0×0	1)0,	
	29.	38.1	179, 5(1)	68, 5	82.0	2, 32.4	6.61	091, 000	1) 0.	
	30.	3s. 2	180, 500	08, 7	84.0	2,028	0.05	1,092, 000	$1)$.	
Apr.	1.	38.4	181, 4100	69.0	86.0	2,631)	5.90	1,070, 1×14	1)0,	
	3.	38. 3	180, 90 ${ }^{\text {(1) }}$	68.7	86.0	2,1031	6.04	1,075, 1400	10.	
	1.	37.6	17s, $80 \times$	6i8. 10	86.0	2,128	5.75	1, (0) $2,(\mathrm{xX})$	1)0,	
	5	33.7	177, 700	67, 7	85.0	2, 13, 2	5. 10	(170, (0)0	1) 0	
	6.	33.2	172, 300	05.8	84.0	2,019	5.22	899, (100	Do.	
	8.	31.0	1132, 600	62.7	70.0	2,680	4.70	773, 000	Do,	
	10.	33.1	104,300	03, 5	81.0	2, 548	4.50	803) 3.000	Do.	
	11.	32.2	104, 0×60	63.3	80.0	2,690	1.8 .1	703, 0×0	Do.	
	12.	32.2	104, 700	63, 6	81.0	2,690	4.01	$813,0 \times 0$	$1) 0$.	
	13.	32.0	16.1, 000	03.7	80.0	2, 3190	4.77	78060	Do.	
	14.	31.7	162, 01 K$)$	63.0	80.0	2, 390	1.74	772, 000	Do.	
	15.	31.7	182,900	63.0	80.0	2,590	4.78	779, 000	$1) 0$.	
	17.	32.2	16i\%, 300	62, 7	80.0	2, 6190	4.00	795, 0×0	1) 0.	
	18.	32.2	183, 6100	63, 0	80.0	2,695	1.05	810,600	Do.	
	10.	31.7	16i0. 900	62.1	77.5	2,501	4.41	7(x), 000	Rod flonts.	
	20.	310.8	157, (NX)	60.9	76.0	2,678	4. 43	69\%, (x)0	Do.	
		29.8	15.4,3(0)	60.0	2S0	2, 678	4. 69	708, 0010	Motor.	
	22.	: 1.1	15.1110	51.5	70.0	2, 6.58	4.33	6:3, 100	Do,	
	24.	27.1	118.700	68.18	71.0	2, 633	4.31	8310, (x)	Jo.	
	25.	$\because 7.18$	160, 800	60.1	75.0	2,638	4.37	665, 000	Jo.	
	20	28, 0	161,000	69.8	74.0	2, $5 \cdot 10$	4.20	838, (0)	1)0.	
	27.	28.1	151.000	69.1	75.0	2, 6.38	4.16	627, (x)	Do.	
	20.	29.2	15,3, 6 in	00. 1	71.5	2, 6.5	4.19	(1.4, (0)0	Rod floats.	
Mny	1.	31.7	15.3, 5100	59.8	74.1	2, 6143	4.30	801,000	Do.	
	2.	20.0	15.1, 810)	60.3	70.0	2, 5018	4.62	713, (0) 0	Meter.	
	3.	30.0)	15.4.000	60.2	77.0	2,670	4.50	60\%, (kx	Do.	
		30.0	168, 900	61.7	71.0	2,675	1.60	725, (0x)	10.	
	6.	20.8	158, 810	81.0	71.0	2, 673	4.43	005, (0x)	1) 0.	
	${ }_{8} 8$.	20.6	13.3.800	60.9	77.0	2, 1688	4.54	899.10×0	$1) 0$.	
	8.	28.6	1118,500	67.9	71.0	2,505	3.88	677,000	1) 0 ,	
		29.8	159, 810	61.8	70.0	2,685	4.77	762, (0)	1)0, 6	
	10.	32.8	181, 0 (0)	02.1	78.0	2,602	5.32	857,000	$1) 0$.	
	11.	3.1 .8	170. 6160	65.8	81.5	2,003	1.03	85, 1,000	Rod flonts.	
	12.	31.4	171,700	03.8	87.0	2, 600	6. 10	028,000	Jo,	
	1.15	37.3	181.000	69.0	M0. 0	2,02.	6. 6.5	1, 0) 1, 000	I) 0.	
	15.	38.5	181, 100	69.0	87.5	2,027	5. 79	1,0.10,000	Io.	
	117.	38.5	181, 400	69.1	88.5	2,027	5.7.1	1,041,000	Do.	
	17.	38.1	181,700	60.2	88.0	2, 1027	6. 57	1,012,000	1)o.	
	18.	38.3	175. 600	68.7	88.5	2, 8,38	6.69	909,000	10.	
	11.	38.4	178,200	07.13	86.0	2,835	6. 81	1,011,000	Moter.	
	± 2.	38.0	180, 180	0.83	88.0	2, 11313	0.05	1,006, (00	1)0.a	
	23.	39.0	170,100	07.0	85.0	2,0130	0.11	1, 111,000	1)0.9.	
	2.5	38.2	178, 190	17. 6	84.0	2.0335	6.01	1,06i2,000	1)o.	
	20.	37.1	175,000	6in. 6	81.0	2, 1332	6. 610	980,000	$1) \mathrm{O}$,	
	27.	30.2	171,000	O5. 2	81.0	2,021	6. 25	608,000	1\%o,	
	30.	34.6	108, ino	61.3	81.0	2,013	6. 3.3	STM, 0 ($)$	W0.a	
	31.	35. 6	17\%, 600	nisi, 0	81.0	2,010	6.63	0i1,000	100.0	
Juno	1.	30.6	17.1, 70)	60.5	88.0	2,020	6.78	1,011,000	$1) 0$.	
	2.	37.3	175, 100	60.0	81.0	2,032	6.03	1,011,000	1)0.	
	3.	37.8	180, 1700	188.6	87.0	2, 335	5. 03	1,071,000	110.	
		38.5	178,100	07.8	(8). 0	2,03'	0. 16	1,000,000	10.	

- Motar veloclleas olsaorved at midd lopth and not corrocted.

Results of discharge observations, Mississippi River--Continued.

COLUMBUS, KY.--Continued.

	Date.	Gauge read. ing.	Ares of cross section.	Oopths.		Wldth.	Mean velocIty per second.	DIscharge per second.	Method.
				Mean.	Maxlmum				
June	1882.	Fect.	Sq. feet.	Fret.	Feet.	Fect.	F'elt.	Cubic feet.	
	7...	38.0	179,800	68.4	86.5	2,627	6. 47	983,000	lod floats.
		38.6	179,900	68.5	85.5	2,027	6.48	988, 000	Do.
		38.4	178,500	67.9	86.0	2,027	6. 49	950,000	Do.
	10.	38.0	176,100	67.1	80.0	2,622	\$. 67	4S4,000	Motor.
	12.	36.5	169,800	65.1	82.5	2,622	5.09	813,000	Rod floats.
	$13 .$.	35.5	170,600	05.0		2,600	4.04	813,000	Rod lloats and meter.
		34.2	188,300	04.9	80.0	2,593	4.60	775,000	Rod floats.
	15.	32.5	102,200	62.8	78.5	2,684	4,38	710,000	Do.
	16.	31.3	159,000	61.6	76.5	2,580	4.21	669,000	Do.
	17.	30.4	150,000	60.8	76.0	2, 3 , 0.1	4.12	6ill, 000	Do.
	19.	31.6	157,100	60.8	70.0	2,579	4. 70	7.18,000	Do.
	20.	33.4	103,200	63.0	81.5	2,659	4.01	804, (\%O)	Do.
	21.	34.7	166,200	04.0	80.8	2,508	4. (Ki	$82.1,000$	Do.
	22.	35. 2	108,200	64.5	81.6	2,004	1. 01.7	833,000	Do.
	23.	35.5	168,800	6.1 .8	83.0	2,003	6.38	(MKO, OXO	Metor.
	24.	35. 8	108,000	61.1	83.0	2,005	6.39	$00 \mathrm{H}, 000$	[10.a
	27.	35.1	161,800	83.3	S3. 0	2,601	4.98	820,030	Meter and rod lloits.
	28.	31.3	107,000	0.4 .4	85.0	2,603	5.11	850,000	Meter,a
	28.	33. 7	103,000	03.1	83. 0	2,685	4.80	797,000	Do.
	30.	33. 1	150, 100	81.7	83.0	2,880	1.82	708, (XX)	1)0.9
July	1...	333.1	162, 300	6i3. 0	83.0	2,580	4.01	$8\left(x_{2},(0 x)\right.$	1)0.
	$3 .$.	33.5	162,410	b3. 0	80.0	2,685	6. 05	$820,0 \times 0$	Do.
	$5 .$.	34.8	170,800	0i. 8	82.0	2,509	4.85	828,000	Do.
	6...	35. 4	169,900	6. 3	S6. 0	2,601	6. ${ }^{5} 5$	858,000	Jo.
	$7 .$.	3 Si .9	171,300	6.) 7	81.6	2,601	6. 30	023, 000	Jo.
	8.	30.3	168, 400	8.4 .2	81. 0	2,008	6. 33	808,000	150.
	10..	30.1	166,200	63.8	82.0	2,002	6. 36	891,100	Do.
	11...	33.8	107,300	6.1 .4	85.0	$2,0(0)$	6. 37	899,1000	$1{ }^{10} 0$
	12...	3i. 2	163,500	01.8	81. 0	2,399	5.32	800, 000	$1{ }^{1} 0$
	13...	3.1. 1	160, 600	61.9	82.0	2,503	5.08	810,000	${ }^{1} \mathrm{O}$,
	14.	33.2	100, 800	62.2	80.0	2,582	4.83	781,000	Wo.
	15.	32.2	158, 200	01.3	78. 5	2,579	4.80	759,000	110.
	17.	30.4	152, 300	69.7	78, 0	$\frac{2}{2}, 552$	4.63	690, 0100	170.
	18.	89.8	150, 1 mm	50. 2	78.0	2,1830	4.31	617,000	110.
	19.	29.0	1.16, 700	6.8 .5	760	2,627	4.33	6330, 000	150.
	20.	29.4	147,200	18.1 1	77.0	2,619	4. 199	B10, 100	1 Do.
	21.	27.7	1.13, 100	5.8	7.1 .5	? 3 , 3103	3. 6×9	672,060	150.
	22.	27.1	1/16, isk	6,8.5	78. 0	? 2107	3. 23	579,000	110.
	2.1.	24.2	138, 100	65.1	73.0	号, 191	3.83	629, (x)	10.
	25.	25.5	138, 9190	55.7	72.0	2, 181	3. 69	510,000	170.
	20.	2.14	13.1,700	6.4	71.0	2,177	3.50	179,000	Do.
	27.	23.3	130, $3(6)$	63.0	71.0	2.1101	3.27	126,000	170.
	28.	22.1	129, 1100	62.0	$6,8.5$	2,160	3. 23	118,100	Do.
	29.	21.7	120, 6180	61.0	68.0	2,145	3. 10	319.1000	Do. ${ }^{\text {Do }}$ M
	30.	21.2	122, $2 \times(\mathrm{X})$	(19, 6	68.0	2,107	2.07	362,040	Moter and rod Ilonts.
Aug.	2.	20.0	125,700	61.1	8 P .5	2,457	2. 51		Rod thats.
	3.	19.8	127,100	61.7	03, 5	2,460	2.61	$323 .(4 x)$	Do.
	4.	19.5	122,400)	10.8	04, 2	2,102	2.18	$3(1)$ ($\times 140$	${ }^{1} \mathrm{O}$,
	6.	10.5	123,300	60. 1	Cr1. 2	2,101	2.57	3111000	[10.
	7.	21.3	137,100	55.6	72, 0	2,16.	3. 0	118,000	Moter.
	8.	21.0	123,006)	61.2	72.5	2, 160	3.11	120, (1x)	10.0
	9.	22.0	137, 100	65, 6	72.0	2,170	3. 2	142, 1400	1 O
	10.	21.7	133,000	63, 0	71.5	2,4188	3.14	118,000	110.
	11.	21.6	131,500	53. 1	71.5	2,10.1	3.07	109, (0)0	110.4
	12.	21.3	133, 800	5.1. 1	60. 6	2, 402	3. 00	(162, 00)) 0.
	14.	20.7	127,200	61.8	68.0	2, 456	2.07	378, (4)0	Do.
	15.	20.2	125, 100	61.2	AS. 0	2,451	2.01	$30 \times 1.0 \times 0$	10.
	16.	19.9	127,000	61.0	C8, 0	2,117	2. 82	$3 \mathrm{3} 8,1000$	Do.
	17.	10.7	120,700	61.8	68.0	2, 110	2. 70	319,0x0	Do.
	18.	10.5	125, 200	61.1	08.0	2, 117	3.70	333,140	170.
	10.	19.2	120, 200	\$0.0	6i8. 0	2, 4.1	2. 71	$333,0 \times()$	lo.
	21.	18.	121,700	10.7	17.5	2, 2.17	a, 0	$316,0 \times 7$	130.
	22	18.0	122,900	60.1	(in) 0	2.461	2. 210	? $78,0 \times 0$	IRod flonts.
	23.	17.0	13: 100	50.1	6.7 .0	2,112	2.11	$3(101,000)$	Mreter.
	24.	1i.0	121, 106	10.9	Bitis 0	2,410	2. 30	2080, (0)	${ }^{1} \mathrm{O}$,
	25.	10.3	110,160	16. 7	Ais. 0	2, 110	2. 31	23:(6x)	110.
	20.	15.9	110,000	18.0	61.6	2, 138	$2: 3$	Wi, (x)	10.
	28.	16.1	110,000	17.7	64. 0	2,133	2.11	2, 13, (0)	110.
	20.	14.0	116,100	17.4	63.8	2, 8130	1. ${ }^{(11)}$	219, (1) $2 \times$	Roul llosats.
	30..	14.7	115,500	47.8	03.6	2, 128	1. 1.8	2 $210,14 \times 1$	1 lo.
	31.	14.7	113,800	10.8	6\%. 0	2, 2128	2.12	? P2, (x)	Motar.

Resulls of discharge observations, Mississippi River-Continued.
COLUMBUS, KY.-Contlnued.

- Motor volocltas obsarvod at mid dopth and not correoted.

Resulls of discharge obiservations, Mississippi River-Continued.
COIUMBUS, KY,-Continued.

	Date.	Gauge reading.	Area of cross scotion.	Depths.		Width.	Mean veluc. ly per second.	Discharge per second.	Method,
				Mean.	Maxlmum.				
Mar.	1891.	Feet.	Sq. seel.	Feel.	Fret.	Fcet.	Feel.	Cubic feet.	Metor.
		41.0	1S6, 500	59.0	80.0	3,123	7.40	1,381,000	Do.
		41.1	185, 300	69.2	81.5	3,129	7.39	1,370,000	Do.
	3.	41.2	187,400	69, 8	83.0	3,132	7.35	1,378,000	Do.
\cdots	4.	11.3	18ti, 800	59.7	S0. 0	3,132	7.38	1,378,000	Do.
	11.	40.0	153. 5100	59, 3	81.0	3,191	0.43	1,189,000	Double floats.
	12.	40. 4	189, 100	00.0	83.0	3,118	6.18	1,225,000	Do.
	13.	40. 1	187, $\mathrm{N}(0)$	60.2	83.0	3,117	6.62	1,243,000	1) 0.
	14.	10.3	156, 300	59.8	82.5	3,116	6. 35	1,220,000	$1)$
	16.	40.2	15.3, 400	69.6	82.5	3,110	6. 11	1,180,000	Do.
	16.	40.2	185, 5100	(60. 5	82.5	3,111	(0.30)	1,242,000	$1) \mathrm{O}$
	17.	40.2	187,700	60. 2	82. 5	3,116	6.31	1,185, 000	I) 0
		10.2	188, 200	60. 1	82.0	3,116	0.38	1,261,000	1)o.
	20.	10.2	159, 5100	00.8	82.0	3,116	0.415	1,22.1, 000	IVO.
	22.	10. 0	181, (60)	$5{ }_{5} 5$		3,116	6. 27	1,125, 000	$1) \mathrm{O}$
	23.	10.0	123,5(x)	59.0	79.5	3.110	6. 43	1,152, 1000	$1) 0$.
	24.	39.8	184,500	69.2	80.0	3,116	6. 28	1,154,000	Jo.
	25.	30.6	184, 000	60.3	80.0	3,110	6.32	. 1, 168,000	Do.
Apr.	1892 13.	41.3	202, 000	84. 0	80, 0	3,122	0.42	1,300,000	Metor.
	15.	41.2	101, 3100	00.9	79.8	3,123	6. 32	1,203, 000	Do.
	16,	11.0	159,3100	(i0) 7	70.8	3,121	0.11	1, 103,000	$1)$.
	21.	43.0	203,800	6.4 .3	80.0	3, 109	6. 70	1, 361.1,000	Do.
	27.	43.0	205,800	0.4, 9	81.5	3,100	6. 72	1,354, 0100	Do.
	28.	43.1	2015, 360	05.1	S1.0	3,169	0.78	1,398,000	$1)$.
	0.	43.1	$20 \mathrm{E}, 100$	04.7	83.0	3,160	6. 59	1,352,000	Do.
	30.	42.9	205,700	04.9	\$5. 0	3,100	6.81	$1,101,0040$	Do.
Fol).	$\begin{array}{r} 1593 . \\ 20 \ldots \ldots \end{array}$	30.3	175,800	57.1	00.0	3,070			Double floats.
	22.	38.5	176i, $9(1)$	57.3	8.1 .0	3,083	7.00	1,239,000	Do.
	23.	39.1	152. 300	69.0	M0. 0	3,090	7.01	1,283,000	Do.
	24............	30.7	189, 0100	61.4	85.0	3,094	7.01	$1,331,000$	150.
	ai.	40.1	193, ix)	62.4	84.0	3, 1103	0.01	1,337,000	Do.
	27.	10. 5	195, 6100	62.8	8.1 .0	3,111	0.97	1,362, 000	Do,
	28............	10. 7	191: 5000	[i2. 3	81.10	3,143	0.03	1,348,000	10.
Mar.	!,...........	10. 7	193, 300	62. 1	81.0	3, 123	0.81	1,320,000	Do,
		10.4 33.6	111.000 $117,7(0)$	62.1 51.1	81.0 71.0	3,109 3,071	6.61 6.10	1,281,000	Do,
May	5.	43.1	203,200	0.17	87.0	3,141	7.11	$1,445,000$	Do,
	1.	13.5	a 203,300	0.4 .7		3,1.11	7.30	1,481,000	10,
		13. 6	207, 000	6i6. 1	80.0	3, 1111	7.20	$1,607,000$	1) 0,
		13.8	208.100	66.3	90. 0	3,1.11	7.20	1, 199, 1000	1)O,
		13.8 8	2065.700	(6is. 8	00.0	3,111	7.39	1, 309, 1000	1 O.
	10.	43.8	20.1700	(3). 2	01.0	3,1.11	7.00	1, 131, $0(0 x)$	Do.
	11.	43.8	2(H), CNO	Bis. 1	42.0	3, 141	7.10	1,170, 000	$1) 0$.
	13............	43,8	20\%, 700	(13.5 6	(11, 0	3, 1.11	7.11	1, 623, (0)0	
	13............	43.8	2(4, 400	(36) 8	90. 0	3,1.11	7.37	1,623,000	10.
	1i............	13. 7	207, 100	45, 9	(12. 0	3,1.11	7.11	1,172,000	10.
	16.	13.1	207,100	(i3. 0	(10. 0	3,1.11	(3.13)	1. 130,000	10,
	17.	13. 0	201.120	(i.1. ${ }^{\text {a }}$	89.11	3,110	13. 610	1, 19×1.000	10. 10.
	18...........	12. 2	203, (x)	24.3	S\%.10	3.1113	6. 38	$1.334,0 \times 0$	jo.
	19............	11.6 40.6	$199.3(20)$ 103,600	63.0 62.2	92.0 90.0	3,116 3,111	6.67 6.01	$1,324,140$ $1,141,000$	Do.
Oot.	1895.8								
	$15 \mathrm{n} . \mathrm{m}$.	1.5	67, 000	2.4	8.80	2,304	1.54	89, 000	
	$16 \mathrm{p} . \mathrm{m}$.	1.5	63,600	0.4 .9	35.0	2,314	1.6:	06.1000	
Apr.	1890.6								
	10.................	34.8	153,200	49.0	69.8	3,072	5. 61	859,000	
	11............	36.4	162, 000	40.4	71.8	3,074	6. ${ }^{\text {a }}$:3, 0	
	17............	35.8	1 $1(x), 2(x)$	48.8	71.7	3,073	6. 19	933, (0, (0)	
	1.1...........	33.1	$1.19,4(0)$	48.5	72.0	3,078	0.25	933, 010	

[^26]

 The meter was holif at slx-tenths depth for tive minntes at each stathon for the repular ohservations. For

Results of discharge observations, Mississippi River-Continued.
COL,UMBUS, KY.-Continned.

[^27]
Resulls of discharge observations, Mississippi River-Continued.

© I, UMBUB, KY.-Conthused.
[21.0 milles below Calro.]
[Columbins M, R, C. pauge whose vero is 288 .'s feat abovo the Calro datum plano. Observatlons and reduc-
 (1. I'. Howell; 1003 and 1004, Capt. Win. 3. Ladne, Corps of Engineers.]

a Results of 1000 in Raport (Chin of Linglncors, l(10)], Supplamont, p. 137.
 Chiel of linghears, 1003, supplemont, p. 113.

[22 milles bolow Cairo.]

Dato.	Cauges.			Crosa sectlon of discharge.					
	Stanc!. mid salise.	Irocal.	Change III 2.1 hours	Area.		Dopth.			
				Water.	Below datum.	Moan.	Monil dntum.	Mnx\|. milin.	Width.
1003.	Piect.	Fect.	licet.	Sq. 16.	Sq. 16.		Frel.	Fect.	
Apr. 7.	42. 16		10.22	171,308	178,010	57.3	67.5	81.5	3,008
8.	12. 38		1. . 13	181, 638	184, 017	60.7	60.8	(M). 7	3,095
0.	42.37		1. . 61	180,050	180,050	C0. 1	CO. 1	01.0	3,005
10.	12. 30		1. . 05	-180, 112				

[^28]
Results of discharge observations, Mississippi River-Continued.

COLUMBUS, KY.--Contlmaed.

Dato.	Bcour or flll.	$\begin{aligned} & \text { Moan } \\ & \text { volority } \\ & \text { jer } \\ & \text { secomel. } \end{aligned}$	1) ischange parsecond.	Melhod.		品	Drectlon and force of whad.
pr. 7 1000.	Sq. 76	Fiel. 7.35	$\begin{aligned} & C u . / t \\ & 1,305,116 \end{aligned}$	Meter	16	\%)	
8.	10, 10,8	7.31	1,340, נ(1)	. . . 16	115	til	V. Brisk.
9.	$+1,133$	6.96	1,295, 4.45	d(1)	16	75	X. Strong.
10.		7.12	1,325,429	Jouble float	11		X. lik,

[21.0 milles below Cairo.]
|M. R. C. gange at Columbins. Zero is 280.70 above tho Cairo datim plano. 'Iho reallags given eorrespond to tlme of diseharge observallons. The rlse or fall is computed from tho 8 a. m. readings. batum ilno for computing dathen areas was taken at 43.2 fret on thls gange for the Fobruary observallens and at 11.08 for tho latur obsarvatlons. Tho dlselarge scellon used lat Mareh and Aprll was the sathe as
 bank disoharge was moasured Maroh e7. All overiank allseharges were derlved from thls measurement.
 Prleomoter No. $2 h$ was used, (on Stureh 28 J'ried mewor No. 38 and IIaskoll No. is wero used shanltang-
 meters Nos. 25 and 38 wero used slmultamonasly. Whera meters wero rin simntaneonsly the mean

 Observatons and realuctlons male mider directlon of Caph. (G. R. lakush, Corpes of lingineers, U. B. A.,

Results of discharge observations, Mississippi River--Continued.

COI.UMBUS, KY..-Contlntued.

[21.0 miles below Calro.]
I Che zero of the Mississippl river Commission gange at Columbus, Ky., is 280.70 feet abovo the Calro datura plane. The gauks readlings tabulated in the loeal gauge columns were taken on the standard gange at the time of the discharge observations. The datum line for comphating datum areas was taken at 11.20 feet on tho gaugo. When velooltle3 wore measured th the afternoon, the morning soundlags were used, corrected tor change of stago. Haskell meter No. 105, wheel No. 1, and P'rlce meter No. 22, wero used. The meters were rimat 0.0 dopth and the lower foats at middedepth. The discharge sectlon th the same as used in 1004 and later yours; It is In front of tho town of Columbus, Ky. Observatons made under dircetion of Capt. '3. R. Lakesh, Corps of Engineers, U. S. Army, secretary, Mississipph River Commis. sion. Rednotion methe bider drestion of First Leut. O. IL. Knght, Corps of Engineers, U. S. Army, seoretary, Mississippl River Commission.]

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Dato.} \& \multicolumn{4}{|c|}{Crages.} \& \multicolumn{6}{|c|}{Cross sisotion of digcharge.} \\
\hline \& \multirow[b]{2}{*}{\[
\begin{aligned}
\& \text { Stnnd- } \\
\& \text { nrd } \\
\& \text { gange. }
\end{aligned}
\]} \& \multirow{2}{*}{Local.} \& \multicolumn{2}{|l|}{\multirow[b]{2}{*}{\[
\begin{gathered}
\text { Change } \\
\text { In 24 } \\
\text { hours. }
\end{gathered}
\]}} \& \multicolumn{2}{|r|}{Area.} \& \multicolumn{4}{|c|}{Depth.} \\
\hline \& \& \& \& \& Wator. \& Holow datum. \& Mean. \& Mean datum. \& Maxlmum. \& Wldth, \\
\hline Oet. 31........ \& Feet \& Fect.
7.70
7.7 \& \begin{tabular}{c}
Feer \\
+1 \\
\hline 1
\end{tabular} \& \& Sq. \(/ 6\). \& \(\xrightarrow{S q .76 .}\) \& reet. \& Feret
37.0 \& reet.
10.0 \& Fect.
2,133 \\
\hline Nov. 1. \& \(\because 1.6\) \& 0. 311 \& \& . 13 \& 33, 1.10 \& 87,703 \& 34.3 \& 30.1 \& 50.0 \& 2. 133 \\
\hline \& 11.0 \& 10. :1) \(^{10}\) \& \& 1.3 \& 85, 123 \& 87,132 \& 35.1 \& 35.8 \& \$1.0 \& 2. 133 \\
\hline 4, 4, \& 11.1 \& 11. 30 \& \& \& 80,857 \& 86,8i7 \& 35.7 \& 35.7 \& t0. 0 \& 2, 133 \\
\hline \& iio. 9 . \& 10. 13 \& \(\cdots\) \& \& \(80,0 \ddot{8}\) \& - \(\times\) ¢\%, 16 \& 35.6 \& \(35 . \ddot{8}\) \& bi.0' \& 4, 433 \\
\hline 6, 1 \& 11 \& 10.193 \& \& \& Sti 219 \& 83, 208 \& 35.5 \& 35. \& 50.0 \& 2 13 \\
\hline \(0,1 . . .1 i\). \& 11.0 \& 11.14 \& .- \& \& S6, 82 \& se, 96s \& 35.7 \& 35.7 \& 61.0 \& 2, 133 \\
\hline 0; \({ }_{\text {0, m. }}^{\text {11...... }}\) \& \& 11.12 \& \& \& \& 86,967 \& 34.8 \& 35.7 \& 61.0 \& \\
\hline 12, 3.11 \& 0.75 \& (9) 35 \& \& \& 84.513 \& 88,011 \& 31.7 \& 30.2 \& (0) 0 \& 2, 133 \\
\hline 12, \(13, \mathrm{~m}, \mathrm{~m}\) \& \& 9. 1.5 \& \& \& \& \& \& \& \& \\
\hline 13, n, m. \& 9. 10 \& 9. 16 \& - \& \& 83,043 \& 88,1000 \& 34.1 \& 30.2 \& 60. 0 \& 2, 133 \\
\hline 13, p. 11. \& \(\ddot{8} 90\) \& 8.8 \& \& \& мo.isi \& \& \(3{ }^{3}\) \& 3in \({ }^{\circ}\) \& 4 in \& 2.) \% \(^{\text {a }}\) \\
\hline 18, a. \({ }^{\text {ain }}\) \& 7.6 \& 7. 76 \& \& \& 70,162 \& 87,775 \& 32.5 \& 30.1 \& 48.0 \& 9, 43 \\
\hline 20, \({ }^{18}\) \& 7.3 \& 7.64 \& \& \& 77,505 \& 88,205 \& 31.0 \& 36, 8 \& 10.4 \& 2.133 \\
\hline 21. \& 7.2 \& 7.20 \& \& \& 77, 170 \& 87,202 \& 31.3 \& 35.8 \& 17.4 \& 2,433 \\
\hline \& 7.1 \& 7.15 \& \& \& 77, 130 \& 80,981 \& 31.7 \& 35.8 \& 47.4 \& 2, 13:3 \\
\hline Date. \& \[
\begin{aligned}
\& \text { Scour or } \\
\& \text { flll. }
\end{aligned}
\] \& \multicolumn{2}{|l|}{Moan velocity per second} \& \multicolumn{2}{|l|}{1)lschargo por second.} \& \multicolumn{2}{|l|}{Method.} \& \& \multicolumn{2}{|l|}{Drection and force of widid.} \\
\hline 1003. \& sq. 16. \& \multicolumn{2}{|r|}{Fied.} \& \multicolumn{2}{|r|}{\[
\text { Cu. } 1 \text { I. }
\]
\[
153,855
\]} \& \multicolumn{3}{|l|}{} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{I. Wight.}} \\
\hline \& - \(-2,238\) \& \multicolumn{2}{|r|}{+1.02} \& \multicolumn{2}{|r|}{\multirow[b]{2}{*}{174, 231}} \& \multicolumn{2}{|l|}{Moter..............} \& 983 \& \& \\
\hline \& - 83 \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
1 \\
\hline 2.05 \\
2.10 \\
\hline
\end{tabular}}} \& \& \& \multicolumn{2}{|l|}{.... 10.} \& \multirow[t]{2}{*}{10} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{vi Mrisk}} \\
\hline 4, n. m. \& - 275 \& \& \& \multicolumn{2}{|r|}{\multirow[t]{2}{*}{182,331
181,76

183}} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{| do. |
| :--- |
| 10. |}} \& \& \&

\hline 4, p. m. \& \& \multicolumn{2}{|r|}{2. 13} \& \& \& \& \& 128, ${ }_{12}^{8}$ \& \multicolumn{2}{|l|}{XI. Brisk. $1) 0$.}

\hline \& + 200 \& \multicolumn{2}{|r|}{2. 22} \& \multicolumn{2}{|r|}{102, 158} \& \multicolumn{2}{|l|}{Doille lloats......} \& 11 ! 41 \& \multicolumn{2}{|l|}{Calm.}

\hline \& --855 \& \multicolumn{2}{|l|}{- | 2.13 |
| :--- |
| 2.13 |
| 1. |} \& \multicolumn{2}{|r|}{183,877

183,803} \& \multicolumn{2}{|l|}{Moter..............} \& \multirow[t]{2}{*}{$$
\begin{array}{l|l|}
1120 \\
13 & 90 \\
13
\end{array}
$$} \& \multicolumn{2}{|l|}{}

\hline $9, \ldots . i i$ \& + 670 \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
$$
\begin{aligned}
& 6.10 \\
& 2.17 \\
& 2.22
\end{aligned}
$$

\]}} \& \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 188,468 \\
& 102,920
\end{aligned}
$$
\]}} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{...do.............}} \& \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}}

\hline 0, p. \& \& \& \& \& \& \& \& $$
\begin{array}{l|l|l|l|l|l|}
13 & 10 \\
13 & 17
\end{array}
$$ \& \&

\hline \& +1,08.1 \& \multicolumn{2}{|r|}{$$
\begin{aligned}
& 2.11 \\
& 2.11
\end{aligned}
$$} \& \multicolumn{2}{|r|}{\[

178,725

\]} \& \multicolumn{3}{|l|}{} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{| xil. Lght. |
| :--- |
| X. Light. |}}

\hline \& ... 35 \& \multicolumn{2}{|r|}{\multirow[t]{2}{*}{2.
2. 11
2. 11

L.}} \& \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\[
175,648

\]}} \& \multicolumn{2}{|l|}{Motor............} \& | 13 | |
| :--- | :--- | :--- |
| 12 | |
| 13 | | \& \&

\hline 13. p. m. \& \& \& \& \& \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{I) oublo finats......}} \& $13 \times$ \& \multicolumn{2}{|l|}{| Xir. Strong. |
| :--- |
| XII. ishot. |}

\hline 10...... \& \cdots - 6.5 \& \multicolumn{2}{|r|}{2.05} \& \multicolumn{2}{|r|}{$$
\begin{aligned}
& 170,333 \\
& 151,651
\end{aligned}
$$} \& \& \& 12.60 \& \multicolumn{2}{|l|}{XII. Blght. 10 strong.}

\hline 18, n. m \& ... 73 \& \multicolumn{2}{|r|}{\multirow[t]{2}{*}{$$
\begin{aligned}
& \text { 1. } 88 \\
& 1.818
\end{aligned}
$$}} \& \multicolumn{2}{|r|}{148,71.4.} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{-ioublo...ilo........}} \& $13: 38$ \& \multicolumn{2}{|l|}{Calung}

\hline 18, p. m \& \& \& \& \multicolumn{2}{|r|}{\multirow[t]{2}{*}{143,408}} \& \& \& \& \multicolumn{2}{|l|}{\multirow[t]{4}{*}{$$
\begin{aligned}
& \text { No. } \\
& \text { Do. } \\
& \text { Vi. } 1, \text { ght to } \\
& \text { sitrong. }
\end{aligned}
$$}}

\hline $20 .$. \& \cdots \& \multicolumn{2}{|r|}{1. 1.85} \& \& \& \multicolumn{2}{|l|}{Moter..............} \& \multirow[t]{2}{*}{$$
\left.\begin{array}{l|l|}
12 & \ddot{30} \\
12 \\
39
\end{array} \right\rvert\,
$$} \& \&

\hline 21. \& \& \& \& \multicolumn{2}{|r|}{\multirow[t]{2}{*}{138, 276}} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{.....do................}} \& \& \&

\hline \& - 218 \& \multicolumn{2}{|r|}{1.70} \& \& \& \& \& 1338 \& \&

\hline
\end{tabular}

Results of discharge observations, Mississippi River--- Continued.

NEW MADRID, MO.

 on two seotlons $1 /$ milles apmet. The upper one, called the low-water sed ion, was used from bee, 13 to Jan.
 roadligs tabulated aro is observed on the M. R. C. N. Madrld gango at Mortison Landing. Tho zero of thls gatige ls 276.80 leot above the Calro datum phano.

Results of discharge observations, Mississippi River-...Continued.
NEW MADIRID, MO. -.Coutinned.

	Jato.	(imugo read. ling.	Aren of cross section.	Dopths.		Width.	Mean velocity por second.	Discharge per second.	Mothod.
				Mean.	Maxl. mum.				
Fob.	! 5 S\%.	Freet.	Sq. feet.	Feel.	Fect.	Fect.	rect.	Cubic fect.	
	24.	23.8	170, 0×0	20.0	36.0	5,050	4.00	052, 000	Motor.
	25.	25.1	178, 800	30.0	38.0	6, 065	4.03	721,000	Do.
	26.	23. 6	185, 000	31.2	39.0	6, alie	4.00	751, 000	1)0.
	27.	25.6	187, 600	31.5	39.0	5,067	4.08	701,000	$1) \mathrm{O}$
	28.	25.4	187, 600	31.4	39.5	6,967	4.00	750,000	$1) 0$.
Mar.	1.	25.0	183, 700	30.8	38.8	5,062	4.01	730, 1000	$1) 0$.
	2	24.4	170,000	30.0	38.0	5,058	3.04	705, 0×0	10.
	1.	22.9	lis, 000	28.3	38.0	6,018	3. 80	6.18,000	$1) 0$.
	\%.	\cdots	117,200	28.1	37.0	5,947	3. 83	(141), 010	Do.
	ti.	2.2.7	lisi, smo	28.0	37.5	5, 0.17	3.84	6.10, 000	1).
	7	22.6	1617, 4100	28.2	30.7	5, 017	3. 82	1331, (4)0	10.
	8.	2.2. 4	$1 \mathrm{isi}, 0 \times 0$	27.9	38.0	6, 014	3. 77	1225, 000	$1) 0$.
	9.	21.7	163, 100	27.5	37.5	6,034	3. 75	613,000	$1) 0$.
	11.	20, 3	16is, 100	26.2	35.7	6,927	3.65	666, 000	10.
	12.	119.6	1.19, 5×1	25.2	35.3	6,928	3. 64	54, 0140	$1)$
	13.	111.1	145,80	24.7	34.7	6,018	3. 63	529,000	10.
	11.	18.8	143, (1)0	24.3	34.0	6, 015	3. 61	\$119,000	110.
	15.	18.1	1.11, (0)0	24.0	33.7	5,91.	3. 56	(4) 11.000	Ho.
	16.	18.0	139, $(13 \mathrm{~K})$	23.6	32.7	6,012	3. 35	493, (0)0	10.
	18.	17.2	131, 000	22.3	32.0	5, (0)6	3. 63	401, 0x0	10.
	10.	1i.?	129,900	22.0	31.8	¢, (N)4	3. (1)	fis, OXO	10.
	20.	11.6	127, 400	31.6	31.0	6, 002	3. 13	437.000	110.
	21.	1i. 2	126,410	21.3	31.5	5, 010	3. 40	46, 600	110.
	2 \%	16. ${ }^{16}$	125, 100	21.2	30.5	6, 808	3.39	121, 0×0	10.
	只3.	16.8	128, 300	21.7	31.0	6,002	3. 10	113, (0)0	
	只.	119, 0	1.11,300	23.0	33.0	6,010	3, is)	108, (000	10.
	26.	119.1	14.1,300	24.1	33.7	6,025	3. 60)	in3 $3,(\mathrm{kc})$	10.
	28.	I! 0	143,800	24.2	33.3	6, 021	3. 67	527, (x)	150.
	29.	18.6	141, 100	23.8	33.5	6,0\%0	3. 67	518,000	10.
	30.	18.0	137, 800	23.3	32.0	6, 012	3. 62	4198, 000	110.
Apr.	1.	17.3	131,300	22.2	31.5	6, 6000	3. 57	400, (x)0	10.
	2.	16.8	128, 000	21.7	31.0	5,001	3. 44	142,00;	$1) \mathrm{O}$
	3.	16,3	120, 100	21.4	30.3	6, 890	3. 46	437, 000	1) 0
	1.	16.1	123, 200	20.0	30.3	6,896	3. 12	421,006	$1)$
	5.	10.1	123,100	21.1	30.3	5,890	3. 12	422,000	$1)$
	8.	10.2	123,200	20.9	30.3	6, 8106	3. 1.1	12.1, $\times 10$	1).
		10.2	133,900	21.0	30.5	6,597	3. 14	126,000	10.
	9.	15.9	122, 1200	20.0	30. 5	$6,80.1$	3. 42	120,000	10.
	10.	15.5	120, 100	20.1	30.3	6,802	3.38	107,000	10.
	11.	15.1	118,700	20.2	20.7	6,800	3.39	102, 000	110.
	12.	14.8	110,700	10.8	20.7	6,859	3.35	391,000	10.
	13.	14.6	115,200	10.0	20, 7	5,887	3.30	35×1000	110.
	15.	14.1	112,100	19.1	20.0	5,883	3. 30	370, 000	10.
	10.	13.8	109,700	18.7	\%8. 0	6, 880	3. 29	362,000	10.
	1%.	13.6	107, 800	18.4	27.3	6,880	3.28	333,1000	$1) 0$.
	18.	14:?	108, 800	18. 8	28.0	6, 883	3.33	3362,000	$1)$.
	19.	11.0	113,200	10.2	28.8	b, 802	3.36	381, 000	$1)$
	20.	15. 3	117, 100	10.9	20.7	5.800	3.12	402, 000	10.
	22.	16.6	121, $7(0)$	20.6	31.0	6, 005	3. 60	420, 000	10.
	23.	17.0	125,000	21.2	31.0	6,008	3. 51	133, 000	10.
	2.4.	17.6	128, 100	21.8	32.0	6,012	3. 59	461,000	110.
	25.	18.3	132,700	22. 4	33.2	6, 010	3. 05	485, 100	$1) \mathrm{O}$
	20.	18.0	136, 600	23.1	34.0	6,024	3.67	(0)2, 0) ${ }^{\text {a }}$	1).
	27.	18.4	135, 100	22.8	33.5	5, 0201	3. 131	402, 000	170.
	21.	10.0	122,700	20.8	31.5	5, 890	3. 15	423, 000	1)\%.
	30.	14.8	116,400 108,800	19.0	20.0	5,800	3.36	35s, 000	10.
May	1.	13.7	108, 800	18.5	27.8	6, 880	3. 20	358,000	110.
		12.7	102, $4(0)$	17.4	20.3	6,870	3.28	334, 000	10.
Apr.	$25 . .$. 8.	30.8 37.7	230,700 $2.10,600$	30.5 40.3	51.8 62.0	6,000 0,114	6. 65	1,320,000	10.
	10.	313.0	2.11), (100	30. 5	63.0	8,100	\%.90'	-i,27, 000	Do.
	11.	310.2	230,000	38.7	62, 6	6, 601	6.23	1,235, 000	1)0.
	12.	35.6	233, 100	38.3	63.0	0, 695	6.21	1, 21.1,000	$1) 0$.
	11.	312	226,200	37.3	62.0	B, 058	4.75	1,074,000	Do.

a The 1890 disoharges are printed in tho Roport Chinof of Bingineers, 1800, p. 3157. The discharges of 1803 will appear In Report Chint of Englnegrs for 1s04. The section of 1 sio was at same placo os the hitho-water sectlon of $1889-80$ and nhout 3$\}$ miles bolow Now Madrid, Mo. The scotlon of 1503 was also nt snme phace, except that tho Kentucky ond of seotion was moved ubstream about 200 feen. The gango readlags for 1800 aro as observed on tho M. R1. C, gange at Morrlson linidlug, whose zoro is 275,80 feat nbove the Calro datim phane. The readlags tabiulated for 1803 aro as observed on' tho M. R. ©, gause at Now Mnilrid, al minuth of Gl. Johns Bayou, This gauge, whleh was established la Novomber, ispe? Is about 1.3 milles holow tho gayco at M orrison, and lis yero ls 275.72 feot abovo the Cairo datum plano. Morrison Landing gange was disdont|nucd Oot. 11, 1803.

Results of discharge observalions, Mississippi River-...Continued.
NBW MAI)RID, AfO..Contlnmed.

	Drite.	Oauge read. fing.	Aren of cross section.	Dopthis.		Whath.	Moan volueIty per second.	Discharge per secoma.	Methorl.
Fob.	1803.	Fiect.	Sq. fect.	Fiect.	Fret.	Fiect.	Fert.	Cubic feel.	
	21.	31.0 31.8	21.1, 100	34.5	53.0	(1,215	5. 45	1,171,000	Mrter,
	22.	32.7	224,000	36.0	61.0	6i,218	5. 29	1,18i, 000	Do.
	23.	33.1	2221, 300	30.3	54.5	1i, 23 36	6.19	$1,17.1,000$	1)0.
	24.	33.6	231, 700	37.1	6i. 0	13,241	6. 38	1,24i, 000	1)0.
	2.1.						5. 00	1,172,000	Double floats.
	24.	34.0	239, 100	38.3	6.5. 0	1i,246	5. 23	1,251,000	Noter.
	25.						5. 23	1,920, (000	Doublo floats.
	27.	34.6	233, 510	37.4	67.18	6, 2.48	6. 16	1,275, (10)	Meter.
	28.	34.7	2331, 3(k)	39.3	6it, 8	0,248	6.10 5.11	1,293, 0×0	Do.
Mar.	1.	34.9	212,500	38.8	38.0	(i, $25{ }^{\circ}$	6. 6.4	a 1, 545,000	Moter.
							5. 26	1,276,000	Donblo flonts.
	2	34.9	21,900	38.8	[55. 0	(i, 254	5. 28	1, 28:3, 0×0	Moter.
	2.						4.86	1,180,000	Doublo floats.
	3.	31.7	4212,600	38. 8		(i, 254	5.13	1,24,000	Metor.
	5.	33.0	$2333,6(0)$	37.4	[3. 5	6,218	5. 2.4	1,223,000	Do.
	6.	30.9	219,000	35.1	62.0	0,239	4.88	1,071), (00)	Do.
	7.	2s. 5	202,800	33.6	49.0	6,228	4. 79	- 071,000	1) 0.
							4. 18	908,000	Double lloats.
May	1	36.0	247,500	39.3	10.5	6,290	6.14	1,273, (x)	Meter.
	1.						5.11	1,264,000	lomble llonts.
	5.	36.5	253, 000	10. 3	52.0	6,299	5. 41	1,371,000	Mator.
	6.	37.0	25:, 8(0)	10.1	(1). 0	0,302	6. 69	1, $13.38,0 \times 00$	Do.
	8.	37.0	$248,8 \times 0$	12.6	61.0	0,305	6. 72	1, $637,0 \times 0$	Do,
	8.						6. 11	1, 151, 600	Double floats.
	0.	35.1	262,800	11.7	51.8	6,303	5. 61	1, 182, (m)	Mreter.
	10.	34.1	264, 100	4i, ${ }^{\text {a }}$	520	B,307	6. ${ }^{3} 3$.	1, 162,000	Moter.
	10.						5. 19	1, 15: 2,000	Double tonts.
	11.	38.1	259, 800	11.0	61.4	6,306	5, 89	1, 525,000	Motor.
	12	39,0	? 0,000	41.2	51.8	(6, 3(\%)	5. 38	1, 100,000	Do.
	13.	34.0	203,000	1i.8	54.1	6,307	5. 66	1, 183,000	Mretor.
	13.						5. 67	1, 168,000	Donblo floats.
	16.	$37.1)$	200, 100	11.2	64.1	0,308	6. 81	1,518,000	Motor.
	15.						5. 81	1,469, 000	Doubilo floats.
	17.	37.5	2fi, 100	10.7 40.0	6.1. 6	6,308	6.75	1, 178,000	Motor.
	17.				mi 6	n, 01	6. 15	1, 375 , (\times)	Double lloats.
	18.	37.1	251,100	39.8	Es. 0	0,301	6. 18	1,376, (0)0	Motor.
	19.	36.5	2.10, 700	30.1	51.0	0,304	5.11	1,336,000	Do,
	20.	35.9	237,000	37.6	52.7	6,300	5. 28	1,252,000	Do.

[70.3 milns bolow Cairo.]
 slppl Rlver Commlsslon. Rejort Chlof of Englimers, $1000, \mathrm{p} \cdot \mathrm{d7as}$, nuld 1001 , supploment, b. 138. Jazkell motor used. New Madrld gatge, whoso roro is 275.72 foot abovo tho Calro datim plano.

1800.								
Oct. 18, n. m......	2.80	63,200	25. 2	32.0	2,115	1.69	O0, 000	Molor.
18, p.m......	2.82	83, 600	25.3	31.6	2,115	1.69	01,000	Do.
30, a, m. . . .	2.05	62, 500	25. 3	33.0	2,117	1.80	80, 000	110.
30, p, m......	2. 68	54, 100	25.5	32.0	2,117	1. 65	88,000	5o.
Doo. 8, a, m......	6.28	68,900	27.7	34.5	2,131	2.20	130,000	Rod floats.
8, p, m......	8.25	58,000	27.7		2,131	2.17	128, (00)	Moter.
Nov 1300.								
	10.6	71,300	28.8	44.5	2, 170	3.12	222,000	Do.
13, p, 11......	10.6	71.100	28.0	43.6	2,170	2. 08	213, 000	$1)$
14, B, m......	10.6	70,300	28.6	43.6	2, 170	3. 02	212,000	Do,
14, 1. m......	10.4	60,000	88.3	42.6	2, 170	2, 08	200, 000	1)0,
15, A. II......	10.3	00, 900	28. 4	41.0	2, 163	3. 07	211,000	110.
15, 1, וII.....	10.2	70,000	28.1	13.6	2, 463	3.01	211,000	$1) \mathrm{O}$
16, n, m.....	10.1	60. 100	28.2	43.0	2. 101	2.07	200,000	10.
10, p, m......	10.1	60, 5×10	28. 2	12, 6	2, 101	2.09	208,000	110.
17, n, m......	0.9	60,300	28. 2	12.5	2. 169	2.84	197,000	110.
17, 1), m......	9.8	00,300	28.2	12.5	2,454	2.15	101.060	1)0.

- Ohservar congldors voloeitlos too high, and says to rejeet this dischargo.
- Aren Interpolated from 2d nad 5th.

Results of discharge observations, Mississippi River-Continued.

POIN'I PI,

[This serles of discharges is printod In Report ('hinf of linglaeors, 1887, page 2815. Tho diseharge seetion was loeated about 4 milles below Polnt Phasant, Mo., and nbout 13 mles bolow Now Madrdd, Mo. Tho gathe whose reallings nre tabilated was called tho sectlongathge, its zero was 207.28 feet above the Calro
 tho readings on tha Now Madrld gatger, hat at highor stages tho readings ladleate large variation in slope between the two places.]

Date.		Gatige read. ing.	Ares of cross section.	Jepths.		Whath.	Mean voloeliy per second.	Disohargo per second.	Method.	
		Menn.		Raximllll.						
Oct.	1894.		licht 13.0		licel. 3 3.0	FeCt.	Irel.	Fect.	Cuble fret.	
	11.	13. 0	1110,160	23. 0	36.0	4, 6118	3. 68	392, 000	Meter.	
	15.	13, 3	111, 100	22.0	35.0	4, 625	3. 19	354,000	Jo,	
	20.	13. 0		21.0	36.0	4, 129			Io.	
	21.	13.7	(1i, $\times(1)$	21.0	33.5	f, 6 \% 1			Do.	
	22.	12.3	(mi, $8(8)$	21.0	34.0	4, 1128	3. 62	3150, (0)	Do.	
	23.	13.0	(05, $1(0)$	20. 7	33.5	4, 617	3.60	352, (0)	1)0.	
	2.1	11.6	101,30)	31.9	34.0	4,015	3. 41	3316,000	$1) 0$,	
	25.	11.1	101,000	21.9	34.0	4,01.1	3.41	$3.11,000$	${ }^{1} \mathrm{O}$,	
	27.	11.6	104, 900	20.7	35.0	1,622	3. 14	361,000	1)0,	
	4. ${ }^{\text {a }}$	11.9	93, limo	20. 2	3 3. 8	4,023	3.70	346,000	110.	
	30.	11.8	103, 200	22.3	37.2	1, 022	3.42	353, 000	1 O	
	31.	11.15	91, ${ }^{(1) \%}$	10.0	32.2	1,6\%	3. 63	334, (00)	10.	
Nov.	3.	11.0	85, 700	10.:	32.4	1, 115	3.07	335,000	110.	
	5.	10.1	$8: 3$, su)	18.2	32.0	d, cos	3. 61	205, 000	10.	
	10.	S. 3	75, 200	16. 1	30.6	4,606	3,33	250, 000	$1) 0$.	
	11.	7.9	73, $1(10)$	15.0	30.3	4,6,93	3.15	230,0) 0	10.	
	1.1	7.0	(39, 110	16.1	25.1	1, 6S8	3. 38	23.10 ($\mathrm{K} \times 1$	110.	
	17.	6. 5	(ii, O (6)	14.1	? 3.1	1, int	3.20	210,000	110.	
	18.	6. 5	(3i, 900	1.1.19	34, 5	4, 6 , 83	3.19	214,000	10.	
	11.	(1.) 5	Bis, (\%x)	1.1. 1	30.5	1, 6S ${ }^{1}$	3.16	209, 000	10.	
	21.	6.5		13.7	2 Sc 0	1,683	3.18	109,000	110,	
	25.	6.7	ti3, (0)	13.7	$3 i .5$	1, 5.85	3.10	201,000	$111)$	
	24.	6.7	(i3, $3(0)$	13.8	27.5	4, 6, 0	3. 113	109,000	110.	
	28.	7.9	(69, $\because(4)$	15.1	20.0	1, 6,06	3.33	230,000	$1) 0$.	
	29.	7.1	$31,(x)$	15.1	20. 5	1,648	3.30	233,000	$1)$	
I) Co .	1.	7.1	70, 8(1)	15. 1	20.6	1,698	3.33	2330, (k)	110.	
	2.	7. 5	70, $8(6)$	16.4	29.5	1, 600	3,25	230, (x)	$1) 0$.	
	3.	7.2	(i8, (1)	15.0	29.0	4, 803	3.34	230, (k)0	110.	
	1.	6.7	(iti, (t)	14. 5	39.0	1, 608	3.27	218,000	$1) 0$,	
	6.	(i. 1	(33, $t \times 1)$	13, 8	25, 0	4,601	3.24	205,000	110.	
	8.	4.6	6(i), 100	13.3	20.5	4, 375	3.10	171,000	110.	
	1.	1. 2	63, 106	12.1	25,5	1,225	3.00	164,000	$1) 0$.	
	10.	3.11	62, 80	12.1	35.0	1,181	3.11	16ie, (000	110.	
	11.	4.8	Si3, $\because(4)$	12, ${ }^{3}$	26, 6	1,245	3.22	171,000	110.	
	12	6. 11	6i\%, $3(10)$	12.0	36.6	1, 1,640	3. 22	185, (000	110.	
	13.	13.3	(i3, $9(0)$	13.9	27.0	1,608	3.30	211,000	110.	
	13.	8.10	71, (HK)	15. ${ }^{\text {i }}$	20.0	4, 113	3. 20	237,000	110.	
	11.	0. 0	78, 1100	16.0	30.0	1, (1)	3. 50)	273, (0)0	110.	
	31.	17.4	111,200	24. 5	331.0	1, 1 (i)	1. 10	603,000	1\%,	
Janl.	1885.									
	1.	20.0	121, 000	27.1	40.0	4,675	4.81	613,000	Do,	
	7.	33.3	143,900	30.7	42.0	1, 088	4.105	712,000	Jo.	
	8.	23, 10	$1 \cdot 16,(x)$	311.1	13.0	1,680	4.87	711,000	I) 0,	
	0.	3.0	$1.47, ~(i x)$	31.5	13.0	1, 680	5. 09	751,000	$1)$	
	10.	:35, 0	163,300	32.7	14.0	1,601	5. (0)	767,000	110.	
	13.	37.13	15\%,140	33.16	46.0	1,608	6. 17	810,000	110.	
	14.	27.8	162, 100	34. 5	46.6	1,608	6. 19	$8.12,000$	$1) 0$.	
Fob.	2.	21.3	121. 100	26.0	38.0	4, 064	4. 30	601, 000	$1) 0$.	
	3.	20.0	116, $2(0)$	2.1 .7	38.0	4,006	4.12	600,000	! 10.	
	7.	17.8	10.1.70)	22.1	35.0	4,1033			1)0,	
	0.	18.5	100,800	22.0	36.0	1,072	4. 61	485, 000	$1) 0$.	
	10.	19.10	110, 100	23.5	36.0	1,680	4. 61	197,000	1)0,	
	11.	10.3	11.1,700	2.15	36.0	1,1880	1. 16	510,000	Jo.	
Mar.	2.	11.4	8.6, (x)	18.1	20.0	1,623	3. 08	313,000	Jo.	
	3.	11.8	86,000	15.6	27.0	1, 1225	3.71	310,000	$1) 0$	
		12.6	(1), 100 101,100	10.5	28.0	4, 630	3.87	340,000	$1) 0$.	
	7.	15.3	101, 100	22.1	30.0	4, 1853	4. 03	423, 000	1)0.	
	$\stackrel{8}{0}$	18.7	110, 000	25.6	35.6	4, 1680	4.20	510,000	$1) 0$.	
	10	20.6	127.700 1.10	27.3	36. 5	4,1077	4. 22	5310,000	I) 0.	
	11.	29.9	1.10, 100	30.0	40.0	1,087	4.30	012,000	$1) \mathrm{O}$	
	13.	22.8	$1 \cdot 16,800$	31.2	42.0	4, 1002	4. 16	063,000	$1) 0$.	
	14.	23.3 20.0	1.10, $2(x)$	31.8	12.0 .16 .0	4,602	1.37 4.88	052,000	$1{ }^{1} \mathrm{O}$	
	20.	20.3	163,300	31.7	13. 0	4,600	4.77	770,000	1)0,	
	21.	20.1	16ii, I(0	35. 1	43.0	4, 680	4.70	705,000	$1) 0$.	
	23.	25. 5	160, 160	31.1	42.0	4,000	1.62	723,000	$1) 0$.	
	24.	25. 0	167,500	33.5	42.0	4,700	1.1?	600,000	Jo.	
	28.	21.16	137, 1000	29.6	38.0	4, 683	1.38	6ill 3,000	Do,	
	30.	111.1	126,200	27.0	30.0	4,080	4.00	812,000	1)0.	
	31.	18.3	111.000	95. 5	31.5	4,610	1. 01	481,000	Do.	

Resulls of dis harge observations, Mississippi River--Continued.

PLUM POIN'T REACH,-ASHPOR'I BEND.

[Tho disoharge seotion is loonted In Ashport Bend about 1,000 feet holow Rango 23 'I, Survoy of Plum

 gangeat Fulton, whose zero is 228.55 feet above the Catro latum, 'Tho Amella gauge road - 2'. 1 on the 8th and toth. 'There were 11 veloelts stations and 24 somblags on the $8 t h$, amd 0 voloclty statlons and 10 somblligs on tho loth. Floats were rum and timed between ranges 200 feet apart. Tho lower float was at about 0.6 depth.]

Date,	Gnuge remiing.	Aran of cross section.	Depths.		Wldth.	Morn volocIty por second.	Dischango per second.	Mothod,
			Moan.	Max/millil.				
1891.	l'eel	Sq. Seet.	Freet.	F'elt.	Fiect.	Feet.	Cuble feel.	
Nov, 8. \therefore	1.8	38,000	36.0	bili. 0	1,059	2.17	31,0)00	Donblo flonts.
10.	1.0	38,40)	36.0	iti. 0	1,051	2.14	82,000	Do.

HISM POLN' REACH-BULILERTON, ARK.
[All the ginge reallings aro those of tho Fulton stamiaril gauge, whose zero is 228.55 feot abovo tho Calro dathm Miano.]

gopt, 1883.a b.........	88.4	24, 700	25.5	6. 10	120,000	Double floats.
b............	c 8.4	18,700	0.2			2.80	6, (x)	1)0,
5............	18.1	10, 110	7.7			2.50	26, $\mathrm{c}_{\text {(1) }}$	Do,
Total.							204,000	
Oet. 2ti.	88.1	2.1,200	23.6	313.0	1,020	1.38	1001,000	1)0,
!	c8. 4	18, $8(4)$	8.7	22.0	2, 160	3.100	188, 100	10.
L	48.1	12,0\%	8.1	10.0	1,110	3. 33	40, (x)	Do. -
'lotal.		55, 100	11.0	313.0	4,613	3.89	214,000	
Dee. 8............	b Is.0		21.0	37.0	2, 1507	4. 19	211i, (x)0	
8...........	c 1s.0	30, 100	36.5	18.0	1,087	4. 13	17\%, (x)	1)0.
8.	"13.0 e 18.0	\dot{s}, \dot{d}	12.7	23, 5	(0,3	1. 10	$113,0(1)(1)$ 10,060	1)0. 10.
'rotal.						. \cdot.	514, 100	
1884.1								
Sopt. 15............	67.2	20, $50 \times$				1.115	34,000	Mntor.
16...	07.2	23. 210				1. 17%	38, 19\%)	10.
16...........	¢ 7.2	$13,3(4)$				3.35	4i, (k: 0	10.
16.............	17.2	13, 1i(\%)-.		1.02	26, Ofil	$1) 0$.
'lotal.							143,000	
1s90. 1								
Mar. 7............	k32. 8			(37.0)	2,000			
7.............	132.8	44, 0(1)	…	66.0	1,020	3. 2.1	14, (kn)	110.
7............	m32.8	33,300		28.0	1,346	3. 39	113, (1)0	1)0,
'Total.		221.700			0, 165	1,1018,000	
Mar. 0............	$k 33.15$	$118.7(0)$		137.0	2,900)	6. 19	816,140	
0.............	13.3 .6	-12,300		83.0	1,920	3.69	132. $16(10)$	1 1).
O.............	m33, 3	3J, 6 (\%)		29.0	1,345	3.16	1103,1000	Do.
'Total.	225, (i00)			6,165		1,077, (K0)	

[^29]Results of dischurge observations, Mississippi River-...Continued.
PLUM POIN'R REACIT-BULIER'TON, ARK.-.Conthued.

Dato.		Gninge read. ing.	Area of cross section.	Depths,		Whath.	Mean velocIty per second.	$\begin{aligned} & \text { Discharge } \\ & \text { per } \\ & \text { second. } \end{aligned}$	Method.	
		Mean.		Maximath.						
Mar.	1800.		Prel.	Syp fret,	F'el.	F'el.	Feel.	Feel.	Cubie feet.	
		${ }^{13} 31.2$	lis, ${ }^{100}$	6S. 0	2, 1000	5. 4	Sia, 0×0	Moter.	
		r34.2	34, 360		30.0		. 39	${ }^{\prime}$		
	'I'otal.	.	233,400			1i, 165		1,120,000		
Mar.	15.	a3.1. 7	16%, 100		13.10	2,000)	6. 76	878, 100	$1) 0$.	
	16..	034.7	19, 6100		(i7.0	1,920	3. 0^{6}	176,000	Do.	
		c34. 7	36,500		31.0	1,346	3. 10	117,000	D) 0	
	'Iotal.		23:.0100			6, 16is		1,170,000		
Jan.	$1891 . d$ 6.	a 20.1	102,200	37.1	47.0	2,732	6. 43	655, 000	Do.	
	0.	620.1								
		c20. 1	11,000	11.0	16.0	0.17	3. 41	38,000	Do,	
	7.	a30. 13	113:3,900	38.0	17.0	2, 333	5. 11	isiz, ($\times 10$	Do.	
		6.21 .6	1! 19, 0)0	13.6	3.50	1,398	1.69	36, (k)0	Do,	
	7.	c20.6	11, 7(\%)	12.3	15.0	0.1	3.67	12,010	Do.	
	Total		134,600			6, 0 K2		6.10,000		
Jan.	20.	016.6	35, 300	32.0	11.0	2, 6 , 616	6. 115	Pat, (ax)	Do.	
	27.	416.0	15,000	17.0	33.0	8s\%	1. 11	21,000	10.	
	26.	c 16. 5	7, (00)	7.5	12.0	020	3. 28	$\therefore 3,1 ヶ 0$	1)0.	
	Total		110,700			1,605		4105, 0000		
Jan.	28.	© 15.8	Si6, 100	33.1	(11. 0	$2, ~(10) 5$	4.611	4033, (0) 10	$1) 0$.	
	88.	616.8	14,700	1ii. 7	33.6	850	1. 113	17, (k)0	Do.	
	2 S .	c 15.8	(1, 100	13. 5	1:30	028	3.20	20, 01010	Do.	
	'rotal		107,200			1, 003		139.000		
Sopt.		C 7.2	(i3, 600	213.6	3.1. 0	2,350	2. 43	165, 000	Do,	
	21.	e 1.1 .7	(i1, 80)	2.50	34.0	2, 285	2.29	137,1610	$1) 0$.	
	22.	c 1.5	(62, 4 (N$)$	20. 0	(12.0	3,385	2.11	$15(10,164)$	170.	
	21.	C5.0	(i2, 700	211.3	32, 0	2,387	4.111	$1330,(4 \times 1)$	10.	
Nov.	i.	ca. 0	61, 200	$\because 1.8$	20, 0	呂376	1.68	S:, 1000	1)0.	
	${ }^{1}$.	e? S S	$\therefore 2.1010$	22.1	311.0	-3,374	1. 57	Si2, (140)	10,	
	11.	C2, 8		20.4	28. 5	$\underline{3.377}$	1.65	B2, 0 (\%)	10.	
	11.	¢ 2.8	[2, 310	22.1	28.0	2,387	1.61	70, 1×0	Do.	

PIUM POINTREACII-MUK'TON, TENN.

$\begin{array}{r} 1870 . \\ \text { Nov, } 20 \end{array}$	8.8	81,700	34.0	13.6	2, 150	3.11	20.4,003)	Donblo llonts.
Dee. 1.....	0.0	831, 11011	31.0	12.0)	2, 151	3.08	207, (1)	$1)$
3.	0.8	82, 1010	33.3	12.6	2,164	3.31	272,000	$1) \mathrm{O}$
4.	10.0	S6, $3(6)$		13.0	2.116	3.37	2033,000	$1) 0$.
1.	11.3	87, 600	315.1	13.0	2, 475	3. 12	300,000	$1) \mathrm{O}$
8.	11.0	88.1010	35.1	11.6	2, 185	3.60	$32(1), 0(x)$	$1)$
10.	13.3	01, 100	37.9	17.0	2,501	4.15	393,000	$1) 0$.
12.	15. 0	01, ${ }^{16}(6)$	39.3	18.5	2,614	4.70	178,000	$1)$
16.	21.6	117,900	417. 1	Sti. 0	2, 8.514	6. 70	672, 000	$1) 0$.
18.	22.8	$1: 0,100$	17.0	58.0	2,561	6. 03	714,000	$1) 0$.
19.	23.0	10!,000	17,2	57.5	2, 2613	5. 06	721,000	Jo.
22.	29.1	111,01010	111.0	51.5	2,5132	6. 76	678,000	$1) 0$.
20.	30.7	111,101)	11.7	61.0	2.651	6. 33	(609,000	$1) 0$.
28.	23.3	1:3.1061	17.8	616.6	2, 363	6. 8.3	713,000	Do.
31.	27.3	12s, s(1)	III. 1	11.6	2, 0×3	1. 133	828,000	Do.

a Main twer.

- Elinot Chute.
c Ishand No. 30 Chuto
 Chlor of Binglacess hsa2, p, 312s.
- Bhmot danding, This ts total ilsehnge of rivor.

Results of discharye observations, Mississippi River- Continned.

PlUM POIN'I REACH-FUI'TON, TENN.…Contmmed.

	Drate.	```Gango remd- ing.```	$\begin{aligned} & \text { Area of } \\ & \text { closs } \\ & \text { sectlon. } \end{aligned}$	Dopths.		Whath.Mean yeloc- ifyper second.		$\begin{aligned} & \text { I) Ischarge } \\ & \text { per } \\ & \text { second. } \end{aligned}$	Mothod.
				Sean.	Mraxi- IIIIII.				
Jan.	1 SSO.	Fech.	Sq. fccl.	Feet.	licrt.	Fect.	Feel.	C'uble jeel.	1)ouble floats.
		28.8	134, 200	53.7	6if. 0	2,578	6.90	$\begin{array}{r} 951,000 \\ 811,000 \end{array}$	
	8.	27.7	133,200	61.7	is. 0	2,570	6. 34		Wo.
	9.	27.4	132,040	61.5	67.0	2,578	6.10	810,600	1)0.
	10.	27.9	131,900	01.1	61.0	2, 682	6. 51	859,000	1)0.
	13.	30. 2	139, $3(\%)$	51.0	613.0	2, 585	0.09	076, 010	1)0.
	17.	31.2	1.41, 100	51.6	U7. 0	2,602	7.37	1,04, (k)0	1)0.
	17.	33.0	142, 100	51. 8	67.0	2, 595	7. 19	1, 06ti, 1000	$\begin{aligned} & 10 . \\ & \text { 10. } \end{aligned}$
	19.	32.2	145,100	55. 0	67.0	2, 609	7. ${ }^{\text {a }}$	1,043, (100)	
	21.	33.0	1.11,000	65, 1	69. 0	2,100	7.13	1,027,0100	10,
	23.	31.1	135, 010	53. 1	18.8. 0	2,512	7. 11	902,000	$1) 0$.
	21.	27.0	128, 7101	50.1	63.0	2,660	6.32	807,000	1)0.
	3.	25.1	125,400	18.9	6,0. 0	2, 563	5.85	740, 000	$1) \mathrm{O}$
		21.3	111.8(0)	45.0	51.8	2, 5	4.98	572, 1700	Do.$110 .$
Feb,	3	13.15	106,306)	41.9	i3. 0	$\cdots 3,536$	4.611	459.060	
		113. 9	102, 010	110.7	itio 0	2,522	1. 11	453,000	[).
	7.	15. 5	91.1 .10	38.1	60.0	2,511	4.11	307, 100)0.
	0.	15.1	9\%, 910	39.1	19.5	2,510	1.08	409, 000	Jo.
	12.	11.1	93, 900	37.1	18.0	2,500	3.95	370, (1)10	$1) 0$.
	11.	1i.:	97, 1000	38.1	80.0	2, 513	4.07	395, 000	1)0,
	11.	$\because 1.6$	111,300	41.8	56.5	2, 55\%	5. 50	Si29, 100	$\begin{aligned} & 100 . \\ & \text { 1)0. } \end{aligned}$
	18.	26.5	127,100	49.6	(i). 0	2, 575	0.73	$85.5,100$	
	20.	29.1	1351,1010	\$1.9	3.1. 0	2,581	7.09	051, 000	10,
	23.	31.1	133,610	63.5	8 Bi .0	2,505	7. 33	1,025, (1)0	1)0.
	25.	393	138, 180	6,3. 1	(if) 0	$\because, 069$	7.60	1,035, 1,00	110.
Mar.	1.	32.0	134i, 300	6\%. 1	69. 19	2,694	7.60	1, 037, 0100	1)0. 1)0,
	3.	3:, 8	134, 314	63.8	69. 0	? 2,3107	7.88	1, 060,000	
	5.	$3: .7$	111,210	61.3	69.0	2,110	7.30	1, 1)11,040	$\text { 1) } 0 \text {. }$
	8.	35.3	13n, 300	62.7	68. 0	2,694	7.31	, 091,000	$1) 0$.
	10.	33.1	135,010	63.5	69.0	2, ink	7.17	1, 033,010	10.10.
	12.	33.1	131i, 110	\$2. 1	C8, 0	2,160	7.50	1,031,000	
	16.	313.12	137,060	59,0	69. 0	4, 0	7.57	1,011,000	1)0.
	18.	33.6	11110	33, 7	70.0	2,108	7.01	1, 108, (14)0	jo,Do,1)
	20.	33.5	11293	Si.	70.0	2,110	7.60	1, 068, 1010	
	22.	31.0	112,100	51.1	710.0	2,107	7.41	1, 03 1,000	1)o,
	34.	34.1	111,300	65.12	30.0	2.618	7.75	$1,117,0100$	Do,
	20.	31.1	143,600	51.9	(3, 0	2,618	7.45	1,070,000	Do,
	21.	31.0	1.10,600	53. 7	(is. 0	2.115	7.71	1,045,000	1)0.
	31.	33.13	111.200	65.2	(is. 0	2,101	7.65	1, 059,006	110.
Apr.	\because	$3 \pm .5$	1.11, 310	61.0	1.8.0	2,047	7.13	099, 190	Io.
	3.	32.9	135, 100	33.1	(iti. 0	2,695	6. 87	801, (00)	
	i.	911.7	133.100	51.3	lif. 0	2,684	0. 11	8501.1400	Do.
	7.	28.0	12x, 314	60. 0	(il. 0	2, 074	6. 10	833, (1\% 5	$1) 0$.
	0.	2\%. 1	139.300	17.4	(i). 0	2, 398	6. 31	7731000	Do.10,O.
	11.	aid 1	13: in,	18.2	61. 0	2,112	13. 12	Soli, 060	
	13.	20. 0	121,100	17.0	6i2.	$\because 113$	6. 01	751,1610	10.
	1.15	20.2	121,100	17.8	(i1. 0	2.101	6.17	$767.000)$	1 O.
	17.	2.16	1:0,100	16. 2	10.0	2,346	6.67	680, (7)0	1)o.1)0.
	10.	2.1 .2	118, 910	45.1	58. 6	2, 312	6. 50	(6), (4)0	
	21.	2.1 .5	121, 100	16. 0	619.0	?, 2193	6. 78	700,160	10.
	23.	28.2	121, 100	46.7	60.5	31003	5. 03	30, 0100	Do.
	2.4.	25.1	122,300	17.4	611.5	2, 2149	5. 013	720,010	110.10.
	27.	2.1. 0	110,0100	16.1	619.0	3,248	5.8 .4	701.000	
	29.	23.4	110,00)	1ii, ${ }^{2}$	10.0	$\frac{2,590}{2}$	5. 56	Ci67, 040	1) 0.
Any	$1 .$	24.0	121,200	16. 7	59.0	2, 509	13.08	737.010)	Do.Do,10.
	$\hat{3}$	27.1	128,300	19.2	6is 5	2,1610	6. 31	809.000	
	1.	27.8	190,700	10. 7	61.5	3.608	0.60	851.0100	$1) 0$.
	6.	29, 13	132,300	©0, 0	64.0	2, 611	0. 63	877.000	10.
	8.	29.0	133, 6100	61.0	(i.1. 0	2, 11.8	0. 70	895,010	
	10.	28.6	132, $7(6)$	io. 7	(i3. 0	2, 0118	0. 87	S72,000	Do.
	11.	28.0	131,100	50. 2	(i2. 5	2,1616	6. 26	823.1000	$1) 0$.
	12.	27.0	130,700	60.0	62. 5	2,162	13. 13	801,006	1)0.
	13..	25.7	128, 100	10.2	03. 0	2, 0 (0)	6. 80	755,000	Do.
	1.1.	24.5	121,600	17.8	60.0	2,100	6. 74	71.1,0(6)	1)0.
	15.	23.2	119,300	45.0	57.0	2, ${ }^{\circ}$	5. 31	633, 1000	I) 0.
	17..	20.3	111.300	43.2	55. 0	2, ins	4.78	633, 0100	Do.
	18..	19. 1	110, 100	42.18	'55. 0	2,641	4.63	409, 1000	$1) 0$.
	10..	18, 3	106.100	11.1	61. 5	2,873	1.311	(1i), (0)	$1) 0$.
	20.	17.3	102, 1000	10, 0	52.5	2, 0100	1. 10	121, 000)	1)0.
	21.	11. 7	101,00)	39.8	60.5	2,658	4.13	131.0104	10
	24.	11. 1	(K), 900	39.1	60. 0	9, int	3. 90		$1) \mathrm{O}$
	24.	16.8	08.800	38, 14	19.0	\% 367	3.05	$3011.1(x)$	$1) 0 .$
	25.	15. 7	09,100	$3 \mathrm{S.S}$	[11. 0	2, 037	3.48	35.51040	1)
	21.	16. 3	Us, t(4)	3 3 .1	4S. ${ }^{\text {i }}$	$\because \mathrm{Ba}$	3.81	$37 \mathrm{~s}, 1 \times 0$	1)0.
		15.3	9S, 200	38.4	4S. 5	$2,0 \pi$	3.70	$360,(x) 0$	Do.

Results of discharge obscrvations，Mississippi River Continued．
PI，UM PONN＇REACH－WUINON，IFNN．－．Conthnod．

	Dato．	（ 1 ande Brid． lis．	Armal （riosis sectlon．	Depths．		Whatl．	Moun veloe－ lly per second．	1）H：©harge jer second．	Mothod．
				Monil．	Maxi． 1111II．				
May	1880.	Freel．	Spy feel．	Fiece．	Fiesl．	liel．	reet．	Cubie feet．	
	28．．．．	15．2	91i， 600	37.8	40.0	2， 3.64	3． 83	369，（X6）	Donlila floats
	43.	1．4．8	06， 300	37.7	48.6	2， 2,53	3.05	351，（0K）	1\％．
	31.	1．1．8	93， 1160	37.6	10．6	2,563	3.77	3152,0100	$1)$
Jillo	1.	15．3	07，314	38.9	18.6	2，683	3.00	380，000	110.
	\because	16.10	96， 1010	38.16	60.6	$\because 6108$	1．03	$309,6 \times 1$	10.
	3.	16.8	101， 600	319.18	60.0	2， 616	1.33	133，（1）0	$1) 0$.
	1.	17.1	102．，sin）	40， 0	61.6	2，671	4.30	161，000	$1)$
	6	18.10	104i， $3(10)$	11.2	6.1 .0	2，670	4.36	f12， 010	170.
	7.	18． 1	101， 100	11.13	62.6	2， 541	4.62	185，（KW）	110,
	8.	1s． 1	108， 100	12.0	52.5	2， 18.4	1． 186	501，（ XH$)$	1% ，
	9.	15．13	107， 600	41.0	61.0	2， 68.1	4．68	102，（К）	$1) 0$.
	11.	18．6	107，3010	11.1	63.0	2， 68.1	4.63	487，（Kx）	$1) 0$.
	11.	18.3	110ti， 100	11.1	62.6	$\because, 182$	1． 19	173，（1）	$1{ }^{1}$
	$1: \%$	17.8	103， 61010	10． 3	61.0	2，675	1．37	156，（101）	10.
	11.	17.4	111， 300	40.5	51.6	2， 375	4.31	152，（0K）	Do．
	16.	17.1	10：3，3010	．10． 1	62.0	$\because, 675$	1.36	15：0，（XM）	10．
	11.	17.1	102， 110	30.8	61.6	$\square 1.672$	4.23	132，060	DO_{0}
	17.	11.7	103，1010	10.0	610． 6	2,2637	1．3：	137，（ $\mathrm{KK}^{\text {（ }}$	Do，
	18.	1ii． 0	100， 5101	319.3	111． 6	$\because, 5143$	1.01	1172，060	10，
	19.	16.8	（15，1019	3s． 3	41.0	$\because, 641$	1.114	33720	O_{0} ，
	21.	16． 5	ば， 200	34.3	50.0	\because, ， 211	1.118	101，（HK）	1）0，
	32.	116.3	102．2101	37.8	80.0	3 ？ 3 ，	1.13		1）．
	23.	11.13	102,1000	110．1	61， 0	？ 36	128	f3is，（x）	\％\％．
	$\because 1$.	17．2	101， 1100	10．6	60.6	2．538	1．3i	4St，（4）0	110.
		1s．：	1016， $11(\mathrm{~K})$	11.3	61.5		1． 17	173，（14）	10.
	26.	1s．7	1015， 100	11.3	62.0	？，689	1.71	S（0），（W）	110.
	28.	10.7	111， $1(x)$	12.8	81.0	2，603	1.816	6，10，000	10.
	91.	20． 3	111，300	43.1	5．5． 0	$\cdots 6191$	1． 193	Sric，（kx）	1 O,
July	1.	310.6	111.1010	13， 5	S3． 0	？， 681	1． 1111		10.
	3.	20． 3	111， $2(0)$	12.11	61.0	2,642	1． 810	6，11．10（6）	10.
	3.	20．：	110， 1109	H， 11	6．2． 6	！ 3.643	5．02	Sha，（0）	110.
	5.	21.3	113，in	13． 7	63， 0	2，，（1）6	b． 110	69（0，010	10.
	11.	23.0	118．（6）	16.3	611． 0	2,101	6． 710	（190． 180	10.
	7.	21.0	123，Сi（k）	17.1	60．5	2，4，106	5．84	$7246,(36)$	$1) \mathrm{O}$
	8.	2.1 .8	123，80\％	17.1	mi． 5	$\because 111$	6． 01	718,0090	$1) \mathrm{O}$
	11.	26． 10	127，300	18．7	（i）． 5	3.1618	6． 33	S0S，（M）	！ 10.
	111.	20	133．800	60.7	（i）． 5	2,617	（i． 38	Ass，0\％	Do．
	12.	24.1	120， 100	18.2	60.6	2,617	（1， 29	\％93， 140	10.
	13.	25．7	121， $3(x)$	111．6	611.6	2， 6117	（1． 17	7\％，（1）	10，
	11.	25． 2	1：0，100）	45． 0	61， 0	2,611	6． 016	715，（6）0	10.
	16.	2.9	$11.5,8(1)$	16.1	67， 0	2,615	6.188	$\because 11,(\mathrm{KNO}$	10．
	111.	9310	115， 10 （1）	14．3	5150	\because, tiol	3． 0.1	（itici，（1ac）	10.
	17.	2．3．3	115.180	14．1	（i13． 0	$\because, 100$	6.61	到3，（0x）	110.
	10.	21．s	113, Bion	13.8	S． 10	$\because, 1097$	6． 18	Ssic， 000	10.
	20.	$\because 1.0$	111，3（k）	42.0	63， 6	9,5193	6． 10.8	605， 060	1）0，
	21.	$\because 11$	105，f（k）	41.8	820	2,501	4． 190	5i32， 000	10.
	21.	$1!1$	115， 700	40.8	52． 5	？， 3 ， 510	4.75	60．${ }^{\text {，（ }}$（\％）	10.
	！ 31	1s 6	10：3， 700	40.1	600	2， 2.85	1． 123	fric，（0）	$1) \mathrm{O}$
	2.	178	10！ 20	30.1	600	2， 6,7	1． 51	dIII，（190）	110.
	211.	1i． 5	（19， 210	388	190	2 2， 50	4.09	dili，（ky）	$\mathrm{l}_{0} \mathrm{O}$
	97	11i． 10	961，800	37.8	17.0	？， 6.17	4.07	394.000	10.
	35	1i． 5	（1ii， $1(10)$	37.16	48．0）	$\bigcirc, 8.93$	3.80	373，（x）	11），
	34.	1i． 1	（12i， 5100	37.8	178	2.610	3.94	$3 x_{2}^{\prime},(x) 0$	110.
	30.	1.16	015，50\％	38.7	480	2.616	3.70	$373,0 \times 0)$	110.
	31.	1．1． 2	06， 010	37.1	111． 6	2， 2.48	3． 89	$3 \cdot 11,000$	$1)$
Aup．	2.	12． 1.9	912， 0100	36.3	4．00	2， 8.8 .4	337	310,000	110.
	3.	12，6	（10，200	35.6	15： 0	2， 5,13	3.38	30\％，（0x）	110.
	1.	11.0	S！ 11.110	3.40	4.0	2， 30	3.33	207，（00）	Ho，
	5.	11.6	Siit， 2111	3.14	13.5	2， 52.1	3.14	273，000	110．
	1.	11.2	81，P64	33.3	43.5	2， 321	3.105	250.180	110.
	7.	110.5	8．1，（M） 41	33.7	14.0	2.610	3． 303	257， 2000	110.
	11.	111．：	S．1，0\％）	33.5	43.5	2， 3188	2.9	$2.13,1000$	110.
	10.	9.19	S？，	32.8	12． 0	9， 205	9.82	Sisi，（00	110.
	11.	9.8	N：，1061	33.8	13．0	${ }_{9}^{9}, 504$	2.72	22.1000	$1) 0$.
	13	0． 11	S\％，300	32.8	12.0	2， 9.111	2． 82	233,000	170.
	13.	0． 5	$81, \mathrm{~B}(\mathrm{~K})$	3？， 7	11.0	2， 5000	？． 78	227， 0×0	110.
	11.	0．1	$81,8(1)$	3：2．？	12.5	2， 4199	2.76	220，（90）	110.
	16.		S1，ifk	32， 9	11.0	2， 4198	2． 68	$210,(6)$	110.
	17.	11%	Sil，＂01	12， 3	11.5	9， 4108	2.71	$? 110.1000$	110.
	18.	11 0	S（1），in1	32.3	11.0	2， 9.414	2．${ }^{2} 10$	21.1004	110.
	11.	S． 8	70， $\mathrm{s}(\mathrm{s}(\mathrm{l})$	32.0	11.0	2.403	2．83	20：，（6M）	1 10，
	S0．	$8{ }^{8}$	3！，＂（k）	33： 0	d11． 5	9， 9191	2． 810	1619．000	110.
	21.	81	＂S．300	31.1	11， 19	$2 \cdot 1$	？， 68	108，（0\％）	10.
	23.	7.19	＂14，3100	300	3190	－ 2.177	2． 16	187,100 180,000	10．
			7，300		38．	4.15			1

Results of dischurge ohstrations, Mississippi hiver-.-1'mlimed.

 Chlef of Eingineers, 1850, mapo 20:18.

c'Iheso widths aro not preclso, as tho water's edgo wis not oxnedy located.

- Somblling wero taken May 8 , and corterted for change of gampe.

 deres.ellon was the samo as used In laga-s).
o (iange reading itis corrested by Mr. soditon from plot.

Results of discharge observations, Mississippi River....Continued.

a Observations and reduction by M, R. C. first illstriet ollleer. 'Inhulation from Oet. 7, iss., to Fob. 25, 1887, not heretofore published. Wlaths from Oet. 7, issi, to Jan. 19, iss.s, sealed from fild plots.

 observatlons in Report Chtef of Lingheers, 1801, page: $5: 27$.

Results of discharge otservations, Mississippi River Comtinued.
MLMPIHS, TENN.

 tho sth, and 10 volocity stations ami 15 somblmes on the loth.)

[^30]
Resulls of dischurge observations, Mississippi River-..Continued.

MEMPIIS, TENN.-ContInted.
[230 milles bolow Calro.]
 Enited Slates linglmer ginge, whose zero is 203.97 feot ahove cialro datum. Prico meter used. Ohservations madaunder direotion of Ist and 2d distriet ollfer, M. R. ©. Report Chfef of lingheets, 180t, page 3551.|

Dato.	Gambo remiing.	Area of cross section.	Dopths.		Whalth.	Mran voloeIty per second.	$\begin{aligned} & \text { Diselharge } \\ & \text { per } \\ & \text { second. } \end{aligned}$	Mothod
			Mean.	Mnximilli.				
$\text { Oct. } \begin{aligned} & 181 \ldots . . \\ & 22 . \ldots . . \end{aligned}$	$\begin{aligned} & \text { Fect. } \\ & -1.7 \\ & -1.8 \end{aligned}$	$\begin{aligned} & \text { Sy. feet. } \\ & 8 \&, 0 \times 0 \\ & 68,300 \end{aligned}$	Feet. 36.8 37.1	F'el. 68 67	Fect. 1,573 1,373	Feet. 1.62 1.55	$\begin{array}{r} \text { Cubli reet. } \\ \text { ss, } 1 \times 0 \\ 90,000) \end{array}$	Mator. Do.

[231 milles bolow ('aito.]
OObservallons and reductlon under direntlon of Capt. E. W. Van (., L,ums, Corps of Engincers, Mississtppl
 phis hridge. Volocithes in main river wore memsired with a prico chrrent moter, ovorbank voloedies wero measured wilh surface floats. Memphis U. B, lingineor gange, whoso zoro is 203.07 feet abovo tho Cairo datam plame. Keport Chof of Eingineers, lows.]

Date.	Gnuge reat. ins.	Area of aross section.	Dopths.		Wlath.	Mean velor. ity jor secomi.	Dischargo per second.			Sothod,
			Mean.	Maxt-			RIvor.	Bank.	'Total.	
$\begin{aligned} & 1001 . \\ & \text { Apr. } \\ & 0 . \ldots \end{aligned}$	Fect. 38,6	Sq. $/ 1$. 153, $7(\mathrm{~K})$	F'el. 71.9	Feet. 118. 5	Fell. 2,193	S'ect, 0.60,	Cuble feet. 1, 511, (k)	('11. 11.	Cubic feel but $1,615,0 \times 0$	M. and

 bridee (ost. Fmmis lover.
o If two sommings in the maln river, questloned by the observer, are rejected, this total disohnrgo would bo 1 , 631865 ca fa deat per second.

HAMPION LANDING, ARK,

Gretion about 12 miles below Momphls, Tho gauge tabulated was established on the Arkansas shde near

 thons, LEeport Chlef of lingincers, 1s87, p. 2701.]

Results of discharge observations, Jississippi River-..Continued.
HAMP'TON IANDINO, ARK.-Contlmed.

Dite.		(inuge remi. tug.	Area of cross section.	Iopths.		Wldth.	Mean valucIty per second.	$\begin{aligned} & \text { Discharge } \\ & \text { per } \\ & \text { second. } \end{aligned}$	Mothod.	
		Mean.		Maxl. 111111.						
Fob.	1870.		Fect.	Sq. feet.	Feel.	Fiel.	F'el.	Feel.	C'uble seel.	
	20....	18.2	13, 700					337,000	Doutho floats.	
		17.0	129,300				3.83	19\%,000	Do.	
		17.7	132, 100				3.90	624,000	Do.	
	21.	19.1	1:8, 70				4.11 4.13	668,000 573,000	Do.	
Mar.	\checkmark	17.5	131, i (60				3.03	517,000	Do.	
		17.2	130, 100				3.42	511,000	1)0.	
		17.1	129, 700				3.82	405,000	10.	
	11.	16.8	126, 100	27.9	31.1	4,500			Io.	
	12.	11.1	121,3(3)				3.03	189, 000	1o.	
	13.	16.1	123, (1)0				3.69	180, 000	$1)$.	
		111.8	139,700			1.10	681, (00)	10.	
	21.	$\because 1.2$	$1.66,160$ $1.48,860$				1.23 4.35	625, (1)0	110.	
	22	21.8	148,800	31.1	10.7		4.35	017,000	10.	
	2.	2.8 2.9 2.9	166,100 167.100	31.1	10.7	1,6is	4.27	072, 0×0	10. 10.	
	28.	21.0	103, 200				1.14	734, (x)	10.	
Apr.	2	25.1	103, 100				1.36	720,000	10.	
		24.5	101, 700				4.37	710,000	10,	
	12.	21.7 3.7	161,800 100,200	30.1	4.6	1,560	1.23	678,000	10.	
	16.	33.3	168, 460				1.22	6is, (x)0	10.	
	23.	23. 6	169, 700				4.27	©S2, (x)0	10.	
	24.	22.8	156, 160				4.20	65:3, 060	110.	
	26.	22.1	1ish,300				1.12	035, 100	110.	
	28.	10.3	143, (010				1.43	576, 000	110.	
	29.	18.7	1:37, (0)0				3.80	636,060	10.	
	311.	17.7	125, (101	27.8	35.6	1,31.			170.	
Muy		16.7	1114, 110				3.74	135, 000	Do,	
		13.10	168, 1080	23.9	31.5	1,172	i" ${ }^{\circ}$!o.	
	\cdots	10.0	06, 2(k)			3.42	329, 0100	Do.	
	11.	0.0	93, $1(4)$				3.36	312,060	10.	
	11.	9.3	90, $1(0)$				3.21	290,000	1 \%o.	
	13.	8.2	86, $1(6)$	10.3	23.1	4, 113			1 O.	
	11.	8.8	83, 1(6)				3.18	$271,(0) 0$	Jo.	
	15.	8.0	$81,3(1)$			3.16	$2(6,16 \times 0$	10.	
	10.	7.1	83, 510				3. 23	? 11.100	110.	
	17.	7.8	83. ${ }^{\text {d }}$ (16)				3.21	26s, 100	1)0.	
	19.	7.8	80. 200	18.2	23.7	4,10:			Vo.	
	20.	7.2	\%1, $7(10)$			3.17	283, (0)0	$1) 0$.	
	21.	7.1	74, 3100				3.22	265, (k)0	10.	
	2.	7.1	74.300				3.22	256500	10.	
	23.	7.19	7s, 110				3.23	255, 000	110.	
	20.	0.2	$76,7(6)$	17.0	23.1	1,305		"习ivo	10.	
	27.	0.1	76,306)			3.11	237, (N)0	!o.	
	28.	0.0	75, $8(0)$				3.11	230, 200	150	
Jume	20...	0.0 + 7.0	75,800 82,000	18.0	21.8	1,110	3.12	236,000	no, 10. 10.	
	4.	8.1							10.	
	6.	0.0	SS, 200				3.10	$3(0),(0 \times 0)$	110.	
	0.	0.6	(14, 100				3, 67	3331000	Do.	
	7.	10.0	92, 600				3.53	327, 000	110.	
	0.	11.0	97, 710	81.0	27.4	4,123			1% \%	
	10.	11.1	08, 108				3.53	313, 360	110.	
	11.	11.0	07, 760				3. 23	311.000	110.	
	12.	11.0	197, $20 \times$				3.61	$311.10 x)$	10_{0}	
	13.	10.8	00, 8181				3.69	318, 160	10.	
	1.	10.7	00.100)				3.15	332, (6)	10.	
	16..	10.1	(13, 3 , (k)				3.57	336, 000	1) 0.	
	18.	0.0 10.0	$92,(10)$ $02,1(k)$	20.7	20.0	, 14	3.01	333,000	10.	
	10.	10.0	92, 400				3.65	328,000	Do.	
	21.	0.8	01, 500				3.11	31\%,000	1)o.	
	23.	10.0	92, 100				3.18	322,000	170.	
	24...	10.5 10.0	91,600 00,400				3.69 3.68	340,000 345,000		

Results of discharye observations, Mississippi River-Continued.

IFILENA, ARK.
TThe gauge readings aro all roferred to the zero of the Unlted States engineer gauge at Holena, whose zero is 161.08 feet above the Calro datum plane.]

- Observatlons and redution under Maj. C. B. Comstock. Report Chlef of Englneers, 1879, p. 1070, The gauge readings for 1879 are as reported by discharge party and differ slightly from the standard records. Observations and reduclion of 1882 under scoretary Mississlppi Liver Commission. Report and
tabulation, Report Chilef of Engincers 1384, p. 2618.
- ObservaHons Imperfeet.

Results of discharge observations, Mississippi River-Continued.
HELENA, ARK.-Continued.

- August 17 rod floats gave mean veloodty -3.66 foet and discharge $-453,787$ cuble leat per second.

Results of discharge observations, Mississippi River---Continued.
HEILENA, ARK.-.Contlnthed,

[^31]Results of discharge observations, Mississippi River-Continued.
IIEI,FNA, ARK,-Continued.

Date.		Gallge romp ing.	Aren of cross section.	Depths.		Wldth.	Mean veloclis per second.	Discharge per second.	Method.	
		Meall.		Maximulli.						
Oct.	1894.		Ficl.	Sg. 17.	Fcct.	F'cl.	FCcl.	Frct.	Cubic feel.	
		18.0	07, 100	21.0	66.0	4,1924	3.78	3177, 000	Meter.	
	11.	17.8	67, (NM)	21.2	61.4	4,616	3.81	373, 0×0	$1) 0$.	
	15.	17.6		21.1	80.1	4,013	3.70	364, 000	1) 0.	
	13.	17.1	08, $3(\mathrm{~K})$	21.3	60.6	4,61.4	3.01	$3350,0 \times 0$	100	
	17.	18.0	I(x), I(01	21.6	63.5	4, 023	3.92	a 393, (x)0	Do.	
	18.	18.3	97, 0\% 0	21.2	58.6	4, 625	3.64	35.4. (x)0	10.	
		18.4	100.3100	21.7	89.6	4, 62:	3.73	37.1. $1 \times(4)$	10.	
	21.	18.4	I(N), (x)	21.6	69.6	4,620	3. 69	36, 9 (0)	10.	
	22.	18.2	09, 300	21.6	(\%). 0	4, 62.4	3.73	$371 .(14)$	1).	
	23.	17.8	67, $4(x)$	21.1	68. 5	4,621	3.855	3.46, (x)	Do.	
	26.	16.9	0,3, $8(4)$	20.0	80.4	4,013	3.81	$3355 .(1)$	10.	
	27.	16.3	80, (1)0	19.4	69.2	4, 10×16	3.72	$33.4,000$	1) 0	
	24.	16.0	85,200	19.2	69.0	4, (107	3.85	340, (0)	1)0.	
	20.	10.1	87, 20\%	18.9	6, 8.9	4, (1) ${ }^{4}$	3.84	3335, 000	1).	
	30.	16.2		10.2	60.4	4, 1015	3.77	$3333,0 \times 0$	10.	
	31	16.4	$8 i, s(x)$	19.0	60.4	4,110	3.85	3:34, 000	110.	
Nov.		16.3	8\%, M(0)	10.3	67.4	4,610	3.74	:33:3, 000	110.	
	3.	10.0	87, 1(K)	18.9	67.9	4, (2) ${ }^{4}$	3.77	323, (x) 0	150	
	4.	16.8	856, 310	18.7	88.0	4, (0)7	3.82	3321 , (000	10.	
	6.	15.5	8:3, (4, x^{\prime}	18.6	$67.1)$	4, CH	3.69	317,000	Jo.	
	6.	$1{ }^{1 .} 2$	8.4, 18 ($)$	18.4	67.5	4, 697	3.83	$32.1 .0 \times 8)$	110.	
		14.8	$82.8(0)$	18.0	i,i.3	4, 80.4	3.71	305,000	Do.	
	8.	11.2	79, $7(x)$	17.4	itis. 5	4,88	3.70	$20.3,1000$	1) 0.	
	10.	13.1	73,	16.5	[is. 5	4, 319	3.75	2×3.000	[)o.	
	11.	12.6	7 3 .2010	16.5	\%7.0	4, 5 ij?	3.75	292, 160	Jo.	
	12.	12.1	72.306	16.9	3.0	4, istis	3.60	$207,(A x)$	1)o,	
	13.	11.8	65.300	15.0	i.4. 0	4, 043	3. 74	25s, (0)	Do.	
	14.	11.3	60, 610	14.7	62.5	4, 2.41	3.82	$2 \cdot 4!$, (x)	Io.	
	1 i .	11.0	(64, 200	14.1	22.0	4,830	3.69	233, 000	1).	
	17.	10.3	41, 34×1	13.6	.i3. 3	4, 02.3	3.74	$22^{2}, 0,000$	$1) 0$.	
	15.	11.0	(6),3(1)	13.3	(3). 0	4, 521	3.72	$22.1,0 \times 0$	1\%.	
	10.	9.9	68, $1(x)$	12.9	\{x3. 2	4, 519	3.76	219,000	Jo.	
	20.	0.7	67, 010	12.6	[3. 5	4,513	3. 410	a 2051000	Jo.	
	21.	9.6	54, 3 (x)	16.8	52.5	3.2(0)	3.40	20.9, 000	Jo.	
	22.	0.5	64, 3141	16.7	52, 0	3.210	3.49	212,000	10.	
	24.	9.4	5.f, $1(x)$	16.6	i2.0	3 , 240	3.82	2245,1000	130.	
	2%.	0.3	64, 5100	16.7	63.0	3,269	3.50	210.100	Jo.	
	$2 \mathrm{i} .$	0.1	633, 410	17.2	\%2. ${ }^{5}$	3.110	3.76	201,000	Do.	
	276	8.9	$66,7(0)$	15.7	20.10	3. 6.9	2.95	198, 0×0	1 l	
	$2 \times$.	8.9	65, $8(4)$	18.4	25.0	3, 305	3.17	209, 0090	Do.	
	? 1.	9.1	103, $i(0)$	18.4	25.0	3, i5ai	3.12	205, 0×0	Jo.	
lere.	1.	10.5	$70,6(x)$	19.6	2 i .1	3, 611	3.103	218.000	1)\%.	
	2.	10.8	71, $s(x)$	19.7	26.5	3, 1238	3.19	222, 2000	1)0.	
		$11.0-$	71, 310	19.7	20.0	3, 138	3.14	225, 0×10	Do.	
	4.	10.8		19.7	21.0	3, 132	3.945	210, (0)0	Do.	
	4	10.8	(i3.040	14.1	33.0	4, i3 3	3.82	$244,000)$	1)0.	
	5.	10.3	70, 000	10.5	24.0	3, 315	3.97	217, (0)0	1)0.	
		10.3	60, 000	19.3	$2(1.1)$	3,408	3. 26	2215, 060	$1) \%$	
	8.	9.0	(6.1, 700	15.1	25.0	3, in	2.91	158, ($\times 14$)	$1) \mathrm{D}$	
	9.	8.4	(33, 100	17.7	24.0	3. 3.18	2.85	180, $\times 10$	Do.	
	(1) 5	8.3	60. $2(x)$	15.8	S1.0	3, 190	3. 99	$180 . \times 1 \times 1)$	Do.	
	11.	7.9	61, 500	17.3	23.0	3.647	2.82	17.3 .1000	10.	
	11.	7.5	69, 9) ()	17.0	23.11	3.321	2.83	170.1×10	Do.	
	12.	7.2		16.5	23.1	3, 320	2.81	160, 010	Do.	
	13.	7.2	6S, $7(4)$	16.7	22.0	3.317	2.55	169, 090	Do.	
	15.	8.5	(i3) 3 (1)	17.3	23.5	3, 347	3.194	193, (4)0	Do.	
	16.	9.8	13. 3100	18.5	25.0	3, 305	3.16	21.1. $18 \times$	Do,	
	17.	10.9	71.900	10.8	27.0	3. 633	3.15	2916, (40)	Do.	
	18.	12.1 13.2	76,800 $80.819)$	20.7 21.6	27.5 28.5	3.648 3.735	3.24	245, (x)	Do.	
	11.	13.2	80, 20)	21.6	2.85	3. 333	3.27	2ij, (180)	Do.	
	22.	15.2	88. 3 (30)	23.2	3.0	3.511	3.35	2901. ($\times \times \times$)	10.	
	23.	15.2	\$7.300	22.9	31.0	3.9103	3.35	2922, (x0)	Do.	
	30.	13.1	S7, 460	22.9	29.9	3, 504	3. 19	$304.1 \times \times 0$	[50.	
		17.0	97,800	24.9	32.5	3.9331	3.82	364.1000	Do.	
Jan.	1885.		110, 3 (14)	26.4	35.5		3.88		Do.	
	2.	21.0	12:(40)	29.8	46. 0	4, 201	4.11	il 1.000	50.	
	3.	26.9	$13 \% .090$	32.1	43.5	4,293	4. 12	103. 1×0	Do.	
	7....	31.9	13i, (0)	$3 \mathrm{~B}, 7$	17.0	4.338	4.60	cil3. (x)	Do.	

a lesults doubtfal; observer sings rejoret.

- Ex wepthg Dec. 1 and 9 the low-witer section was used from Nov. 27 to Jan. 7.
chute discharge, 3 , ix 0 cuble feet, not inelided.

Results of discharge observations, Mississippi River-Continued.

HELENA, ARK.-Continued.

		Gauge read. Ing.	Area of cross section.	Depths.		Wldth.	Mean velocIty per second.	Discharge per second.	Method.
	Dato.			Mean.	Maximum.				
Jan.	1885.	Feet.	$s q . f 1$,	Feet,	Feet.	Feel.	Feet.	Cuble feet.	
	7 a	32.0	103, 000	34.3	70.0	4,774	4.22	690,000	Meter.
		32.2	162, 700	34.0	70.0	4,770	4.30	714,000	1 10,
	9.	32.5	164,600	34.4	75.2	4,781	4,30	707,000	$1)$.
	10.	32.8	160, 800	34.9	75.0	4,783	4.24	708,000	Do,
	12.	333.0	170, 700	35.8	76.5	4,800	4.42	754,000	Do.
	13.	34.4	174, 800	30.4	77.6	4,805	4.47	781,000	Do,
	14.	35.0	177,300	30.8	78.0	4,820	4.47	792,000	$1) 0$.
	17..	30.9	180,000	38.5	78.0	4,829	4.44	820,000	DO.
	19..	37.0	188, 800	39.1	79.6	4,831	4.60	850, 0×10	Do.
	20.	38.0	180, 600	39.2	81.5	4,831	4.60	873,000	$1) 0$.
	21.	38.3	192, 300	30.8	82.2	4,831	4.71	(X)7, 000	$1) 0$
	22.	38.7	106, 000	40.4	82.2	4.831	4.71	918,000	1)0.
	20.	40.1	201, 400	41.6	83.6	4,841	4.82	970, 000	$1) 0$.
	27.	40.4	204, 700	42.2	83.5	4,850	4.82	087,000	$1{ }^{1}$
	28.	40.5	205, 000	42,4	83.5	4,861	4.90	1,021,000	Do.
	29.	40. 6	200, 100	42.5	80.5	4,801	4.91	1,013,000	Do,
Feb.	2.	38.5	103, 700	40.0	80.0	4,844	4.54	870,000	1)0.
		30.8	185, 200	38.3	79.0	4,836	4. 40	810,000	Do.
		34.9	170, 0100	30.0	78.0	4,810	4.12	720,000	1)0.
		32.7	103, (0)	34.3	78.0	4,778	4.20	687,000	$1) \mathrm{O}$
		30.9	160, 200	32.8	74.0	4,760	3.08	622, 000	$1) \mathrm{O}$
		29.2	148,800	31.4	72.0	4,730	4.20	625,000	1)0.
	9.	27.0	130, 700	20.0	08.0	4,709	4.07	657,000	$1) \mathrm{O}$
	10.	20.0	134,800	28.6	69.0	4,707	4.04	646,000	$1{ }^{1}$
	11.	20.5	134,000	28.7	70.0	4,707	4.00	b30,000	$1) 0$.
	12.	20.7	137,000	20.1	70.0	4,707	4.03	b52,000	10.
	13.	26.9	137,000	29.1	70.0	4,708	4.04	6333,000	10.
	14.	27.0	135,700	28.8	69, 0	4,714	3.08	641, 0100	1)0.
	19.	20.5	140, 400	30.9	72.0	4,743	4.11	601,000	1)0,
	20.	29.4	145, 000	30.6	71.0	4,743	4.13	600,000	1)0,
	28.	18.4	90, 000	19.7	68.0	4,021	3.08	301,000	1)0.
Mar.	2.	16.8	84, 400	18.3	57.0	4,007	3.05	334,000	Do,
	3.	10.5	83,100	18.0	613.0	4, 600	3.05	328,000	$1)$
	4.	10.5	83, 800	18.2	\$4.0	4, $\mathrm{CO}_{4} \mathrm{O}$	4.00	330,000	$1) 0$.
	5.	10.8	84,900	18.4	05.0	4.012	3.07	337,000	$1) 0$.
	6.	17.4	87, 900	19.0	84.0	4,010	4.04	365, 0000	$1) 0$.
	7.	18.3	91, 600	18.8	57.0	4,025	4.05	370,000	1 10.
	9.	20.4	101, 200	21.8	57.0	4, 645	4.18	423,000	$1{ }^{1}$
	10.	21.9	107, 600	23.1	69.0	4, 065	4.25	457,000	150.
	11.	23.7	116, 300	24.9	00.5	4, 070	4.22	491,000	Do.
	12...	25.8	127, 200	27.1	03.0	4,695	4.40	571,000	$1) 0$.
	13.-	27.5	135, 700	28.7	64. 4	4,725	4. 26	578,000	1)0.
	14..	28.7	142,400	30.0	64,7	4,741	4. 43	031,000	Do.
	16.	30.0	148,900	31.4	67.3	4,747	4.33	644, 000	Do.
	17.	30.7	163, 700	32.3	87, 0	4,767	4.34	607,000	Do.
	18.	31.6	157,300	33.0	67.6	4,707	4. 43	600,000	Do.
	19.	32.4	161, 100	33.7	09.6	4,775	4.16	717,000	Do.
	20.	33.1	114, 700	34.4	70.0	4,787	4.47	737,000	DO.
	23.	33.6	107, 200	34.8	72.0	4, 802	4. 41	738,000	Do,
	24.	33.4	107,000	34.8	71.0	4,801	4.34	724, 000	DO.
	25.	33.2	185, 000	34.4	70.0	4,798	4.22	600,000	Do.
	26.	32.9	103,400	34.1	70.5	4,787	4.20	694, 000	Do.
	27.	32.3	101,700	33.9	69.0	4,773	4.21	081,000	1)0.
	28.	31.5	158,800	33.3	70.0	4,767	4.17	003, 000	Do.
	30.	29.6	147,800	31.2	69.0	4,741	4.15	014,000	Do.
	31.	28.3	142,000	30.0	63.0	4,729	3.04	5630,000	1)0.
Apr.	1.	26.9	134,800	28.6	65.0	4,712	3.08	536,000	Do,
	2.	25.6	129, 000	27.6	04.0	4, 691	3.08	510,000	Do.
	3.	24.7	124,900	26.7	62.6	4,079	4.04	504000	Do.
	4.	23.9	119,700	25.6	63.4	4, 060	3.80	462,000	Do.
	7.	23.1	115, 500	24.7	63.3	4,600	3. 02	453, 000	Jo.
	9.	24.7	124,000	20.5	65.2	4,084	4.15	615,000	Do.
	10.	26.2	130,800	27.8	65.4	4,700	4.14	542, 000	Do.
1888.6°									
Nov.	28.	20.7	134,000	28.3	75.0	4,732	4. 22	505, 000	Do.
	29.	26.0	120,500	27.4	72.0	4,725	4.39,	660,000	Do.
	30.	25.0	125, 100	20.5	74.4	4,722	4. 38	548,000	Do.
Dec.		23.8	118, 400	25.1	72.0	4,715	4.38	510,000	Do.
	3.	21.1	107,900	22.9	73.0	4,702	4.67	403, 000	Do.
	4.	19.9	98,600	28.1	74.0	3,505	4.64	457,000	Do.
	5.	18.6	92,600	28.5	71.0	3,244	4.77	442,000	Do.

a Hifh-water sectlon.

- Observations and reduction by Mississippi River Commlssion, second distriet ofllcer. Report Chief of Engineers, 1880, p. 3158. The section was in about the same place as in! 1882 and 1884.

Results of discharge observations, Mississippi River-Continued.
HELENA, ARK.-Continued.

Date,		Gatige reading.	Area of cross section.	Depths.		Wldth.	Mean velocIty per second.	Discharge por second.	Method.	
		Mean.		Maximum.						
1)0c.	1888.		Freet.	Sq. ft.	Feet.	Feet.	Feel.	Feet.	C'uble feet.	
	6...	17.3	88, 000	28.6	67.0	3,090	4.72	418,000	Meter.	
	7.	16.0	83, 000	28.5	68.0	2, 938	4. 40	308,000	$1) 0$.	
	8.	14.7	81,500	28.3	68, 5	2,887	4.10	334,000	Do.	
	10.	12.7	60,900	20.1	01.0	2,080	4.00	284,000	D).	
	11.	11.8	67, 600	26.3	64,0	2,070	3.03	200,000	Do.	
	12.	11.1	67,300	25.2	01.2	2,606	4.00	273,000	Do.	
	13.	10.5	65,400 64,100	125.5	62.3	2,565	4.10	2619,000	Do.	
	14..	10.0 9.4	64,100 61,000	25.6 24.8	62.5 60.2	2,505 2,500	3.95 3.03 .8	253,000 243,000	I)0,	
	17.	9.4	82,500	25.0	62, 3	2,600	3.03	246,000	DO.	
	18.	9.2	62, 600	25.0	61.0	2, 500	3.83	240,000	Do.	
	10.	9.1	61,400	24.7	60.0	2,400	3.91	240,000	Do.	
	20.	9.0	32,000	25.0	30, 0	2, 475	3.89	241,000	Do.	
	21.	8.9	60, 400	24.5	60.0	2, 473	3.02	237,000	1)o.	
	22.	9.0	60, 200	24.4	(6) 0	2, 470	3.82	220,000	Do.	
	25.	9.6 10.2	61,400 63,700	24.6 24.9	60.0 58.2	2,500 2,555	3.03 3.95	241,000	Do.	
	20.	11.0	64, 800	25.3	59.0	2,562	4.21	273, 0 (1)	Do,	
	27.	11.4	60, 300	25.3	50.0	2,020	4.13	274,000	Do.	
	28.	11.7	67, 000	25.4	60.0	2, 680	4.13	281,000	Do.	
	29.	12.0	70, 000	26.1	60.0	2, 680	4.13	280, (N)0	Do.	
		13.1	71,800	26.5	61.0	2,705	4.14	297,000	Do.	
Jan.	$\begin{array}{r} 1859 \\ 1 \ldots \end{array}$	13.9	75,100	27.0	63.0	2,785	4.23	318,000	Do,	
	3.	15.3	80,600	28.0	63.7	2,888	4.24	342, 000	Do,	
	5.	16.6	70, 100	27.1	64.0	2,038	4.35	347, 000	Do.	
	7.	14.9	77,300	26.5	63.5	2,888	4.23	327,000	DO.	
	8.	14.5	76, 000	20.7	63.2	2,802	4.17	310,000	Do.	
	0.	14.5	77,300	27.0	03.7	2,802	4.20	332, 000	Do,	
	10.	14.7	77,200	20.9	630	2,873	4.23	327,000	I) 0	
	11.	15.4	80, 100	27.5	62.8	2,008	4.47	358,000	$1) \mathrm{O}$	
	12.	16.4	84,100	28.2	65.3	2,989	4. 48	377,000	Do.	
	14.	10.6	04, 000	27.9	67.0	3,304	4.77	450,000	Do.	
	17.	24.3 25.0	127,300 131,600	27.1 27.8	75.0 78.0	4,700	4.74 4.78	603;000	Do.	
	18.	20.4	133, 000	28.1	78.0	4,734	4.63	620,000	10.	
	19.	27.0	138, 000	20.1	78.5	4,742	4.64	640,000	Do.	
	21.	28.6	141,200	29.6	77.5	4,700	4.05	650,000	Do.	
	22.	29.5	145, 800	30.5	79.0	4,777	4.70	085,000	Do.	
	23	30.4	151, 100	31.6	80.0	4,779	5. 02	763,000	DO.	
	27.	31.2 30.8	101,300	33.7 31	80.0	4,702	4.80	774,000	Do.	
	28.	30.1	160,000	31.4	79.5	4,775	4.70	705, (0)0	1)0.	
	29.	29.1	142,300	29.9	795	4,700	4.70	668, 000	Do.	
	30.	28.1	134, 000	28.4	77.0	4,755	4.60	(120, 000	$1) 0$.	
	31.	27.2	132, 400	27. 9	75.0	4,743	4.65	603, 0000	${ }^{1} \mathrm{O}$	
fobl.	1.	20.9	131,300	27.7	75.0	4,737	4. 50	601, (1)0	Do.	
	2.	20.9	133,700	28. 2	77.0	4,740	4.47	608, 000	$1{ }^{1}$	
	4.	27.8	133, 600	28.7	70.0	4,750	4.71	(43, 000	Do.	
	5.	28.4	130,000	29.4	75.2	4,703	458	141, 000	Do.	
	6.	200	140,800	20.5	75.5	4,770	4.67	658,000	Do.	
	7.	20.3	142, 400	29.8	77.0	4,777	4.71	671,000	$1) 0$.	
	8.	29.3	144, 400	302	77.2	4,780	4.75	684,000	1)o.	
	9.	20.0	142,000	298	70.0	4,778	4.60	650, 000	1)o.	
	11..	27.0	134,200	28.2	76.0	4,709	4.41	502,000	$1) 0$.	
	12.	25. 0	128, 400	27.6	75.0	4,728	4.33	650, 000	$1) 0$.	
	13.	239	117,000	24.8	750	4,714	4.42	517,000	1)0.	
	18.	16.2	83,000	27.1	65.0	3,001	4.30 4.20	354, 000	Do.	
	19.	15.2	80,400	26.9	640	2,084	4.20	338, 000	1).	
	20.	14.5	70,800	20.0	62.3	2,883	4.19	322,000	Do.	
	21.	14.7	77, 800	27.0	640	2,883	4.30	342, 000	$1) 0$.	
	22.	16.6	83, 200	27.1	600	3,073	4.60	383, 000	1)o.	
	23.	20.5	100,400	25.8	70.5	3,807	4.95	407,000	10.	
	25.	26.0	129,100	27.3	742	4,731	4.73	611,000	1)0,	
	27.	27.9	140,100	29.4	75.6	4,757	4.80	672,000	Do.	
	27.	29.5	148, 000	30. 9	77.0	4,780	4.89	724, 000	Do.	
	28.	31.0	155, 700	32.4	79.5	4,802	4.86	756,000	Do.	
Mar.	2.	32.3	104, 100	34.1	81.2	4,818	4.87	800, 000	Do.	
	4.	32.1	163, 200	33.9	805	4,810	4.57	740,000	Do.	
	5.	31.6	160, 800	33. 5	80.0	4,804	4.61	741,000	Do.	
	6.	31.1	154,800	32.3	78.0	4,800	4.50	706, 000	I) 0	
	7.	30.8	154, 400	32.2	78.0	4,790	4.58	709, 0 no	I) 0.	
	8.	30.1	151,500	31.7	78.0	4,785	4.47	Gis, Oj0	Do,	

Results of discharge observations, Mississippi River-Continued.
HELENA, ARK.--Continued.

Date.		Gainge readlag.	Area of oross section.	Depths.		WIdth.	Mean velocIty persecond.	Dischargepersecond.	Method.	
		Mean.		Maximum.						
Mar.	$\begin{aligned} & 1889 . \\ & 9 \end{aligned}$		$\begin{aligned} & \text { Ficet. } \\ & 30.3 \end{aligned}$	$\begin{aligned} & \text { sq } A_{1} \\ & 150,000 \end{aligned}$	$\begin{aligned} & \text { Feet. } \\ & 31.5 \end{aligned}$	$\begin{aligned} & \text { Feet. } \\ & 78.0 \end{aligned}$	$\begin{aligned} & \mathrm{Feet} \\ & 4,784 \end{aligned}$	$\begin{gathered} \text { Feet. } \\ 4.45 \end{gathered}$	Cuble fert. 670,000	
		29.5	- 144, 600	30.3	70.3	4,779	4.30	035,000		
	12.	28.8	141,300	20.7	75.5	4,704	4.39	620, 000	Do.	
		27.9	137, 600	28.8	75.0	4,754	4.38	602,000	Do,	
		27.0	132, 000	27.8	75.0	4,751	4.43	685,000	Do.	
		26.1	127, 4000	20.8	73.5	4,735	4.30	650, 000	Do.	
		25.5 24.4	124,900 118,000	20.4 25.0	72.0 720	4,720 4,723	4.34 4.43	542,000 623,000	Do.	
		24.0	117,800	25.0	71.0	4,721	4.36 4	513,000	10.	
		23.6	114,700	24.3	70.5	4,710	4. 40	605, 000	Do.	
		22.9	111, 100	23,8	72.0	4,713	4.27	474,000	Do.	
		22.3	103, 600	23.0	69.5	4,712	4.24	460,000	Do.	
	23.	21.8 21.8 2	105,800 105,600	22.8 22.1	68.0 68.5	4,708 4,708	4.34 4.41	400,000 400,000	Do.	
	20.	22.6	112,400	23.9	70.5	4,714	4.44	409, 000	Do.	
	27.	23.8	117, 700	24.9	71.0	4,721	4.40	618,000	Do.	
	28.	24.8	123, 000	20.0	72.0	4,731	4.45	647,000	Do.	
Apr.		25.2	125, 700	20.5	74.0	4,732	4.42	555,000	Do.	
	3..	24.5	120, 900	25.0	71.8	4,721	4.28	518,000	Do.	
	${ }_{6}^{5 . .}$	23.4 22.7	115,900 114,1100	24.6 24.2	72.3 72.0	4,713 4	4.34 4 4	504, 0150	Do.	
		22.7 22.0	114,160 110,460	24.2 23.5	72.0 720	4,711 4,708	4.28 4.24	489,000 468,000	Do.	
		21.9	110, 800	23.5	72.5	4,707	4.34	480,000	10.	
	10.	21.8	111,000	23.0	73.0	4,707	4.32	470,000	$1) 0$.	
	11.	21.6	110, 000	23.5	73:5	4,707	4.27	473, 000	Do.	
	13.	20.8	101, 800	20.3	72.5	3,805	4.35	443,000	Do.	
		19.8	98, 30$)$	28.2	70.0	3,405	4.32	425,000	Do.	
	16.	19.5	95, 701	28.2	60.1	3, 303	4.35	410,000	Do.	
	17.	10.2	94, 401	27.9	70.0	3, 392	4.44	420,000	Do.	
		18.8 18.5	92,000 88,900	27.5 27.0	00.0 07.5	3,341.	4.31	397, 000	Do.	
	20.	18.4	88,700	21.9	67.7	${ }_{3}^{3,291}$	4.44 4.35	305,000 355,000	Do.	
	22.	19.4	94,100	27.7	70.0	3,303	4.49	423,000	Do.	
	23.	20.2	90,700	26.2	70.3	3, 694	4.41	427,000	Do.	
	24.	20.8	102,200	21.7	69.8	4,708	4.44	454,000	5o.	
	25.	21.4	105,500	22.4	71.0	4,708	4. 40	484,000	Do.	
	26	21.9	108, 100	22.9	69.2	4,712	4.40 4.48	470,000	Do.	
		22.7	110, 900	23.6 24.3	70.0 71.0	4,714 4,715	4. 48 4.48	497,000	${ }^{\text {DO. }}$	
	30.	23.2	113, 800	24.1	70.2	4,714	4. 41 4	602,000	Do.	
May		22.3	109,800	23.3	70.0	4,708	4.27	408,000	Do.	
		20.8	102,400	21.9	68.5	4,702	4.27	437,000	Do.	
Apr.	$\begin{aligned} & 1890 . a \\ & 36 \end{aligned}$	47.4	242,600		99.0	5,183	6.38	1,547,000	Do.	
	4.	47.4	240,900		100.0	5,183	6.36	1,570,000	Do.	
		47.3	230,100		93.0	5,183	6.30	1,501,000	Do.	
	7	47.2	230,300		94.0	6, 183	6.18	1,401,000	Do.	
	9.	47.0	231,200		97.0	6,183	6.05	1,308,000	Do.	
	10.	47.0	238,800		93.0	6,183	5.88	1,405,000	Do.	
		47.1	233,000		93.0	5,183	${ }^{0.13}$	$1,443,000$	10.	
	14.	47.2 47.4	233, ${ }^{2300}$		95.0 96.0	5,183 6,183	6.29 6.31	1,410,000	1)0.	
	17.	47.5	238, 200		95.0	5,183	6.38 0.38	1,510,000	Do.	
	18.	47.3	238,700		97.0	6,183	6.23	1,487,000	Do.	
	19.	47.0	228, 000		94.0	5, 182	6.43	1,471,000	Do.	
	21.	48.0	230, 800		94.0	5,182	5.92	1,308,000	Do.	
	23.	44.6	224, 100		92.0	6,181	5.60	1,200,000	Do.	
Dec.	23.	11.8	64,000	32.4 31.8	51.5	1,975	3.85	${ }^{240,000}$	Do.	
	24, a. m	11.2	62.400 63,000	31.6 31.9	50.0 50.5	1,077 1,077	3.83 3.72 3.	239,000 235,000	po.	
	$24, \mathrm{p} . \mathrm{m}$ 20.	11.1 10.2	63,000 60,300	31.9 30.9	50.5 49.0	1,077 1,955	$\begin{array}{r}\text { 3.72 } \\ 3 \\ 3.70 \\ \hline\end{array}$	235,000 223,000	Do.	
	27.	10.2	60, 000	30.7	49.0	1,055	3.82	d 230,000	Do.	

- Observations by M. R. C. second distrlot officer. April results rediced in the distriot oflice. December results in the secretary's offlce. High-water section was abont ! 00 feet below the whari boat. Lowwater seotion of 1890 and high water of 1891 was about $7 ; 200$ feet below the wharf boat. Tabulation, Report Chlef of Engineers, 1891, p, 3530.
D Discharge through Austin oravasse, Apr. 3, 37,370 cuble feet per second. Austin is about 18 miles above Ilelens.
c Dlscharge overbank I. N. O. \& T. R. R. Apr. 7, 11,205 ouble feet per second.
d The recorded veloclty at station 3 for this day seems abnormally high; interpolating a veloelty for tation 3 as observed on the 24 th and 20 th, the disoharge for this day becomes 224,807 cublo feet per second.

Results of discharge observations, Mississippi River-Continued.
HELENA, ARK,-Continued.

Date.		Qauge reading.	Area of cross section.	Depths.		Width.	Mean velocIty por second.	$\begin{aligned} & \text { Discharge } \\ & \text { per } \\ & \text { second. } \end{aligned}$	Method.	
		Moan.		Maximum.						
Mar.	1891.6		Feeb.	Sq, t.	Feet.	Freet.	Feet,	Frel,	Cuble seel.	
		43.5	217,600	37.5	82, 0	8,795	6. 08	1,323, 000	Double lloats.	
		43. 6	218,700	37.7	83.0	8,795	6.24	1,365, 000	Do.	
	13.	43.7	218, 600	37.9	85.0	5,790	6. 23	1,308,010	Do.	
	17.	44.0	220,900	38.1	85.0	8,797	6.24	1,378,000	10.	
	18.	44.0	223,300	38.5	85.0	5,797	6.47	1,444,000	DO.	
	19.	44.1	221,700	38.2	85.0	8,797	6.20	1,380,000	Do.	
	20.	44.2	225,000	38.8	85.0	8,790	6.32	1,122,000	1)0.	
	21.	44.3	225;800	38. 9	85.0	5,799	16,44	1,455,000	10.	
	22.	44.4	223,300	38.5	85.0	6,799	6. 42	1,433, 10,0	DO.	
	23.	44.4	222,300	38.3	85.5	6,799	6.39	1,421,000	DO.	
	24.	44.5	224,900	38.8	88.0	6,800	6. 34	1, 120,000	Do.	
	25	44.7	224,100	38.6	88.0	5,800	6. 38	1, 420,000	Do.	
	20.	44.7	227,400	38.2	85.0	6,800	6. 28	1, 423,000	Jo.	
	27.	44.7	225, 600	38.9	80.0	5,800	6. 35	1, 433,000	1)o.	
	28.	44,7	229,600	39.6	83.0	5,800	6.25	1,434,000	1)0.	
	30.	44.7	223, 800	38.6	88.0	5,800			Do.	
	31.	44.7	227,000	39.1 38.8	87.0 87.0	5,800 5,800	6,21 6.20	$1,410,000$ $1,407,000$	Do.	
Apr.	1.	44.6	224,800 227,100	38.8 39.2	87.0 80.0	5,800 5,800	6.23 6.35	1, 112,000	\%o.	
	2....	44.5 44.5	222,000	38. 3	85.0	5,800	6.35	1,410,000	Do.	
	$4 .$.	44.3	221, 100	38.1	85.5	5,800	6.13	1,354,000	1)0.	
		44.1	220,600	38.0	87.5	5,800	6. 15	1,350, (0)0	I) 0	
		44.1	218,400	37.7	80.5	5,800	6. 18	1,351,000	$1) 0$.	
	8.	44.0	219,000	37.9	85.0	5,800	6.15	1,352,000	1)0.	
	0.	44.0	226, 200	38.0	85.0	5,799	6. 95	1,311,000	Jo.	
	10.	44.0	222,400	38.4	86.0	5,799	6. 07	1,351, (000	$1) 0$.	
	11.	44.0	220,300	38.0	86.0	6, 799	6. 27	1,381,000	Do.	
	13.	44.0	223, 000	38.5	85.0 49.8	5,789 1,660	6. 19	1,381,000	Do.	
Sept. Oet.	30.	4.7	62,600 80,300	31.8 30.6	49.8 47.8	1,660 1,647	2.70 2.55	142,000 128,000	1)0,	
	1...	4.4	80,300 49,600	30.8 30.1	47.8 410.8	1,047	2. 2. 67	132,000	1)0,	
		4. 3.7	48, 60,20	30.1 3	47.3	1,643	2. 50	126,000	Do.	
	5.	3.3	50, 600	30.8	47.7	1,042	2. 64	133,0)(0)	Do.	
		3.0	80, 500	30. 8	47.7	1,038	2.51	127,000	Do.	
	7.	2.7	49, 800	30.5	47.9 439	1,633 1,632	2. 63	126,000 118,000	Do. Do. Dor	
	8.	2.5	48,710)	20.8	46.9	1,032	2. 42	121,000	Do.	
	9.	2.2 2.0	48,1000 48,900	29.8 30.1	46.8 46.8	1,031	2.43	110, 10\%	1)0.	
	12.	1.7	48,200	29.7	47.3	1, 624	2.25	108, 000	$1) 0$.	
	13.	1.6	47,100	29.5	46.6	1, 0224	2.19	105, 000	1 Do.	
	14.	1.6	48,200	29.7	47.1	1,024	2.22	107,000	Do.	
	15.	1.4	48,200	29.7 29.5	470.8	1,025	2.20 2.20	105,000	Do.	
	17.	1.4	47,200	29.0	413.4	1,625	2.29	108,000	Do.	
	19.	1.8	48,000	29.5	40.8	1,630	2,43	117,000	Do.	
	20.	2.0	48,100	29.6	47.1	1,032	2.44	117,000	$1) 0$.	
	21.	2.2	49,000	30.0	47.0	1,035	2.43	119,000	1	
	22.	2.4	48,800	29.8	48.9	1,038	2. 66	125,000	10.	
	23.	2.5	49,100	30.0	47. 1	1,040	2.54	125,000	$1)$	
	24.	2.5	48,700	29.7	40.8	1,640	2.49	121,000	1)0.	
	26.	2.4	48,600	29.7	46. 6	1,039	2.62	123,000	10.	
	28.	2.0	48,200	29.5	48.7	1, 035	2.36	113,000	1	
	29.	1.9	47,800	20.2	40.7	1,033	2.41	116,000	10.	
	30.	1.8	47, (100	20.2	40.8	1,031	2.25	107,000	1 O.	
	31.	1.7	47, 100	28.9	45.8	1,031	2.20	104, (100	Do.	
Nov.	2.	1.6	47,700	29.2	47.1	1,032	2.41	115,000	Do.	
	3.	1.5	47,200	28.9 28.6	46.2 46.2	1,632 1,630	2.30 2.32	108,000 108,000	Do.	
	4.	l. 4	46, 700	28.6 28.4	46.2 16.8 6.1	1,630 1,029	2.32 2.32	108,000 108,000	Do.	
	5.	1.3	48,300	28.4	45.8 46.9	1,029 1,624	2.32 2.29	108,000 107,000	Do.	
	6.	1.1	46,600 48,400	28.7 28.1	46.9 45.7	1,024	2.29 2.24	104,000	Do.	
	7.	1.0 0.9	46,400 45,600	28.0 28.0	45.7 45.4	1,022	2. 40	109,000	Do.	
	10.	1.0	45,000	28.2	4.3 3	1,624	2. 32	106,000	Do.	
	11.	1.0	45,800	28.2	44.8	1,625	2.29	105,000	Do.	
Apr.	1892. ${ }^{\text {18... }}$	42.6	200,300	40.5	97.0	5,099	6.21	1,074,000	Meter.	
	18.	42.7	216, 600	42.3	97.0	5,099	4.83	1,040,000	Do.	

a Observations, 1801, by M. R, O. second distrlet offcer; reduction In seoretary's office. I.ow-water section of 1891 was about 4,500 feet below the wharl boat. Tabulation, Report Chilef of Engineers, 1892, page 3130. Iepport on observations, Report Chlef of Engineers, page 3119.
osection is approximataly same as 1888-89, and is sbout 300 leet below the elevator. Observations of 882 and 1893 taken under m. R. C. second district rffeer. Reduction at seoretary's offlce. Tabulation, 1892, Report Chiel of Engineers, 1893 , page 3684. lieport on observations, Report Chiel of Lingineers, 1893, page 3664.
H. Doc. 50, 61-1-18*

Results of discharge observations, Mississippi River-Continued.
HELENA, ARK.-ContInued.

a Beolion wras 4,500 feet below the wharlboat. Tabulation, Report Chief of Engineers 1894, p. 2828.
Report on work, Report Chief of Engineers 1894, p. 2822.
o Oliserved; flonts used.

- Area Interpolated from June 1 and 5.

Results of discharge observations, Mississippi River-Continued.
HRLENA, ARK.-Conunued.
[306 milles below Calro.]

Date.	Gauge readling.	Area of cross sectlon.	Depths.		Wldth.	Mcan velocIty por second.	Discharge per second.			Method.
			Mean.	Maximum.			River,	Bank.	Total.	
1895.a	Feet.	sq. $1 t$.	Rect.	Peet.	Fect.	Reet.	Cut.tt.	cu.ft.	Cu./t.	
Oot. 24, n.m.	- 1.7	36,600	19.1	47.0	1,918	2. 53	93,000		Mater.
24, p.m.	- 1.1	36,000	18.7	47.0	1,018	2.44	88,000			Do.
Nov 1896.										
Nov. 18....... ${ }_{10}$	7.1	57,800 59,500	29.6 30.5	81.4 83.8	1,055	3.41 3.42	197,000 204,000			Double floats. Metor.
19.......	7.9	69,500 60,800	30.6 30.7	63.8 63.8	1,065 1,080	3.42 3.60	204,000 210,000			Meter. Do.
	8.9	61, 400	31.0	64.1	1,980	3.72	229,000			Double floats.
21.	8.7	(13, 000	31.8	55.0	1,885	3.66	224,000			Metor.
	9.7	03, 400	31.6	57.5	2,005	3. 53	224,000			Double floats.
	10. 4	85, 000	32.4	56.5	2,010	3. 80	247,000			Meter.
23.	10.4	65, 300	32.5	50.1	2,010	3.78	247,000			Do.
24.	10.4	64, 600	32.1	56.1	2,010	3. 76	242,000			1)o.
24.	10.4	65, 000	32.3	56.0	2,010	3. 52	228,000			Double floata.
Mar. M997. $12 .$.	42.8		39.0	83, 9		5.99	1,146,000			Meter.
13...	c 43.5	100,300	38.7	88.0	4,910	6.06	1,154,000			Do.
	44.7	200,700	40.8	88.5	4,916	6. 26	1,250,000			Do.
16.......	45.4	206,000	41.9	87.8	4,919	6. 22	1,281,000			Do.
17.......	45.8	197,700	40.2	88.9	4,921	6. 27	1,240,000			Do.
19.......	47.7	204, 800	41.6	00.1	4,920	6. 68	1,309,000	d2,000	$1,371,000$	Do.
20.	48.4	210,600	42.7	80.7	4,920	6. 82	1,435,000		Do.
20.	48.4	210,000	42.7	89.7	4,020	6. 48	1,306,000			Double floats.
22.	49.0	1219,800	44.6	93.1	4,923	6.76	1,480,000			Meter
22.......	49.0	219,800	44.6	93.1	4,020	6.74	1,481,000			1)ouble floats.
Nov. 17.......	. 4	47,100	25.9	47.4	1,817	2. 10	90, 000			Meter.
18.......	. 6	48,000	26.4	47.5	1,818	2.09	101,000			Do.
18.	. 6	49,200	27.1	47.0	1,819	2.13	105, 000			Jo.
18.	. 6	48,100	26.4	47.2	1,820	2.07	100, 000			Double floats.
18.	. 6	49,400	27.1	47.3	1,820	2.06	102,000			Do.
	1.0	40,300	26. 8	47.5	1,833	2.17	107,000			Meter.
	1.0	50,100	27.3	47.5	1,834	2.20	110,000			1 O.
	1.0	49,000	27.0	47.5	1,836	2.18	108,000			Do.
	1.0	40,000	27.2	47.6	1,836	2.17	108, 000			Double floats.
20.	1.5	49,600	26.9	47.8	1,845	2. 30	114,000			Meter.
Apr 1898.										
Apr. $\begin{array}{r}\text { 9....... } \\ 11\end{array}$	45.6	188,100	40.2	93.6	4,025	6. 43	1,274,000	Do.
12.........	46.9 47.5	208,100 208,800	41.8 42.3	95.1	4,033	6. 62	$1,424,000$			Duuble floats.
	47.5	209, 600	42.5	95. 4	4,033	6.65	1;372,000			Meter.
13.	48.0	214,000	43.1	05.8	4,933	6.49	1,388,000			DO.
14.	48.4	212,200	43.0	95.0	4,033	6.62	1, 405,000			Do.
	48,8	213,300	43.2		4,033	6. 68	1, 425,000			Double floats.
15.......	48.8	213,500	43.3	97.2	4,033	6.58	1,405,000			Meter.
16.	49.0	216,400	43.7	90.7	4,033	6.47	1,394,000			Do.

a Discharge seotlon is at same place as in 1800 , which is about 7,200 feot bolow the wharf boat. Price meter used, Observations under the direotion of the first and second distrlet oflicer M. R. C. Report Chlof of Engineers, 1806 p. 3654 . The gauge used was the U. S. Engineer gauge at Helena, whose zero is 101.08 feet abovo Calro datum plane.
o'The discharge sectlon was about one-half mile below Ilelena. U, S, C. \& G. S. © N. Bese, on rlght bank, was in line of section. Ihe float observat fons were taken with double floats, the lower float belng at mid-dopth. The meter observallons were mado with the Haskell moter held at 0.6 dopth, generally for five minutes. Observations and reduction made under direction of Capt. II. E. II aterman, Corps of Engineers, secretary Mississippi River Commission. Report Chief of Englneers, 1897, p. 3653.

- Water Just over bank at this gauge reading.
\&ight bank.

Resulls of dischurge observations, Mississippi River-Continued.

HFI,ENA, ARK.-Continued.
[307 miles below Cairo.]

a From the survey made in March, 1003, In which the same triangilation stations used In 1001 on the right bank were agaln occipled, it appears that an error was made in 1001 in the lensth of the base line used on the loft bank on whigh the wheth of diselimego sectlon depended. I'his base was on a sand bar, and the hubs wero washed out as the river rose lmmedlately after the observations of 1901; a romeasurement of the original base wns thorefore impossible.
The areas of cross sectlon and discharges havo been recomputed in 1005 using the new value of the base, and the resilts are given in the columns marked "Correoted" In tho table herowith. "lhe new width is 1,707 feet. Lhoorlginal resultsaraniso glven In tho tablo. Results of 1901 In Report of Chlef of Englacors, 1002, supplement, page 71. Misslssiph) RIver Commisslon gange, at-11elenn, whose zero is 10 l.08 feot above tho Calro datum plane. Observatlons and reduetlon of 1001 made under direction of Capt. $\mathrm{Q} . \mathrm{P}$ ': Howell, Corps of Englneors, seoretary Mississippl IRIVer Commission,
o Derived from four sets of soundings.
e Derived from two sets of soundings.
d Derived from three sets of soundlings.
eObservations and redtetion of 1001 and 1003 made under direction of Capt. G. P. Mowell, Corps of Engineers, seoretary Mississlpp) I Rlver Commission; those of 1004 mado under direction of Capt. William B. Ladue, Corps of Engtincers, secratary Misslsslppl Rlyer Commission. Ilscharge section same as used In 1898, about one-hali mile bolow Melena. Results of 1003 in report of Chitef of Englicers, 1903 , Supplement, page 113; resilts of 1904 in report for 1005, Supploment, page 118. Mississippl River Commission gauge, at Ilelena, whose zero is 161.08 feot above the (Aairo datum plane. In 1004 a $11 a s k e l l$ and a Price meter were rum simultancously and the welghted means used.
$f 1903$, overbank discharge measired on left bank. All overbank discharges derived from measurement made on Mar, 21. 1904, overbank dischargo measured on right bank. All overbank discharges derived from measurement made on Apr. 10.
S Soundings of Apr. 7 mainly used for cross section of Apr. 6.
\rightarrow Interpolated.
1 Area of A pr. 14 corrected for change of gauge.

Results of discharge observations, Mississippi River-Continued.
HELENA, ARK.--Continued.

[^32]
Results of discharge observations，Mississippi River－Continued．

HELENA，ARK．－Continued．

OLD TOWN BEND．
［Disoharge sention in Old Town Bend，about 325 miles below Cairo．The gauge readings in the table are those of the United States Eingincer gauge at Melenn，Ark．，aboint 18 milles abovo lhe sertlon．Ithe observations and reduction were made under tho directlon of the Misslsslppl Rlver Commisslon，second district ollle（er，loy Assistant Chas，Levassleur．］

Date．			Depths，		刲		Dischargo per second in cuble feet．			Method．
			$\begin{aligned} & \text { H. } \\ & \text { duN } \end{aligned}$	号品			RIver．	Bank．	Total．	
1894.	Fect．	Sq．ft．	F＇ect．	Fect．	Fied．	Feet．				
Nov．8，a．m．	-2.2	60， 200	28.8	62.5	1，745	1.63	77，000			Meter．
8，p．m．	－2．2	50， 200	28.7	62.5	1，745	1.75	88， 000			Jo．
9．．．．．．．	-2.2	60，300	28.8	52.6	1，745	1.75	88，000			Do．

[^33]Results of discharge observations, Mississippi River-Continued.
ARKANSAS OITY, ARK.

a Observations and reduction, of 1884-85, made under direetion of the secretary Misslisippl River Comnmisslon. Section about one-half mille below Arkansas cilly. Report on reduction, and tabulation, in Report Chiel of Engineara 1887, pago 2836.

- Reject.

Results of discharge observations, Mississippi River-Continued.

ARKANSAS CITY, ARK.-Continued.

Results of discharge observations, Mississippi River-Continued.

ARKANSAS CITY, ARK.-Continued.

- Date.			끙	Depths.			d 8 	Discharge per second in cublo feet.			Method.	
		$\underset{\substack{\infty \\ \hline \\ \hline \\ \hline}}{ }$	-	国吕			River.	Bank.	Total.			
	1887.a		Jiect.	Sq. ft.	Feet.	Feet.	Feet.	Fect.				
Mar.		16.f.	233, 100	68.0	05.0	3,414	6.12	1, 427,000			Meter.	
	23.	936	233, 700	68.1	97.0	3,414	0.20	1, 448,000			Do.	
	24.	46.6	247, 400	72.1	07.0	3, 416	6. 08	1,480,000			Io,	
	25.	46.6	240,900	70.1		3,427	5.84	1, 401, 000			I)0.	
	26, a.m.	46.6	234, 300	68.2	96.0	3,420	6.08	1,424,000			Do.	
	26, p. m.						6.02	1,411,000			Do.	
1889.												
Jan.	22.	33.4	183, 600	54.6	81.0	3,371	4.30	789,000			Do,	
	23.	34.1	180,000	65.2	83.0	3,371	4.80	804,000			Do.	
	24.	34.7	100,900	50.6	83.0	3,372	4.44	849,000			Do.	
	28.	35.2	191, 400	60.7	85.0	3,373	4.71	901,000			I)o.	
	29.	35.0	182,700	57.1	85.0	3,373	4.33	834,000			Do.	
	30.	34.6	191,000	56.7	85.5	3,372	4.42	845,000			Do.	
		34.1	189, 600	56.2	86.0	3,372	4.30	815,000			$1) 0$	
leb.	$2 \ldots . .$	33.5	187, 300	55.6	84.5	3,371	4.54	851,000			$1) 0$.	
	$4 \ldots .$	33.3	185,400	55.0	85. 5	3,371	4.29	795, 000			I) 0 .	
	6.	33.5	179,800	53.3	83.0	3,372	4.41	793,000			Do.	
	$7 .$	33.8	178,600	53.0	81.6	3, 372	4.38	781,000			1)0.	
	$8 \ldots$	33.9	179,800	53.3	83.0	3,372	4.11	738,000			Do.	
	9......	33.8	181, 400	63.8	83.0	3,371	4.26	773,000			1)0.	
	11.....	33.1	175,700	52.1	82.0	3, 371	4.11	721,000			1)0.	
	12.	32.2	175,200	52.0	81,5	3,370	4. 11	720,000			1)0.	
	14......	30.0	167, 900	49.9	78.0	3, 368	3.72	625, 000			Do.	
	16......	26.8	142,700	42.7	68,5	3,341	3. 58	510,000			Do.	
-	19......	22.7	129,000	38.8	63.0	3,321,	3,22	416,000			Do.	
	20.	21.5	125, 300	38.0	60.0	3,296	3, 24	400,000			Do.	
	21.	20.6	125,200	38. 1	65.0	3,285	3.23	405, 000	. . .		Do.	
	22.	20.2	123, 900	37.7	06,5	3,284	3.21	398,000			Do.	
	23.	21.0	127, 600	38.8	66.0	3,285	3.40	434,000			Do.	
	25......	25.5	143, 500	43.1	69.0	3,327	3.71	532,000			Io,	
	26.	27.6	148, 100	44.3	73.5	3,346	3.96	587,000			Do,	
	27.	29.2	156, 300	46.6	73.5	3.353	3.90	689,000			I) 0.	
	28......	30.7	100, 100	47.7	74.0	3,359	3.97	635,000			Do.	
Mar.	, 2......	32.8	168,300	49.9	77.5	3,372	4.15	699,000			Do.	
	4.....	33.8	167, 600	49.6	78.0	3,376	4.41	739,000			Do.	
	5......	34.1	168, 400	49.9	77.5	3,376	4.21	710,000	. . .		I) 0 ,	
	6.	34.5	172, 100	51.0	78,5	3,376	4.34	748,000		Io.	
	7.	34.9	172, 800	61. 2	78. 5	3,376	4.34	750,000			Do.	
		35.0	172,200	51.0	78.0	3, 377	4.33	745,000		I)0.	
	9......	35.0	173,800	51. 5	78.0	3,377	4.19	728, 0КЮ			Do.	
	11.....	34.6	175,000	51.8	79.0	3,377	4.18	731,000			1)0.	
	12.	34.2	174, 600	51.7	81.0	3,376	4.12	719,000			Do.	
	13.....	33.6	171, 800	50.8	77.0	3,375	4.07	698,000	,		Io.	
	14......	32.9	168, 200	49.8	74.6	3,374	4.04	679,000	. \cdot.		Do,	
	15.....	32.1	166,800	49.5	77.5	3,370	4.00	668,000			$1) 0$.	
	16.....	31.3	162, 800	48. 4	76.8	3,363	3. 90	034,000			I)O.	
	19......	29.0	154, 900	48.2	73.5	3,352	3.77	585,000			[)0,	
	20......	28.6	151,800	45.4	73.5	3,344	3. 69	561,000			1)0,	
	21......	28.0	150, 600	45.1	73.0	3,339	3.72	600,000			1)0.	
	22......	27.5	147, 800	44.3	71.5	3,337	3.62	635,000			1)0.	
	23.	26.9	147, 400	44.2	72.0	3,335	3. 56	524,000			I)o.	
	25.	26.2	145,000	43.6	70.5	3,334	3. 57	518,000			I) 0.	
	26......	20.2	144,900	43,6	70.5	3, 334	3.51	508,000	- . . .		I)o.	
	27......	27.1	147,700	44.3	71.0	3,336	3.72	649,000			Do.	
	28......	28.4	152, 400	45.6	72.0	3,344	3.90	594, 000			I)O.	
	29......	30.2	157,700	47.0	74.0	3,355	3.98	627,000			1 1)0.	
	30.....	31.2	160,600	47.8	74.0	3,363	4.00	642,000			Do.	
Apr.	1......	32.1	163, 300	48.5	75.0	3,370	4.06	662,000			1)0.	
	2.......	32.1 31.8	164, 100	48.7	75.0	3,370	4.00	656,000			I) 0.	
	4......	31.8	164, 700	48.9	75.0	3, 308	3.69	657,000			1)0.	
	$5 \ldots \ldots$	31.4	161,700	48.1	73.5	3,364	3.87	626, 000			1)0.	
	8.....	30.9 29.9	160, 900	47.9 46.7	73.0 72.5	3,356	3.84 3.73	618,000			Do.	
	8......	29.9 29.4	156,500 159,300	46.7 47.5	72.5 74.5	3,354	3.73 3.70	584,000			Jo.	
		29.4	159,300	47.5	74.5	3,352	3.70	590, 000			Do.	

a The wldths tabulated for 1887 were scaled from the plotted cross sections, and were measured from bank to bank. There was a discharge beyond the banks which inereased the water width by 320 feet, and the water area by 1,084 square feet; this overlow amounted to 1,666 cuble fect per second the first two days, and subsequently to 1,020 cublo feet per second. The areas and discharges include these quantitles. Observations of 1887 and 1889 were mado by the MIssisslppl River Commission third district officer, and reduced at the secretary's ollice. Report and tabulation in Report Chlef of Engineers, 1890, p. 3164; reprinted in Report, 1891, p. 3489; the section at same place as in 1884-85; about one-half mile below Arkansas City. The gauge readings are all referred to the Mississippl River Commission gauge at Arkansas Clty, whose zero is 110.44 feet above the Cairo datum plane.

Results of discharge observations, Mississippi River-Continued.
ARKANSAS CITY, ARK.-Contlnued.

a Seotion of 1890 is same as in 1889; observations and reduction by third district officer, Mississippl River Commission. Tabulation in Report Chlef of Engincers, 1891, p. 3537.
b Sectlon of 1891 and 1892 is same as in 1889 and 1880 , except that the Mississippl end is moved downstream 100 feet. Report and tabulation for 1891 in Report Chief of Engineers, 1892 , pp. 3123 and 3132, respectively; for 1892, Report Chief of Engineers, 1893, pp. 3665, 3677, and 3686, respectively. May 28 and 29, 1892, the overfow discharge between Arkansas City and Trippe was found to be 309,000 ; May 30 and 31 it was $261,000$. Report Chief of Eingineers, 1893, p.3701. Oliservations of 1801-93 made by third district offleer, Mississlppl RIver Commission, and reduced at secretary's office.

Results of discharge observations, Mississippi River-Continued.
ARKANSAS CITY, ARK.-Continued.

Results of discharge observations, Mississippi River-Continued.

ARKANSAS CITY, ARK.-Continued.

- Plano wite soundings.
${ }^{\circ}$ Chicot City section, 7 miles above Arkansas city.
c Discharges for 1893 observed at different proplortional depths, are all reduced to mean of vertical, unless. otherwise noted. Section of 1893 was downstream from section used for several years past. The Arkansiss end was 200 feet and Mlistisispl end 5 fio feet below fortuer positton, its azlmuth leing changed $66^{\circ} 40^{\circ}$. Heport on work, Report Chlet of Engineers, 1591, p. 2S22. Tabulation, Chlef or Englieers, 1894, p. 2828.
${ }^{4}$ As observed at 0.6 depth.
- Moving aeross. stream or tlanking.
f Uprer seotion:
- observed.

Results of discharge observations, Mississippi River-Continued.
ARKANSAS CITY, ARK.-Continued.

Date.	$\begin{gathered} \text { Gauge read- } \\ \text { ing. } \end{gathered}$	0 号 \% 4	Depths.		Width.	Discharge per second In cubic fect.			Method.
			呙	تِ		River.	Bank.	Total.	
1893.	Fect.	Sq. ft.	Fect.	Fect.	Feet. Fert.				
May 8 5.39	1,327,000			Meter.a
9.	48. 4	219,200	72.1	102.0	$3,455 \quad 5.48$	1,307, (N0)	6,000	1,372,000	$\text { I) } 0 .$
9.					$\therefore \therefore .6 .41$	1,310, (0)0			Do.a
10.	48.8	249,600	72.3	102. 5	3,455 5.50	1,374, (x)	6,000	1,380,000	I)0.
10.				 5.52	1,378,000			Do.a
11.	49.0	252,000	73.1	104.0	3,455 5.54	1,400,000	3,000	1,406,000	Do.
11.					\cdots - 5.50	1,300,000			Do.a
12.	49.1	251,600	72.8	104.5	3,455 5.57	1,401,000	b 6,000	1,407,000	I)0.
12.					\cdots... 5.57	1,400,000			Do.a
13.	49.2	257, 100	7.1 .5	104.5	3,455 5. 52	1,422,0(10	6,000	1,423,000	Do.
13.					… 6.47	1,408,000			Do.a
15.	49.6	257,000	74.4	103.0	3,455 6. 63	1,440,000	7,000	1,453,000	Do.
15.					\cdots.... 5.51	1,416,000			Do a
16.	49.6	25: 1, 300	73.6	102.0	3,455 5.59	1,421,000	7,000	1,428,000	Do.
17.	49.6	250,300	72.4	104.0	3,455 5.60	1,403,000	8,000	1,411,000	Do
17.					$\ldots . .53$	1,384,000			Do a
18.	49.6	254,000	73.5	105.5	3,455 5.68	1,443,000.	68,000	1,451,000	Do.
18.				 5. 62	1,429,000			D0.6
19.	49.6	255, 400	73.9	102.5	3,455 5.60	1,430,000	8,000	1,438,000	Do.
19.				 5.70	c1,455,000			$1) 0$.
19.					. 5.76	1,472,000			Do. ${ }^{6}$
20.	49.6	254,900	73.8	104.5	3,455 5.62	1,433,000	8,000	1,442,000	Do.
20.					… 6.60	1,426,000			Do.a
22.	49.6	248,200	71.9	103.0	3,455 5.6t	1,400,000	8,000	1,409,060	Do.
22.						1,482,000			Do.a
23.	49.7	252,900	73.2	102.0	3,455 5. 64	1,426,000	8,000	1,434,000	Do.
23.					$\ldots . .5$	1,421,000			Do.a
24.	49.8	$25 S, 400$	74.8	102;0	3,455 5.66	1, 463,000	8,000	1,471,000	I) 0.
24.				 5.54	c1, 432, 000			Do.
24.				 5.45	d1, 40S,000			Do.
25.	50.0	255,900	74.1	102.0	3,455 5. 60	1, 432,000	8, 000	1,440,000	1)o.
25.					$\cdots{ }^{-1} 50$	1, 465,000		- 11700	$\text { I) } 0 . a$
26.	50.0	200,800	75.5	104.0	3,455 5. 40	1, 408,000	b 9,000	1,417,000	1)0.
26.					… 5.70	1,486,000			$1) 0.6$
27.	50.0	261, 000	75.5	104.0	$3,455 \quad 6.39$	1, 667,000	9,000	1,676,000	J)0.
27.					$\ldots . .6$ 6. 00	1,566,000			1)0.a
29	50.2	269, 200	75.0	103.5	3,455 5.90	1,528,000	9,000	1,538,000	170.
29.					$\therefore \cdots .95$	1,542,000			J)0.a
31.	40.8	259,500	74.8	104.0	3,455 5.79	1,406,000	8,000	1,501,000	1)0.
June 1.	49.6	257, 000	74.4	103.0	3,455 5. 82	1,405,000	8,000	1,503,000	Do.
1.					$\because \cdots, 5.71$	1, 468,000			Do.a
2.	49.6	259,600	75.1	105.5	3,455 5.73	1,489,000	8,000	1,490,000	Do.
2.					\cdots 5. 81	1,508,000		1,483,000	Do. ${ }^{*}$
3.	49.6	250, 100	75.0	104. 5	3,455 5.70 5.73	1,476,000	8,000	1,483,000	Do. Do. ${ }^{-1}$
3.	40.				3-95 5.73	1,486,000			1)0.6
5.	49.6	257,900	74.6	104.0	3,455 $\ldots . .0 .67$ 5.74	$1,462,000$ $1,480,000$			1)0.a
7.	49.5	- 250,70	74.3	103.5	3,455 5.63	1, 4.46,0(0)	7,000	1,453,000	1)o.
				 5.58	1, 433,000			1)o. ${ }^{\text {a }}$

[438 miles below Cairo.]
[The regular Mississippi River Commlssion gange at Arkansas Clty was used, the elevation of its zero is 116.44 feat above the Cairo datum plane. Readings are means of 8 a . m . and $4 \mathrm{p} . \mathrm{m}$.]

Results of discharge observations，Mississippi River－Continued．

ARKANSAB CITY，ARK．－Continued．

Date．			Depths．		臭		Discherge per second in cublic feet．			Method．
			最	$\begin{aligned} & \text { 荺慁 } \end{aligned}$			Rivar．	Bank．	Total．	
1895.	Feet．	Sq．ft．	Feet．	Feet．	Feet．	Feet．				
Oct．12，a，m．．		44，200	14.8	38.5	2977	2.32	a 103，000			Meter．
12，p．m．	1.7	44,100 43,800	14.9	${ }^{37}$	2977	2.74 2.40	－121，000			Do，
Dec． 24.	1.0 9.0	43，800 71	22.9		2972 3136	2．420	a 232,000			Do．
26，a．m．	15.6	95,400	29，0		3296	3．80	363，000			Do．
26，p．m．．	15.6	96， 800	29，3		3304	3．76	－304，000			Do．
27，a，m．．	20.4	110，500	33．0		${ }_{3352}^{332}$	4.11	－454，000			Do．
22，p．m．．	20.4 23.9	112,600 122,600	33.2 30.3		3339 3378	4.07	468，000 $\mathbf{5 5 0 , 0 0 0}$			Do．
30．．．．．．．．	27.3	137， 200	40.3		3401	4． 49	a 664,000			Do．
31．．．．．．．	28.2	139， 800	41.0		3412	4.86	－678， 000			Do．
1896.	1									
Jan． $1 .$.	28.8	141，600	41.5		3414	4.67	a 662，000			Do．
	29.5	144，700	42.3		3419	4.82	0608,000			Do．
	30.2	145， 300	42.4		3427	4．86	a 701， 000			D．
	30.6	148，700	43．3		3431 3431	4.83	－717，900			Do．
	30.6 30.8	149， 200	43.5		$\begin{array}{r}3431 \\ 3431 \\ \hline\end{array}$	4． 86 4.64	725,000 $\times 696,000$			Do．
	30.8	150， 300	43.8		3431	4． 66	700，000			Do．
	29.4	146，300	42.8		3420	4.63	a 678，000			गo．
	28.3	144， 100	42.3		3411	4． 56	－657，000			Do．
19.	27.6	142，900	42.0		3406	4．39	－628，000			Do．
	27.6	145， 700	42.8		34106 3399	${ }_{4}^{4.33} 4$	631,000 -626			Do．
	27.2 27.2	$\begin{aligned} & 141,200 \\ & 143,000 \end{aligned}$	41.5		3399 3399	4.31 4.25	$\begin{array}{r} a 626,000 \\ 608,000 \end{array}$			Do．
Dec． 4.	11.9	78， 200	24.0	62．8	3258	3．65	285，000			Do．
	14.2	87， 100	26．6	54.9	3282	3．94	343， 000			Do．
	14.2	88，400	26.9	$65.0{ }^{\circ}$	3283	4.05	358，000			Do．
	14.2	89，800	27.3	55.4	3285	4.02	361， 000			Double floats
	18，2	103， 200	30.9	60.5	3335	4． 42	450， 000			Meter．
	18.2	105， 600	31.5	60.8	3346	4.42	467， 000			Do．
	20.0	109，900	32.8	61.8	${ }_{3}^{3352}$	4．46	490， 000			Do．
	21.0	115， 100	34.3	63.5	3358	4． 38	504,000			Do．
	21.0 21.0	116,300 116,300	34．6	61.5 61.5	${ }_{3363}^{338}$	4． 43 4.29	515,000 499,000			Double floats
1897.6										
Mar． 25.	50.8	242， 400	69.8	94.8	3471	6.54	1，886，000	c10，000	1，596，000	Meter．
$288 . .$.	51.1	234，400	67.5	95.5	3471	6.77	1，587，000	c10，000	1，597，000	Do．
27．．．．．．．	51.4 51.9	237,000 236,800	68.3 68.2	${ }_{96.3}^{96.8}$	${ }_{3471}^{3471}$	6.90 8.79	$1,636,000$ $1,608,000$	c10，000	1，640，000	Do．
30.	51.4	230， 800					1，608，000	f6，000	1；018，000	Do．
	51.4	234， 800	67.6	95.7	3471	6． 82	1， 602,000	10，000	1，613，000	Double floats．

［439 milles below Cairo．］
Upper section．\circ

1901．A										
Dec．8，a．m．	1.4	43，400	16．7	45.7	2，698	2.74	119，000			Meter．
$8, \mathrm{a} . \mathrm{m}$ ．						2.71	118，000			Do．
$8_{9}^{8, ~ p . m . ~}$	1.5					2.74 2.90	119,000 131,000			Do．
9．．．．．．	1.6	45，200	17.4	44.2	2，598	2.90	131，000			Double floats．

[^34]
Results of discharge observations，Mississippi River－Continued．

ARKANSAS CITY，ARK．－Contlnued．
Lower section．${ }^{\circ}$

Date．	$\begin{aligned} & \text { Gauge read- } \\ & \text { ing. } \end{aligned}$		Depths．		$\begin{aligned} & \text { 总 } \\ & \text { 菑 } \end{aligned}$		Discharge per second in cuble feet．			Method．
			誌	荷思			River．	Bank．	Total．	
1901．	Freel．	Sq．ft．	Feet．	Feet．	Feet．	F＇ect．				
Dec．9，p．m．	1.7	48， 500	25.6	61.3	1，891	2.61	127，000			Meter．
10，a．m．	1.8	48，000	25.4	60.1	1，891	2． 62	126，000			Double floats．
10，a，m．						2.70	129，000			Do．
10，a．m．	．．．．					2.63	128，000			Meter．
10，p．m．	1.9					2.57	123，000			Do．
10，p．m．						2． 49	120，000			Do．
1903．b		－								
Mar．8．．	48.0	254，400	71.4	96．$\overline{2}$	3， 562	5.08	1，292，000			Do．
11.	48.8	238， 200	66.9	96．7	3，562	5． 40	1，286，000			Do．
12.	49.0	238，800	67.0	97.8	3，562	5.02	1，198，000			Do．

［438 miles below Cairo．］

chicot city，Ark．
［432 miles below Cairo．］

1803．d										
Mar．14．．	49.6	230， 700	63.9	78.7	1，276					
16．．．．．．	50.4	C230， 400	53.9			7.54	1，737，000	7，000	1，743， 000	Meter．
17．．．．．．．	50.8	230， 200	63.8	71.4	4，276	6.81	1，668，000	18，000	1，576， 000	Do．
18．．．．．．．	51.2	228， 800	63.5	69.4	4，276．	6.40	1，466，000	19，000	1，475，000	Do．
	51.6	235， 400	65.0	71.5	4，276	7.00	1，647，000	111，000	1，657，000	Double floats．
	51.9	239， 600	56.0	72.7	4，276	6.84	1，637，000	12，000	1，640，000	Meter．
$21 \mathrm{a} . \mathrm{im}$.	52.2	236， 400	55.3	71.9	4，276	6． 65	1，573，000	111，000	11584,000	Double flosts．
21 p．m	52.3					6.80	1， 600,000	111，000	1，618，000	Double flosts．
22.	52.4	236， 300	65.2	73． 2	4，276	6.76	1，596，000	711，000	1，607，000	Meter．
23.	52.6	234， 000	54.7	73.3	4，276	6.79	1，688，000	10，000，	1，698，000	Do．
24．．．．．．	52.7	237， 600	65．6	73.6	4，276	6.96	1，654，000	［10，000	1，665，000	Do．
$25 \mathrm{a} . \mathrm{m}$ ．	52.7	230， 800	54.0	66.5	4，276	6． 95	1，604， 000	110，000	1，614， 000	
$25 \mathrm{p} . \mathrm{m}$. $26 . . .$.	52.8 52.9	23i，	64	67	4，27	7.14	$1,647,000$ $1,700,000$	$\left\lvert\, \begin{aligned} & 10,000 \\ & 10,000\end{aligned}\right.$	$\begin{aligned} & 1,657,000 \\ & 1,710,000 \end{aligned}$	Double floats． Meter．

a Lower section 1,800 feet below upper section．
－Discharge section same as in 1898．Observations and reduction under direction of secretary of Missis－ sippl River Commission；1901，Capt．G．P．Howell；1903，Capt．Wm．B．Ladue，Corps of Engineers．Re－ ports Chlef of Engineers 1902，supplement，page 72，and 1903，page 114.
c The dischargo seotion was at same place as in former years，about one－hall mile below Arkansas City the right－bank end being about 75 feet below the new sawinill；In January，1898，the left－bank end of the section was moved downstream 5° from its former position to make it more nearly normal to direction of flow．Arkansas Clty gauge，whose zero is 116.44 feot above the Cairo datum．
d Observations and reduction under direction of Capt．Wm．B．Ladue，Corps of Engineers，secretary Mississippl River Commission．Reports Chief of Engineers，1803，supplement，page 115，and 1905，supple－ ment，page 110．Arkansas City M．R．C．gauge，whose zero is 116.44 feet above the Cairo datum plane． 1904 velocities are means of simultaneous observations with a Haskell and a Price meter．
－Interpolated．
f Overbank discharge measured March 16，20，and 23；all overbunk discharges deduced from these meas－ urements．The discharge section is 232 mbtors above a prominent right anglo in lovee below Chicot，Ark．， und 20 meters below church on left bank．

Results of discharge observations, Mississippi River-Continued.
CHICOT CITY, ARK.-Contlnued.

- Interpolated.
- Zero of M. R. C. gauge at Arkansas Clty, whose readings are tabulated in standard column, is 116.44 feet above the Calro datum plane; the $8 \mathrm{a}, \mathrm{m}$, readings are given. Arkansas Clty is about 8 milles below discharge section. Local gauge at the discharge sectlon was set to read the same as the Arkansas Clty gauge on April 14; readings given are for time of discharge observations. The datum line for computing datum areas was at 50.03 feet on this local gauge. The discharge section is the same as that used in 1904, and is 232 meters above prominent right angle in levee helow Chicot, Ark., and 20 meters below church on left bank. Velocities were measured with Price meter No. 43.
eDischarge measured; overbank discharge for other days derlved from this.
- Darived from cross section of A pril 20.

Results of discharge observations, Mississippi River---Continued.
CHICOT CITY, ARK.-Continued.

[^35]H. Doc. 50, 61-1—19*

Results of discharge observations, Mississippi River-Continued.
CHICOT CITY, ARK.-Contlnued.

- Observations and reductions made under direotion of Capt. G. R. Lukesh, Corps of Engineers, U. 8 . Army, secretary Mississippi River Commision. Arkansas City M. R. C. gauge, whose zero is 116.44 feet Army, the Calrodatum plane; the readingsare given for the time of discharge observations; the change in 24 hoursis computed from the 8 a . m. readings. The discharge section 1 s 232 meters above a prominent right angle in levee below Chicot, Ark., and 20 meters below ohurch on left bank, and is the same as that used atnce 1903. It is 6 milesabove Arkansas City. O verbank discharges were measured on both right and laft banks on March 10; all othor overbank discharges are deri ved from these measurementa.
- Intorpolated.

Results of discharge observations, Mississippi River-Continued.

QREENVILLE, MI8S.

TThe gange readings are from the M. R. C. gauge at Greenville, whose zero is 108 above the Calro datum plane Themeter was run at 0.6 depth; velocities used as observed at that depth. Observations and reduction by third district officer, M. R. C.]

Date.	Gauge reading.	Area of cross section.	\cdots Depths.		Width.	Mean velocity yer second.	$\begin{gathered} \text { Discharge } \\ \text { per } \\ \text { second. } \end{gathered}$	Method.
			Mean.	Maximum.				
${ }^{1804}{ }^{\text {a }}$,	Fiet.	Sq. ft.	Feet.	Feet.	Freet.	Ficet.	Cubic feet.	
Apr, 19, a. m.a.	28.1	138,700	39.2	94.0	3,538	6.27	- 740,000	Meter.
Apr. 19, p. m. c.	28.2	177,900	34.0	63. 5	5, 2332	3. 77	671,000	Do.
Nov. 20 d......	-0.5	34, 300	13.1	21. 5^{1}	2,754	2.86	104, 000	Do.

LOUISIANA BEND, LA.
[Velocities observed with the Priceourrent meter at 0.0 depth. Loulsiana Bend is about 522 miles below Cairo and about 9 miles above Wilson Point, La. Lake Providonce gauge reading is given, zero 89.62 feet above the Cadro datum plane. Report of Chief of Engineers, 1892, p. 3135.]

$\begin{gathered} 1891 . \\ \text { uct. } 19 . \ldots \ldots \ldots . . \end{gathered}$	Feet. 1.4	$\begin{gathered} \text { Sq. ft. } \\ 67,400 \end{gathered}$	Ficet. 42.5	Feet. 77	Feet. 71,585	Feet. 1.96	cubic feet. 132, 000	Meter.

WILSON POINT, LA.

a Section 1 mile above Barnes Landing and about $2 \frac{1}{2}$ miles above Greenville, Miss. Greenville is 478.3 miles below Cairo. Twelve velocity stations 300 feet apart, and 52 soundings.
b Of this total 9,604 cublo feet is chute discharge; the area, depths, velocity, and width Include the main river only.
c Section at Warfield Point about 5 miles below Greenville, Miss. Eighteen velogity stationis 300 feat apart, and 72 soundings.
d Sectlon above Warfield Towhead and about 3 miles below Greenville, Miss. Fourteen velocity stations 200 feet apart, and 65 soundings.
e Tabulated results 1883 to May, 1890, Inclusive, Report Chlef of Eagineers 1890, page 3173. Report on reduction, Report Chlef of Engineers 1890, page 3170 . The discharge section was located at about the same place until 1894, when it was moved up opposite Skipwith rowhead. All observations by third district officer, Mississippl River Commission, and reduction made at Secretary's office except for 1894, whlch was made at distrlet oflice. The gauge readings tahulated herewith are those of the Wilson Point gange, whose zero is 93.4 feet above the Cuiro datum plane.
t'hese observallons were taken In fog und raln with the river full of drift. Meter worked very badly.

Results of discharge observations, Mississippi River-Continued.

WILSON POINT, LA.-Continued.

Results of discharge observations，Mississippi River－Continued：－
WILSON POINT，LA．－Continued．

Date．			Depths．		害		Discharge per second in cuble fiset．			Method．
				帚品			River．	Bank．	Total．	
1890.	Fiect．	Sq．ft．	Feet	Feet，	Feet．	Fret．				
F（b）． 13.	38.1	174， 100	40.5	80.0	3，744	$6,32$	1，100，000	23，000	1，123，000	Meter．
14．	38． 6	177,400	47.4	80.0	3,744	6． 33	1，123，000	25，000	1，148，000	Do．
	38.6	171，600	45.8	80.0	3，744	6． 19	1，062，000	25,000	1，087，000	Do．
	38.6	175，600	46.9	80.0	3，744	0.14	1，077，000	20，000	1，103，000	Do．
20.	39.0	177， 700	47.5	80.0	3，744	5.98	1，003，000	28，000	1，091，000	Do．
21.	39.0	180， 000	48.1	80.0	3，744	0.33	1，139，000	28，000	1，107，000	Do．
22.	39.2	182， 300	48.7	80.0	3，744	6.01	1，090，000	29，000	1，125，000	Do．
24.	39.4	178， 900	47.8	81.0	3,74	0.22	1，113，000	30，000	1，143，000	Do．
25.	39.4	181，400	48.4	80.0	3，744	6.11	1，108，000	30，000	$1,138,000$	Do．
26.	39.4	180， 100	48． 1	80.0	3,744	5.97	$1,075,000$	30，000	1，105，000	Do．
27.	39.6	183， 700	49.1	80.0	3，744	5.70	1，063，000	31，000	$1,094,000$	Do．
Mar． 1.	39.4	179， 800	48.0	80.0	3，744	5． 80	1，043，000	30，000	$1,073,000$	Do．
$3 .$	39.4	183， 600	49.0	80.0	3，744	5． 91	1，085，000	30，000	1，115，000	Do．
4	39.5	184，900	49．4	81.0	3，744	5.77	1，067，000	31，000	1，098，000	Do．
	39.6	185， 700	49.6	80.0	3，744．	6.94	$1,103,000$	33，000	$1,131,000$	Do．
	39.7	190，700	50.9	80.0	3，744	0.01	1，145，000	34，000	1，179，000	Do．
7.	40.0	193，000	51，6	81.0	3，74	6.81	1，122，000	40，000	1，102，000	Do．
8.	40.1	195， 700	52.3	81.0	3，744	6.84	1，143；000	43，000	1，180，000	Do．
10.	40.4	197，700	52.8	81.0	3，744	5.97	1，181，000	47，000	1，228，000	Do．
11.	40.5	199， 100	53.2	82.0	3，744	6.24	1，242，000	47，000	1，289，000	Do．
12.	40.7	202，900	64.2	81.0	3，744	5.62	1，141，000	60，000	1，191，000	Do．
13.	40.8	203， 900	54.5	81.0	3，744	5.53	1，128，000	50，000	$1,178,000$	Do．
14.	40.9	205， 200	54.8	81.0	3，744	5．68	1，105，000	60，000	1）215，000	Do．
15.	41.0	199，600	63.3	82.0	3，744	6． 86	1，171，000	60，000	1，221，000	Do．
17.	40.9	200，400	53.5	81.0	3，744	6． 91	1，185，000	47，000	1，232，000	Do．
18.	40.9	199，500	53.3	82.0	3，744	6．11	1，218，000	45，000	1，263，000	Do．
19.	－ 40.6	197，000	52.6	81.0	3，744	6.06	1，193，000	38，000	1，231，000	Do．
20.	40.5	200，000	53.4	81.0	3，744	5． 65	1，131，009	35,000	$1,160,000$	Do．
21.	40.5	200， 700	63.6	80.0	3，744	5． 43	1，090，000	$36 \% 000$	1，125，000	Do．
24.	40.5	201，400	53.8	80.0	3，744	5． 82	1，173，000	35，000	1，208，000	Do．
25.	40.5	200， 400	63.5	80.0	3，744	6．08	1，219，000	35,000	1，254，000	Do．
$23 .$	40.2	199， 400	63.2	79.0	3，744	5.95	1，186，000	30，000	1，216，000	Do．
$31 .$	39.8	1856.100	52.4	78.0	3，744	6． 98	1，173，000	25，000	1，198，000	Do．
A pr． 2.	39.7	195， 600	62．2	78.0	3，744	6． 85	1，144，000	23，000	1，167，000	Do．
3.	39.8	195，900	52.3	79．0	3，744	6.03	1，182，000	23，000	1，205，000	Do．
	39.6	196， 500	52.5	78.0	3，744	5.98	1，175，000	22，000	1，196，000	Do．
5.	39.4	195，800	52.3	79．0	3，74	5． 73	1，122，000	20，000	1，142，000	Do．
7.	39.4	195， 300	52.2	78.0	3，744	6． 78	1，128，000	19，000	1，147，000	Do．
8.	39.4	195，700	52．3	78.0	3，744	6.70	1，116，000	18，000	$1,13+000$	Do．
9.	39.4	196，000	52.4	78.0	3，744	6， 62	$1,102,000$	17，000	1， 111,000	Do．
10.	39.4	192，000	51.3	78.0	3，744	6.73	1，100，000	16，000	1，110，000	Do．
11.	39.4	191，800	51.2	77．0	3，744	6． 71	1，090，000	16,000	1，111，000	Do．
12.	39.4	193，500	51.7	78.0	3，74	5.91	$1,144,000$	16，000	$1.159,000$	Do．
14.	39.4	193，000	51.5	77.0	3，744	6． 69	1，078，000	15，000	1，093，000	Do．
17.	39.3	194， 300	51.9	77.0	3，744	6． 60	1，089，000	14，000	1，103，000	Do．
17.	39.3	194，300	51，9	78.0	3，744	6． 61	1，071，000	14，000	1，085，000	Do．
18.	39.2	194， 100	51.9	77．0	3，744	6． 57	1，081，000	13，000	1，094，000	Do．
19.	39.2	195， 500	52． 2	770	3,744	5． 52	1，080，000	12，000	1，092，000	Do．
21.	39.2	191，700	61.2	770	3，744	6， 70	1，093，000	12，000	1，105，000	Do．
22.	39.2	192，100	51.3	77.0	3，744	6．60	1，077，000	12，000	1，089，000	Do．
24.	39.2	194，300	51.9	77.0	3，744	6.74	1，114，000	12，000	1，120，000	Do．
25.	39.2	194，200	51.9	76.0	3，744	5.63	1，093，000	11，000	1，104，000	Do．
26.	39.0	195，900	52.3	77.0	3，744	5． 56	1，090，000	0，000	1，099，000	Do．
28.	38.5	189，400	50． 6	75.0	3，744	5． 48	1，038，000	5，000	1，043，000	Do．
29.	38.3	189， 500	50.6	76.0	3，744	6． 43	1，029，000		1，029，000	Do．
May ${ }^{30 .}$	38.2	186， 700	49.9 49.6	75.0	3，744	5． 52	1，031，000		1，031，000	Do．
May 2.	38.0	185， 800	49.6	75.0	3，744	5． 50	$1,022,000$			Do.
$\begin{aligned} & 8 . \\ & 6 . \end{aligned}$	37.9	$189,400$	50.6	75.0	3，744	5.37	$1,017,000$			Do.
$\begin{aligned} & 6 . \\ & 7 . \end{aligned}$	37.8 37.6	189,900 189,000	50.7 50.6	73.0	3,744 3,744	5． 34 5.17 3.	$1,015,000$ 981,000			Do．
Dec． 28.	37.6 9.8		21.5	52.0	3，645	3． 29	259，000			Do．
29.	9.7	78，900	21.6	52.0	3，645	3.34	263，000			Do．
	10.0	78，800	21.6	62.0	3，645	3． 29	259， 000			Da．
1891．										
Mar． 27.	40.4	213，400	56.3	86.0	3，788	6． $70-$	1，216，000	16，000	1，232，000	Do．
28.	40.5	217，600	57.5	86.0	3，788	5． 36	1，253，000	19，000	1，272，000	Do．
30.	40.6	217， 500	57.4	88.0	3，788	5． 83	1，268， 000	20，000	1，288，000	Do．
Apr 31.	40.6	221，900	58.6	88.0	3,788	5． 40	1，188，000	$21,000$	1，219，000	Do．
Apr．	40.6	223，300	59.0	86.0	3，788	5． 28	$11,179,000$	22，000	$1,201,000$	Do.
	40.7	224，400	59.2	86.0	3，788	5． 46	1，225，000	22，000	$1,247,000$	Do．

－Discharge of Concord crevasse［550．5］April 18，1891，$-100,192$ sublc feet per second．Tabulated resulta of 1891 in Report Chief of Engineers，1892，p．3134；report on reduction，Chiof of Engineers，p．3123．Tabu－ Lated results of 1892 in Raport Chief of Engineers，1893，p．3i88；report on reduction，Chilef of Enginears，p． 2678．Fiald results and report for 1892 in Report Chiof of Eagineers，1892，p． 3188.

Results of discharge observations, Mississippi River-Continued.
WILSON POINT, LA.-Continued.

			Depths.		$\begin{aligned} & \text { 守 } \\ & \text { 20 } \end{aligned}$		Discharge per second in cuble feet.			Method.
			気				River.	Bank.	Total.	
1891	Feet. 40.7	$\begin{gathered} S q, f t \\ 222,100 \end{gathered}$	Preet.	Feet.	Feet.	Feet.	1,254,000	22,000	$1,278.000$	Meter.
			68.6		3,788	5. 65				
	40.6	221,800	68. 6	85.0	3,788	5. 46	1,212,000	22,000	1,234,000	Do.
	40.6	222, 900	63.8	83.0	3,788	5:27	1,174,000	21,000	1,195,000	Do.
	40.5	224,700	59.3	80.0	3,788	5. 43	1,221,000	20,000	1,241,000	Do.
	40.5	226,500	69. 9	81.0	3,788	5.11	1,169,000	19,003)	1,178,000	Do.
	40.4	225,300	59.5	85.0	3,788	6. 26	1,185,000	18,000	1,203,000	Do.
	40.3	228,800	60.4	84.5	3,788	c. 15	1,178,000	17,000	1/195,000	Do.
	40.0	224,500	59.3	83.5	3,788	5. 20	1,168,000	17,000	1,185,000	Do.
	40.0	221,900	68.0	83,0	3,788	5. 27	1,170,000	16,000	1,180,000	Do.
	39.9	224,800	59.3	82.0	3,788	5.17	1,161,000	16,000	1,177,000	1).
	39.8	224, 100	69.2	82.5	3,788	6. 14	1,153,000	15,000	1,168,000	Do.
	39.8	223,900	69.1	82.0	3,788	5.06	1,133,000	15,000	1,148,000	1\%.
	39.8	223,400	69.0	82.0	3,788	4.90	1,093,000	14,000	1,107,000	Do.
	39.7	223, 200	58.9	80.0	3,788	4. 92	1,097,000	14,000	1,111,000	Do.
	39.6	224,000	69.1	81.0	3,788	4.91	1,100,000	13,000	1,113,000	Do.
	39.6	227,900	60.2	31.0	3,788	4.81	1,090,000	13,000	1,109,000	Do.
	39.6	230,500	60.9	81.5	3,788	4.78	1,102,000	13,000	1,115,000	Do.
	39.6	235,300	62.1	81.5	3,788	4. 62	1,087,000	13,000	1, 100,000	Do.
	39.7	234, 700	02. 0	81.0	3,788	4.58	1,076,000	14,000	1,090,000	1).
	39.8	233, 600	61.7	83.5	3,788	4.60	1,050,000	16,000	1,105,000	Do.
	39.8	233, 100	61.5	83.0	3,788	4. 18	1,090,000	15,000	1,105,000	Do.
	39.8	231,100	61.0	84.0	3,788	4.74	1,090,000	15,000	1,111,000	Do.
	39.7	227, 500	60.0	83.5	3,788	6. 09	1,167,000	12,000	1,169,000	Do.
May	39.5	224, 500	59.3	83.0	3,788	4.87	1,091,000	10,000	1,104,000	Do.
	39.3	223, 500	59.0	83. 0	3,788	6. 18	1,158,000	7,000	1,165,010	Do.
	38.8	221,900	58.6	80.0	3,788	4. 62	1,024,000	7,000	1,031,000	$1)$.
	384	221,900	58.6	80.0	3,788	4. 99	1,108,000	5,000	1,113,000	Do.
	37.0	219, 800	58.0	78.0	3,788	4.68	1,030,000	3,000	1,033,000	Do.
Oct.	1.2	68,100	20.7	37.5	3, 295	1. 96	133,000			Do.
	1.0	68,400	20.8	37.5	3,295	1.95	133,000			I) 0
	. 8	69,000	21.0	38. 5	43, 293	1.94	134,000			Do.
Nov.	.0	63, 500	19.4	30.5	3,280	1.84	117,000			Do.
1892:										
Apr.	35.6	193, 600	49.3	67.0	3,923	5. 68	1,091,000			Do.
	36.6 36.8	199,900 199,100	50.8 50.6	68,0	3,931 3,932	5. 88 5. 83	$1,116,000$ $1,160,000$			Do. Do.
	36.8 37.2	199, 100	50.6	67.5	3,932 3,934	5. ${ }^{5} 82$	1,160,000			Do.
	37.2	203,800 205,200	51.8 52.1	68.6 68.0	3,934 3,936	5. 82 5.85	$\begin{aligned} & 1,207,000 \\ & 1,199,000 \end{aligned}$			Do.
	37.8	205, 300	52.1	68.5	3,937	5.83	1,197,000	$\bigcirc 2,000$	1,100,000	Do.
	38.1	211, 600	63.7	70.0	3,939	6. 12	1,214,000	2,000	1,297,000	Do.
	38.7	216,500	54.9	70.5	3,942	6. 09	1,318,000	b 3,000	1,321,000	Do.
	39.0	217,600	55.2	70.0	3,944	6. 16	1,340,009	4,000	1,344,000	Do.
	39.2	212,700	53.9	70.5	3,944	6.32	1,3.15,000	5,000	1,351,000	Io.
	39.4	215,900	54.7	71.0	3,944	6. 42	1,380,000	6,000	1,392,000	Do.
	39.7	222,800	56.5	71.5	3,944	6.28	1,309,000	7,000	1,406,000	Do.
	39.8	221,500	56.1	71.0	3,946	6.03	1,330,000	8,000	1,341,000	Do.
May	40.1	222,600	50.4	71.0	3,948	6. 1.4	1,368,000	611,000	1,370,000	I) 0.
	40.2	222,200	56.3	71.0	3,948	6. 28	1,395,000	11,000	1,407,000	Do.
4......	40.3	22.4,800	56.9	71.5	3,948	5. 64	1,268,000	11,000	1,279,000	Io.
	40.5	2222,000	56.2	69,5	3,948	6. 13	1,361,000	12,000	1,372,000	Do.
6.......	40. 6	221,000	56.0	71.5	3,948	6.00	1,326,000	12,000	1,337,000	Do.
7.......	40.7	224, 300	56.8	71.0	3,948	6.11	1,371,000	12,000	1,383,000	Do.
9......10.	41.0	225, 400	57. 1	71.0	3,948	6.06	1,366,000	12,000	1,378,000	Do.
	40.8	224,700	56.9	71.0	3,948	6. 29	1,413,000	612,000	1,425,000	Do.
11.......	40.8	224, 700	56.9	71.0	3,948	5. 85	1,315,000	13,000	1,328,000	Do.
12.......	40.8	225, 400	57.1	71.0	3,948	6.00	1,352,000	14,000	1, 366, 000	Do.
14.......	41.0	226, 6×10	57.4	71.5	3,948	5. 68	1,287,000	15,000	1,302,000	Do.
18........	40.8	227, 300	57.6	71.5	3,948	5. 51	1,252,000	16,000	1, 269,000	Do.
18.......	40.8	229, 600	58.1	72.5	3,943	5. 65	1,298,000	18,000	$1,315,000$	
19, 8. m.	40.8	227,000	57.5	71.5	3,948	5. 64	$1,279,000$	19,000	1,298, 000	Do.
						5.52	1, 252,000			Double floats
19, p.m.	40.8	228, 800	58.0	72.0	3,948	5. 65	1,292,000	19,000	1,312,000	Meter.
21.......	40.8	230, 000	68. 2	72.0	3,948	5.74	1, 321,000	20,000	1,341,000	Do.
	40, 9	233, 000	59.0	74.0	3, 948	5. 66	1,319,000	22,000	1,341,000	Do.
	41.0	231, 700	58.7	74.0	3, 948	5. 44	1,261, 000	23,000	1,284,000	Do.
25......	40.9	231,200	58.6	73.5	3, 048	5. 64	1, 304, 000	24,000	1,327,000	Do.
27......	41.0	220. 500	58.1	73.5	3,948	5. 80	1,331,000	24,000	1,356,000	Do.
27......	41.0	229, 500	58.1	73.5	3,948	5. 60	1,285,000			Double floats.
28.	41.0	232, 500	58.9	74.5	3,948	5. 86	1,362,000	25,000	1, 387,000	Meter.
	- Intarpolated.							Observe		

Resulls of discharge observations, Mississippi River-Continued.
WILSON POIN'T, LA.-Contlnued.

Dato.			Depths.		窇		Discharge per second in cuble feet.			Method.
			$\begin{aligned} & \text { 咂 } \\ & \text { in } \end{aligned}$				River.	Bank.	Total.	
1892.	Feet.	$s q . f t$.	Feet.	F	F'eet.	Fect.				
May 31, am.	41.0	232, 200	58.8	74.0	3,918	5.38	1,250,000	27,000	1,288,000	Double floats.
3.j, p.m.		234,400	69.4	74.0		5.43, 5.83	$1,260,000$ $1,360,000$	27,000	1,303,000	
June ${ }^{31} 1$.	41.1	236, 500	50, 9	74.0	3;048	5. 48	1,296,000	a28, 000	1,324,000	Do.
	41.2	239,500	60.7	79.0	3,948	5. 38	1,289,000	27, 000	1,316,000	Do.
	41.2	242, 800	01.5	83.0	3,048	5.20	1,263,000	20,000	$1,289,000$	Do.
	41.0	2.11, 800	61, 2	79.5	3,948	5.36	$1,200,000$	25,000	$1,321,000$	Do.
(6, a. m.	40.9	239, 300	60.6	84.0	3,048	5.08	1,215,000	23,000 22,000	1, 238,000	Double floats.
6, p.m.	40	239,300	co. 0	84.0	3,948	6. 11	1, 223,000	22,000	1,232,000	Dollble floats.
	40.8 40.8	243.100 $243,0 ¢ \%$	61.6 81.6	84.0	3;948	4.188 5.05	1,210,000	21,000	$1,248,000$	Meter.
	41). 8	243,	61.8	90.0	3; 94	4.87	1,188,000	20,000	1,208,000	Do.
10.	40.8	244, 700	62.0	88.5	3,948	488	1,189,000	10,000	1,208,000	Do.
10.	40.8	238, 9100	60.5	88.6	3,948	4. 87	1,163,000	10,000	1,182000	D.
11.	40.8 40.8	243, (0)6) 23,190	61.6 60.6	87.0 84.5	3,948 3,948 3,	4.72 4.01	$1,148,000$ $1,176,000$	a18, 000 18,000	1,186,000	Do.
	40.8 40.8 4	$23.9,4(0)$ $2.11,3(0)$	60.6 61.1	84.5 84.0	3,948 3,948	4. 91 4.80	1,176,000	18,000 18,000	$1,104,000$ $1,178,000$	Do.
15.	40.8	239, 800	60.7	83.0	3,948	4.88	1,170,000	18,000	1,188,000	Do.
	40.8	230, 600	60.7	82.0	3,948	4.90	1,174,000	18,000	1, 192,000	Do.
17.	40.8	237, 200	${ }^{60.1}$	82.0	3,948	5. 05	1,108,000	18,000	1,210,000	Do.
17 b 20.	40.8 40.6	231,300 $235,8(4)$	59.3 59.7	81.5 79.0	3,948	5. 05	$1,183,000$ $1,133,000$	18,000	$1,201,000$ $1,151,000$	Do.
Oct. 26.	0.8	79, 800	24.0	35.5	3,323	1. 82	145,000			Do.
	0.8	79, 80\%	24.0	35.5	3,323	1.81	144,000			Do.
Nov. $22 \ldots$	0.8 1.9	78.9 (KK) 81, SuO	23.8 24.3	34.0 36.5	3,317 3,364	1.77 2.09	140,000 171,000			Do.
Nov. 22 c..										
$\text { 1893. }{ }^{2}$	34.4	189, 000	49.0	69.0	3, 857	5. 48	1,032,000			Do.
9.	34.8	191, 900	49.8	66.5	3,857	5. 50	1,055,000			Do.
10.	35.1	1906, 400	50.9	68.0	3,857	5. 44	1,069,000			Do.
11.	35. 2	200, 300	51.9	68.5	3,858	5. 32	1,005, 000			Do.
14.	${ }_{35}^{35.3}$	187,200	48.5 50.5	60. 6	3, 860	5.43	1,016,000			D.
15.	34.8	194, 000	50.3	60.5	3,810	5. 59	1,085,000			Do.
16.	34.5	194,900	50.5	67.5	3,858	5. 59	1,050,000			Do.
17.	34.3	190,700.	49.4	66.0 60.0	3,857 3,857	5. 58	$1,045,000$			Do.
	33.9	183, 600	47.6	U6. 0	3,857	5. 59 5. 50	$\begin{aligned} & 1,020,000 \\ & 1,000,000 \end{aligned}$			Double floata
	з3. 9	186,900	48.50	6?.0	3,856	5. 41	1,011,000			Meter.
	33.3	185,600	48.0	66.5	3,850	5. 41	1,004, 000			Double floats
22.	33.1	180,800	46.9	60.5	3,856	5. 37	972,000			Meter.
	33.0	180, 400	46.8	65.0		5. 38	971,000			Do.
	33.0	181,800	47.1	65.0	3,856	5. 33 5. 28	969,000			Do.
	32.9	180,200	46.7	\%5.0	3, 906	5. 30	955,000			Do.
	32.9	181,900	47.2	63.5	3,856	5.18	942, 000			
	929	185,	48.0	64.0	3,856	5.16 5.16	939,000 955,000			
	32.9	180,				5. 00	927,000			Do.
	32.8	179, 800	46.6	63.0	3,856	5.17	930,000			Do.
${ }_{31}^{30}$	32.6	185, 30	48.1	62.5	3,855	5. 20	963, 000			no.
31						5. 09	944,000			Do.
Apr.	32.3	184, 600	47.9	62.5	3, 855	5.02	927, 000			Do.
	31.7	180, 100	46.7	62.5	3,855	4. 86 4.92	898,000 886,000			Do.
						4.72	850,000 887,000			Do.e
	31.3	186,000	48.2	62.5	3,855	4.77 4.72	$\begin{aligned} & 887,000 \\ & 878,000 \end{aligned}$			Double floats.
						4.65	865,000			Meter.e
	30.7	180,200	46.7	$\underline{62.5}$	3,855	4.70	847,000			
						4. 60	829,000			Do. ${ }^{\text {d }}$
	30.1	177,000	45.9	62.5	3,855	4.7	843,000			Do.e

[^36]Results of discharge observations，Mississippi River－Continued．
WILSON POINT，LA．－－Continued．

Date．		Depths．		$\begin{aligned} & \text { 品 } \\ & \text { 号 } \end{aligned}$		Discharge per second in cubic feet．			Method．
		$\begin{aligned} & \text { 䔍 } \\ & \text { 命 } \end{aligned}$	$\begin{aligned} & \text { K 品 } \\ & \text { 合品 } \end{aligned}$			River．	Bank．	Totel．	
1893.	Fret．Sq．ft．	Feet．	Fect．	Fret．	Fiet．				
Apr． $7 .$.	29．6 177，800	4 S .1	62.0	3，855	4． 65	827， 000			Meter．
7.					4． 60	818,000			Do．a
8.	28.7 174，000	45． 1	61.0	3，855	4.61	784， 000			Do．
May 5	37．3 207，900	53.7	72.0	3，871	4． 39 5.07	764,000 $1,179,000$	9，000	8， 000	Do．a Do．
5.					6． 55	1，153，010			Do．a
6.	37.9 213，300	55.1	72.0	3，871	5． 84	1，240，000	11，000	1，258，000	1 Do．
8	$39.4221,100$	67.1	74.0	3， 871	6． 73	$1,223,000$ $1,307,000$	17，000	1，324，000	Do．a
8.	3.4 2－100	62．		3，871	5． 88	1，290， 000	17，00	$1,324,00$	Do．－
9.	30.9 221，200	67.1	75.5	3，871	6.14	1， 358,000	620，000	1，375，000	Do．
10		57.	74.		6． 06 6.07	1，340，000			Do．a
10.	40.3 22， 200	67． 4	74.0	3，871	6． 07 5.96	$1,349,000$ $1,325,000$	22，000	1，371，000	Do，
11.	40.0 227，400	58.7	74.0	3，871	6． 14	1，396，000	24，000	1，420，000	Do．
11.					6． 97	1，357，000			Do．a
12.	40.6 225，500	68.2	74.0	3，871	0.13	1，383，000	25，000	1，408，060	Do．
12.					6.13	1，382，000			100．6
13.	40．7 227， 200	58.7	75.0	3，871	6.07	1，379，000	27，000	1，405，000	10.
13.					5.96	1，355，000	$\cdots \ldots$		100．a
15.	41.0 231,700	59.0	75.0	3，871	5． 94	1，370，000	30，000	1，406，000	I） $0 . a$
16.	41．0 227，300	58.7	73.0	3，871	5． 94	1，351，000	831， 000	1，382，000	Do．
18					5.91	1，344，000			Do．＊
17	41.0 230， 300	59.5	73.5	3，871	6.85	1，346，000	31，000	1，378，000	Do．
17.		60.1	$\overline{73.5}$		5.74 5.84	$1,321,000$ $1,359,000$	31,000	1．391，000	Do．a
18.	41.0 232，700	60.1	73.5	3，871	5． 84 6． 78	$1,359,000$ $1,347,000$	31，000	1，391，000	Do． Do．a
19.	41.0	89.4	74.0	3,871	6． 95	1，367，000	31,000	1， 398,000	Do．
19.					5． 86	1，340，000			Do．＊
20.	41.0 231， 200	59.7	74.0	3，871	5.87	1，357， 000	31，000	1，388，000	Do．
20.					5． 76	1，332，000			1）0．a
22.	41.0 237，000	61.5	75.0	3，871	5． 69	1，355，000	31,000	1，386，000	Do．a
23.	41.0 235，000	60.7	74.0	3，871	5.81	1，366，000	31，000	1，397，000	Do．
23.					5.73	1，346，000			Do．a
24.	40． 3 237， 300	61.3	74.0	3，871	6． 00	1，424，000	28，000	1，452，000	Do．
24.					5． 89	1，396，000			Do．a
25.	40.0 230， 700	59.6	74.0	3，871	5． 91	1，363， 000	24，000	1，387，000	Do．
25.					5． 85	1，349，000			Do．a
27.	39．6 ，230， 800	59， 6	73.5	3，871	6.09	1，400，000	21，000	1，426，000	Do．
27.					6． 01	1，387，000			Do．a
30.	30.4 228， 400	59.0	72.0	3，871	5． 93	1，355，000	20，000	1，375，000	Do．
30.					6.08	1，389，000			Do．a
31.	39.2 229,700	59.3	73.0	3， 871	6.10	1，402，000	20，000	1，422，000	Do．
June 1.	39.1 231， 400	69.8	73.5	3，87！	6.00	1，383，000	19，000	1，409，000	Do．
1.					5． 95	1，378，000			Do．＊
2.	39.0 228， 600	59.0	71.5	3， 871	5． 88	1，343，000	10，000	1，362，000	Do．
2.					6． 84	1，336，000			1）0．4
3.	35.9 231，000	69.7	72.0	3，871	5． 94	1，372，000	19，000	1，391，000	Do．
3.					5． 70	1，317，000			Do．6
5.	38.9 223， 300	59.0	71.5	3，871	5． 93	1，354，000	18，000	1，372，000	Do．
5.					6.87	1，310，000			Do．a
6.	38.8 ：227， 900	58.9	71.5	3，871	5．82	1，325， 000	18，000	1，343，000	Jo．
					6． 82	1，327，000			Do．a
7	38.8 229，300．	59.2	73.0	3，871	5．86	$1,344,000$ $1,319,000$	17，000	1，362，000	Do．
8.	38.8 221．900	59.9	73.0	$\cdots 3,871$	b． 76 6.82	$1,319,000$ $1,350,000$	17,000	1，367，000	Do．
8.					5．81	1，347，000	17，000		1）0．a
Oct． 24.	2.1 73， 00	20.3	33.0	3，636	2.32	172，000		172，000	Io．
24					2.10	155，000			Do．a
1894．${ }^{\text {c }}$									
Sept． 2 ti．．．	2.3 43，000	17.1	27.5	2，571	3． 99	175，000		175，000	Do．
27.	2.3 4，900	17.5	27.5	2，571	3． 95	177，000	．	177，000	Do．

[^37]Results of discharge observations，Mississippi River－Continued．

WILSON POINT，LA．－Continued．

［531 miles below Cairo．］

Date．			Depths．		$\begin{aligned} & \text { 品 } \\ & \text { 2 } \end{aligned}$		Discharge per second in cuble leet．			Method．
			$\begin{aligned} & \text { ğ } \\ & \text { 䍓 } \end{aligned}$	$\begin{gathered} \text { 安思 } \\ \text { 思 } \end{gathered}$			River．	Bank．	Total．	
1895，a	Ficel．	Sq．ft．	Fect．	Fect．	Feet．	F＇eet．				
July 21 a．m．	13.8	107， 4 （\％）	24.5	40.0	4，391	3.48	－373，000			Meter．
$2.4 \mathrm{p} . \mathrm{m}$ ．	13.8	107，209	24.4	40.5	4，391	3.45	370， 000			Do．
Oct． 21 a．m．	-3.8	31.800	13.8	20.5	2，285	3.11	b98， 000			Do．
21 p． m ．	－3．8	31，800	13.9	20.1	2，285	3.21	102，000			Do．

a Section 2,500 feet bolow that of 1893 ，at 531.5 milles on Inch－mile map．Lake Providence gauge read－ Ings are means of S a． m ．and 4 p ． m ．by regular observer；elevation of gauge zero 89.62 feet above Cairo datum．Observations mado underdirection of third district ollicer，M．K．C．Report Chief of Engineors， 1890，p． 3550.
b Flanking method．These are means of two flankings across river in opposite directions．Pricemeter used．

HAYS I，ANDING，MISS．
［Observations and reduction by M．R．C．，secretary＇s office．Report and tabulation，1882，in Report Chief of Engincers，1881，p．2627．Ail gauge readings at this station are those of the Hays Landing gauge，whose zero was si．05 feet above the Calro datum plane．Hays Landing is 553 miles below Caire and about 22 miles below Wilson Point．］

Results of discharge observations, Mississippi River-Continued.
HAYS LANDING, MISS.-Continued.

Results of discharge observations, Mississippi River-Continued.
HAYB LANDING, MISS.-Continued.

Date.	Gauge read. ing.	Area of cross section.	Depths.		WIdth.	Mean velocity per second.	Discharge per second.	Method.
			Mean.	Maxi. mum.				
1882.	Feet.	Sq. feet.	Feet.	Feet.	F'eet.	Feet.	Cubic feet.	
Sept. 12.	10.8	92, 400	39.1	69.5	2,400	3.32	323, 000	Meter.
13.	11.0	88, 800	39.6	69.0	2,496	3. 56	352,000	Do.
14.	11.1	99,000	39.6	70.9	2, 497	3. 40	337,000	D).
15.	11.2	101,400	40, 6	71.2	2,407	3. 60	365, 000	Do.
16.	11.1	100,500	40.2	70.0	2,497	3. 69	$361,0 \times 0$	Do.
18.	10.7	98, 000	39.3	69.5	2,491	3. 54	347,000	Do.
19.	10. 4	97, 400	39.3	69.0	2. 483	3. 60	341,000	Do.
20.	10. 1	96, 900	39.1	68.9	2,477	3.45	334,000	Do.
21.	9. 9	94, 800	38.3	68.4	2,476	3.28	311,000	Do.
23.	10.4	91 i .100	38. 7	69.5	2, 482	3. 19	307,000	Rod floats.
25.	11.7	100.100	40.1	71.0	2,508	3. 45	347,000	Do.
27.	12.3	103. (10)	40.9	73.0	2,520	3. 27	337,000	Do.
28.	12.1	102,000	40.6	71.3	2,513	3.18	325,000	Meter.
29.	11.6	102,000	40.7	71.0	2,507	3.02	307,000	Jo.
30.	11.0	97,900	30.2	69.9	2, 498	3. 01	294,000	Do.
Oct. 2.	9.7	96, 300	39.0	69.0	2,469	3.06	294,000	Do.
$3 .$	9.0	95, 000	38.9	70.1	2,445	2.91	277,000	Do,
6.	7.4	90, 900	37.7	67.4	2,414	2. 69	245,000	Do.
7.	6. 9	88,900	37.0	66.8	2, 399	2. 70	240,000	Do.
10.	6.4	89.000	37.2	66.9	2,392	2. 60	232,000	Do.
13.	6. 6	89,000	37.1	65.9	2,394	2.62	234.000	1)o.
14.	6.4	88, 800	37.1	65.9	2,394	2. 63	233,000	Do.
17.	6.2	88,100	36.8	65.9	2, 390	2.28	201,000	$1) \mathrm{O}$
23.	6.6	90, 400	37.8	66.1	2,394	2.84	257,000	Do.
24.	6.7	90.400	37.7	63.1	2,394	2. 65	$2 \cdot 10,000$	Do.
25.	7.0	91, 000	37.9	66.9	2,399	2.68	2.14,000	Do.
26.	7.0	90, 900	37.9	67.5	2,401	2.64	2.40, 000	Do.
27.	6.8	89, 600	37.3	66.0	2,399	?.68	240,000	Do.
28.	6.6	89, 100	37.1	65.9	2,399	2.62	233,000	Do.
30.	6.5	89, 100	37.2	65.9	2,397	2.56	228, 000	Do.
31.	6.4	89,300	37.3	66.0	2,396	2. 66	229,000	Do.
Nov. 1.	6.3	88,900	37.1	66.1	2,304	2.50	222,000	Do.
2.	6.2	88,000	36.8	66.8	2,389	2. 52	222,000	Do.
3.	6.0	86, 800	36.4	65.2	2,387	2. 51	218,000	Do.
4.	6.1	86,400	36.2	65.2	2,388	2.55	221,000	Do.
6.	6.2	86, 400	36.2	65.3	2,389	2.61	225,000	Do.
7.	6.2	86, 600	36. 3	65.4	2,389	2.64	228,000	Do.
8.	6. 2	87,000	36.4	65.0	2,389	2.57	223.000	1)0.
9.	6.3	88, 600	37.1	65.2	2,391	2.61	231,000	Do.
10.	6.4	86, 200	36.0	66.1	2,392	2.61	225,000	Do.
11.	6.4	87, 300	30. 5	66.1	2,392	2.63	230,000	Do.
13.	6. 7	86,900	36.3	66.1	2,395	2.75	239,000	Do.
14.	6.8	$89,1 \mathrm{co}$	37.2	66.2	2,396	2.74	244,000	Do.
15.	7.0	89, 600	37.3	67.1	2, 402	2.80	251,000	Do.
16.	7.3	87,900	36.5	66.9	2, 407	2.86	251,000	Do.
17.	. 7.6	89, 400	37.0	67.0	2,416	2.92	261, (0)0	1)o.
20.	8.7	91. 200	37.3	68.1	2,448	3.01	275.000	Do.
21.	9.0	92,900	37.9	68.5	2,450	3.07	285,000	Do.
22.	9.1	93, 600	38. 1	68.8 69.8	2,453	3. 09	289,000	Do.
23.	9.3	94, 300	38.3	69.8	2,462	3. 10	293,000	Do.
Feb. 18.....	35.3	159,500	56.8	84.0	2,810	7. 60	1,195,000	Do.
Mar. 16.	37.7	171, 300				6. 23	1,067,000	

a Results of February 18 in Report Chfef of Engineers, 1891, p. 3488; observations of March 16 taken by "patrol" party, Report Chlel of Engineers 1885, p. 2650.

Resulte of discharge observations, Mississippi River-Continued. vicksburg, miss.
[Results of 1858 taken from Report on the K lisslssippl Rivor, by Capt. A. A. Humphreys and Lleut. H. L. Abbot, 1861, p. 598, edition of 1876 . The gauge readings have been reduced to present engineer gatuge at Vleksburg by subtracting 1.3 feet from readings originally published by H. and A. Zero of present gauge is 66.04 feet above the Calro datum plane.]

Resulte of discharge observations, Mississippi River-Continued.
VICKSBURG, MISS.-ContInued.

Results of discharge observations, Mississippi River-Continued.
VICKSBURG, MISS.-Continued.

Date.	Gauge readlng.	Ares of cross section.	Depths.		WIdth.	Meanveloc-ity.persec-ond.ond.	Discharge per second.			Method.
			Mean.	Max mum.			River.	Bank.	Total.	
1858.	Fett.	Sg. ft.	Fect.	Feet.	Fect.	Feet.	Ou. feet.	Cu.feet.	Cu. jeet.	
2.	25.2 23.4					4.48 4.53	534, 628			Double fioats.
	22.6					4.54	520,0010.			Do.
	20.5					4.14	452,010			Do.
	20.0					4.09	443,000			गo.
11.	19.3					4.09	430, 000			Do.
13.	18.0					3.99 3.98	412, 0 (x)			Do.
	16.8					3.88 3.80	387,000)			Do.
	16.4					3.85	382,000			Do.
	15.9 15.6					3.90 302	383,000			Do.
	15.6 18.1					3.02 3.91	381,000			Do.
	16.6					3.97	3961,000			Do.
	17.1					4.03	407,000			Do.
	17.2					4.09	414,000			Do.
	17.3 17.2					4.02 3 3	408, 000			Do.
27.	16.7					3.85	394,000 385,000			Do.
	15.3					3.73	361,000			1o.
Oct.	14.8					3. 65	348, 000			1 D.
	13.1					3.54	323, 000			Do.
	12.7 12.4					3.65 3 34	321,000			Do.
	11.9					3.37	297, 000			Do.
	11.6					3.32	290,000			Do.
	11.2					3.34	289,000			Do.
	10.4 10.1					3.19 3.17	270,000 266,000			Do.
14....	9.8					3.09	257,000			D0.
	9.5					3.19	263,000		Do.
	9.2 7.4					3.14	257,000 233000			Do.
26.	7.3					3.06	236,000			Do.
Nov. 8.	14.0						354,000			D.
	16.4					4.07 4.68	405,000 474,000			Do.
11.	20.1					4.77	517,000			Do.
13.	23.4					5.09	594,000			Do.
	24.1 23.8					4.95 4.72	686,000			Do.
	23.8 22.8					4.72 4.59	556, 5000			Do.
	22.3					4.57	520,000			Do.
23.	20.3					4. 44	484,000			Do.
	19.8					4.24	457,000			Do.
	18.9					4.23 4.04	447,000 422,000			Do.
27...	17.9					4.04 4.05	422,000 417,000			Do.
30...	16.1					4.03	397,000			Do.
Dec. $1 \ldots$	15.8					3.75	367,000			Do.
	15.3					3.75	362, 000			Do.
	14.7 14.2					3.66 3.65	348,000 342,000			Do.
	13.4					3.56	327,000			Do.
	13.9					3.63	335,000			Do.
	14.5 15.6					3.70 4.11	350,000 400,000			Do.
	20.8					4.73	518, 000			Do.
15.	25.0					5.35	615, 000			Do.

[600 miles below Cairo.]

$\begin{gathered} \text { 1903. a } \\ \text { Mar. 31, a. m. } \end{gathered}$	51.38	208,000	88.2	141.7	2,389	7.44	1,532,000	675,000	1,606,000	Meter.
p.m.	51.35					7.47	1,539,000	675,000	1,614,000	Jouble float.
Apr 1.......	51.30	199,800	83.6	141.6	2,389	7.55	1,509,000	074,000	1,683,000	Meter.
2.	51.20	199,800	83.6	141.6	2,389	7.38	1,475,000	74,000	1,549,000	Do.
4.	50.85	203,500	85.2	141.5	2,389	7.30	1,486,000	b73,000	1,559,000	Do.
$\begin{gathered} 1904 . \\ \text { Apr. } 23 \end{gathered}$	46.65	205,700.	78.1	157.0	2,635	6.72	1,382,000			Do.

a Vicksburg United States engineer gainge, whose zero is 66.04 feet above the Calro datum plane. The dis. sharge section is 305 meters below the Refuge oll mill. Overbank discharge measured on right bank. Observationsand reduction under direation of Capt. Wm. B, Ladue, Corps of Engineers, senretary Mlisissippl River Commission. Reports Chiel of Engineers 1903 , supplement, page 116, and 1905, pag. 120. 1904 velocities are means of simultaneons observations with a liaskell and a Price meter.

- All overbank discharges deduced from messurement made on Apr. 2.

Results of discharge observations, Mississippi River-Continued.

 VICKSBURG, MISS.--Continued.[600 miles below Cairo.]

atero of U, 8. Englneer standard gauge is 46.16 feet above mean Gulf level. The datum line for comnputing datum areas was at 47.13 feet on this gauge. The discharge section ts the same as that used in 1904; it is 365 meters below the Refuge Oil Mill below Kleinston. Velocities were measured with Price meter No. 38.

- Interpolated.
- Discharge measured; over-bank discharge for other days derived from this.
d Observations and reductions made under direction of Capt. G. R. Lukesh, Corps of Engineers, U. 8. Army, secretary Mississippi River Commission. Vickshurg United States engineer galige; zero is 46.16 feat above mean Gulf level. The datum line for computing datum areas was taken at 40.65 feet on the gange. Price meter No. 28 was used. Overbank discharge was measured on ight bank on February 12. All overbank discharges were derived from thls measurement. The discharge section is at same place as that used In 190t-365 meters below the rofuge vil mill below kicinstua.

Results of discharge observations，Nississippi River－Continued．

VICKBBURG，MISS．－ContInued．

Date．				4． \rightarrow 믕 0 － 品岩 㗊㮍 A		ris	$\text { scolze7s } \Sigma_{7}$	
1907.6	Sq．ft．	Feet．	Ctu，ft．	Cu．ft．	Cu．ft．			
Feb，10，p．m．		8.03	1，668，009	11，288	1，079，297	Meter．．．．．．．．	11	36
11，a．m．．．	－7，140	7.87	1，580），021	12，500	1，502，521	Double floats．	10	36
11，p．m．		8.15	1，637， 438	13， 711	1，651， 149	Meter．．．．．．．．．	8	
12，a．m．．．	＋6，190	8.05	1，6eif， 172	13，711	1，1774， 88.3	．．．do．．．．．．．．	10	27
12，p．m．		8． 74	$1,707,500$ $1,540,040$	13,711 13,711	$1,721,311$ $1,833,751$	－Wouble flonts．	$\stackrel{9}{10}$	20
13，a．m．． 13，p．m．	－9，150	7． 78 8.54	$1,540,040$ $1,689,771$	13,711 13,711	$1,238,751$ $1,703,482$	Double floats． Meter．．．．．．．	10 9	20

－Observations and reductions made under direction of Capt．G．R．Linkesh，Corps of Engineers，U． 8. Army，secretary Mississippi River Commission．Vicksburg United States engincer gangei zero is 46.16 feet above mean（iulf level．The datum line for computing datum areas was taken at t！， 65 feet on the gauge．Price meter No． 28 was used．Overbank discharge was measured on right bank on February 12. All overbank discharges were derived from this measurement．The discharge section is at same place as that used $\ln 1904-365$ meters below the refuge oll mill below Kleinston．

WARRENTON，MISS．

［Tabulated results in Report of Chief of Engineers，1887，p．2343．Report of Chlef of Engineers，1889， p．2840．］
－The sections of 1884－5 are about one－half mile below the landing at Warrenton，Miss．Observations and reduction under the Secretary M．R．C．The gauge readings are those of the standard U．S．Engineer
 below vicksburg．

Results of discharge observations, Mississippi River - Continued.
WARREN'ION, MISS.--Continued.

aslough discharge, $3,002,000$ cubie reet.
bSlough disoharge, 4,236,000 cubic feet.
eslough discharge, $3,700,000$ cubic feet.
d Slough discharge, $6,640,000$ cuble feet.
e New section 200 feet above the old one.
, The observations of 1889 and 1890 made by Mississippi River Commission, fourth district officer, and reduction by the secretary. The section was about 2.800 feet below the landing at Warrenton and about 200 feet above the section of 1885 and oblique to it. Tabulation, Report Chief of Engingers, 1501, pp. 3512 and 3538.
H. Doc. 50, 61-1—-20*

Results of discharge observations, Mississippi River--Continued.
WARRENTON, MISS.-Continued.

Date.	Gauge reading	Area of cross section.	Depths.		Width.	Mean velocity per sec. ond.	Discharge per second.			Method.
			Mean.	Maxl. musn.			River.	Bank.	'T'otal.	
1889.	Feet.	Sg. 11.	Feet.	Feet.	Feel.	Feet.	Cu. feet.	Cu. Seet.	Cu. feet.	
Apr. 11.	28.2	135,600	40.8	73.8	3,325	4.60	631,000			Meter.
A 12.	27.9	133,400	40.2	73.6	3,310	4. 67	622, 000			Do.
13.	27.6	133,300	40.4	74.8	3,304	4.63	617,000			Do.
15.	27.3	133,500	40.5	74.8	3,294	4.55	608,1000			Do.
16.	28.8	132,500	40,3	74.8	3,285	4.52	a 599, 000			Do.
17.	26.2	130,300	39.7	74.3	3,278	4.58	590,000			Do.
18.	25.7	128,000	39.2	73.3	3,204	4.42	565, 000			Do.
19.	25.1	125, 100	38.5	72.7	3,250	4.44	556,000			Do.
20.	24.6	123, 300	38.1	71.6	3,23.4	4.31	632,000			Do.
22.	23.5	118,800	36.9	70.5	3,223	4,39	522, 000			Do.
23.	23.2	117,200	36.4	69.6	3,219	4.32	506,000			Do.
24.	23.0	116,200	36.2	69.0	3,208	4.41	512,000			Do.
25.	23.1	115,600	36. 0	69.4	3,208	4.44	513,000			Do.
26.	23.2	110,100	36.2	69.6	3, 211	4.30	506, 000			Do.
27.	23.6	118,900	36.9	70.7	3,221	4.44	628,000			1) 0.
May ${ }^{30}$	25.2	124, 600	38.5	71.7	3,239	4.68	582, 000			Do.
May 3.	25.8	127, 100	39.0	72.6	3,201	4.50	680,000)o.
4.	25.2	125, 300	38.6	72.0	3,246	4.58	- 673,000			[) 0
	23.2	116,600	36.2	69.5	3,221	4.41	514,000			Do.
	22.0	113, 400	35.6	68.2	3,186	4.31	489,000			Do.
	19.4	105, 100	33.7	66.1	3,113	4.13	434,000			1)0.
10.	18.4	100, 800	32.8	60.5	3,079	4.06	409,000			1).
11.	1.7 .6	98, 100	31.9	69.5	3,071	3,98	391, 000			1).
13.	16.2	94,400	31.4	58.8	3,002	3.94	372,000			Do.
14.	15.7	91,900	30.7	58.4	2,990	4.00	368,000			$1) 0$.
15.	15.2	90, 800	30.5	57.4	2,977	3.95	359,000			$1)$.
17.	15.0 14.9	89, 600	30.1	57.5	2, 977	4.00	358,000			$1) \mathrm{O}$
-17.	14.9	88,800	29.8	57.2	2,975	4.02	357,000			1)o.
$\cdots 18$.	14.9	88,900	29.8	57.5	2,975	4.02	357,000			[) 0.
20.	14.4	85, 400	28.8	65.0	-2,946	4.04	345,000			[).
22.	13.8	84, 800	28.7	56. 3	2, 050	4.01	340,070			Do.
22.	13.4	83,100	28.3	55.6	2, 035	3.93	326, 000			Do.
24.	13.2	82,200	28.0	54, 7	2,935	3.94	324, 0(N)			Do.
25.	13.2	81, 600	27.9	54.5	2,924	3.97	324, 000			Do.
27.	13.2	81,700	27.9	54.4	2,924	4.05	331 , (100			Do.
28.	13.3	81,300	27.8	54.4	2,921	4.02	327,000			Do.
28.	13.9	84, 100	28.5	54.8	2,947	4.04	340, 000			Do.
29. 31.	15.2	80, 600	29.1	55.4	2, 977	4.38	379,000			Do.
31.	18.8	95, 300	30.8	59.3	3,093	4.44	423,000			Do.
Mar. 4.	46.3	196, 6000	57.1	102. 5	3, 441	6. 28	1,234,000	2,000	1,236,000	Do.
	46.4	196, 300	67.0	102.0	3, 441	6. 29	1,234,000	2, 000	1,236,000	1 DO
	46.5	1964, 600	57.1	102.2	3, 441	6. 30	1,238,000	2,000	1,241,000	Do.
${ }^{7}$.	46.6	197, 400	57.4	104.0	3,411	6. 33	1,250,000	3,000	1,253,006	Jo.
$\text { Apr. } 11$	47.7	206, 100	60.0	109, 0	3, 441	6. 32	1,306,000	3,000	1,309,000	Do.
	47.9	207, 300	60.3	109.7	3,4.11	6.37	1,321,000	4,000	1,324,000	Do.

[608 milles below Calro.)

1895.b										
Aug. 2..	14.0	79,300	29.4	47.5	2,699	3.97	C 315, 000			Meter.
3 3.	14. 1	79,900	29.6	48.5	2,699	4.63	362,000			Do.
Oct. 26.	-4.7	38,800	19.6	31.0	1,977	2.50	c97,000			Do.
28.	-4.7	38, 710	19.6	30.0	1,977	2.63	102,000			Do.
28.	-4.9	38,300	19.4	30.5	1,974	2.57	c 88,000			Do.
1897. ${ }^{\text {d }}$										
Apr. 1...	49.35	230,000	61.2	93. 8	3,756	7.17	1,649,000	14,000	1,663,000	Do.
$2 . .$	49.35	223,100	59.4	93.5	3,750	7.32	1,632,000	14,000	1,646,000	Do.

[^38]
Results of discharge observations, Mississippi River-Continued.

WARRENTON, MISS.-Continued.

Date.	Gauge readIng.	$\begin{gathered} \text { Area of } \\ \text { cross } \\ \text { section. } \end{gathered}$	Depths.		WIdth.	$\begin{gathered} \text { Mean } \\ \text { veloc- } \\ \text { ity } \\ \text { per } \\ \text { sec- } \\ \text { ond. } \end{gathered}$	Discharge per second.			Method.
			Mean.	Maxi11111 m			River.	Bank.	Total.	
$\begin{gathered} \begin{array}{c} 1897 . \\ \text { Apr. } \\ 3 \end{array} \end{gathered}$	Feet.	Sq. ft.	Feet.	Feet.	Feet.	Feet.	Cu. feet	ou. feet.$14,000$	Cu. feet. 1,609,000	Meter.
	40. 2.5	22i, 100	69.9	93.0	8,756	7.09	1,603,000			
	49.25	227,400	60.5	93.8	3,756	6. 74	1,533,000	[$\begin{aligned} & 14,000 \\ & 64 ; 000 \\ & 10,000\end{aligned}$	1,547,000	
	49.30	2228,500	60.8		3,756	6.48	1,484,000		1,488,000	Double Eats.
7.	49.35	229,600	61.1	93.6	3,756	6.90	1,583,000	14,000	1,698,000	Meter.
8.	49.60	233,400	62.1	02.8	3,756	7. 04	1,6.43,000	16,000	1,659.000	Do.
	49.85	238,200	63.4	01.7	3,756	7.00	1,067,000	17,000	1,685,000	Do.
12.	50.90	241,800	64.4	93.8	3,756	7.04	1,701,000	24,000	1,725,000	$1{ }^{1}$
13.	51.30	237,800	63.3	93.5	3,756	7.23	1,720,000	27,000	1,747,000	Do.
	51. 55	a243,300	6.4 .8		3,756	6. 87	1,672,000	c29,000	1,700,000	Iouble floats.
15.	51. 95	248,800	6f. 2	93.9	3,756	7.02	1,746,000	31,000	1,777,000	Meter.
$1897 . d$ Dee. $6 . .$.	2.4		25. 7	42.9	3,310	1.93	164,000			Do
	2.9	87,400	26.4	42.5	3,313	1.96	171,000			Do.
	2.9	86,400	20.1	42.4	3,313	1.95	168,000			Do.
	2.9	80,700	26.2	41.8	3,313	1.98	172,000			Double float.
	3.0	87,400	204	42.7	3,322	1. 1.88	173,000			Do.
	3.0	87, 100	26.3	42.6	3,322	1. 87	163, 000			${ }^{\text {Do. }}$
	3.0	87. 8100	26.4	42.6	3,322	1. 92	108,000			Meter.
	3.0	87,100	${ }^{26.3}$	42.6	3,322	1.94 2.05	169,000 179,000			Do.
	3.2 3.2	87,500 87,100	$\stackrel{-6.4}{26.3}$	42.6	3,324	2. 05	178, 000			Do.
$\begin{array}{r} 1898 . \\ \text { Apr. } 24 \ldots \end{array}$	49.40	254,600	60.4	89.1	4,217	5. 65				
25.	49. 40	25,6,900	60.9		4,217	5.36	1,377,000			Double float.
25	49. 40	250, 400	60.9	87.6	4,217	5.66	1, 456,000			Mfeter.

a Interpolated from preceding and following days.
b Parlly observed.
c Observed.
d Vleksburg (inited States engineer gauge at Kleinston, Miss., whose zero is 66.04 feet above the Cairo datum. The dlscharge section is near present landing below Warrenton, Miss, at same place as in former years, about 607.8 miles below Catro on the lnch-to-mile map. January, 1898 , right bank end was swung downstream 15° to make the section more nearly normal to the direction of the flow.

WATERPROOF CUT-OFF.

(Waterproof, La., is 663 miles below Cairo. The discharges through the old channel were observed about the same times, and computed to be 370,465 cuble feet per second in May and 231,174 cubic feet per second in July. Report Chlef of Engineeis, 1891, p. 3488.]

Date.	Gauge reading.	Area of cross section.	Depths.		Width	Mean	Discharge per second.			Method.
			Mean.	Maximum.		$\begin{aligned} & \text { sec. } \\ & \text { ond. } \end{aligned}$	River.	Bank.	Total.	
$\begin{gathered} 1884 . \\ \text { May } 25 \ldots \ldots . . \end{gathered}$	$\begin{gathered} \text { Feet. } \\ a+0.7 \end{gathered}$	$S q \cdot \frac{f \ell .}{727}$	Feet. 51.9	fiect. 73.0	Feet. 1,401	$\left\|\begin{array}{c} \text { Feet. } \\ 06.46 \end{array}\right\|$	$\begin{aligned} & \text { Cu. feet. } \\ & \text { 4n0,000 } \\ & \text { c } 370,000 \end{aligned}$	cu.feet.	Cu.feet.	Meter.
Total . .							839,000	
July 23.......	21.0	752	59.1	110.0	1,273	d4.05	301,000 c 231,000	……	Double float.
Total . .							535,000	\cdots	-

[^39]
Results of discharge observations, Mississippi River-Continued.

NATCHEZ, MISS.
[Taken from Humphreys and Abbot's Report on the Mississippi River, page 597, edition of 1876.]

Date.		Gauge reading.	Ares of cross section.	Depths.		WIdth.	Mean velocily per secon	Discharge per second.	Method.	
		Mean.		Maxlmum.						
Jan.	1858.a		Feet.	Sq.ft.	Feet.	Fect.	Feet.	Feet.	Cu. feet.	
	8.	37.9 37.5					4. 79 4.71	845,000 836,000	Double floats	
	11.	37.4					4.61	836,000 826,00	Do.	
	12	37.5					4.73	840,000	Do.	
	13.	38.2					4.88	879,000	Do.	
	18.	40.6					4. 80	915,000	Do.	
	20.	40.4					4.74 4 4.69	901, 000	Do.	
	21.	40.3 40.1					4.69 4.72	889,000	Do.	
	23.	49.9 39					4. 62 4.	$\begin{array}{r}889,000 \\ \hline 8\end{array}$	Do.	
	28.	39.6					4.69	875,000	Do.	
	29.	39.6					4.67	871,000	Do.	
Feb.	1.	$\begin{array}{r}39.6 \\ 39.9 \\ \hline\end{array}$					4.69 4.77	874,000 895,000	Do.	
		39.9					4.69	881,000	Do.	
	5.	39.8					4.61	864,000	Do.	
	6.	39.4					4.60	342,000	Do.	
	8.	38.7 38 3					4.52 4.47	826,000 809,000	Do.	
	10.	37.9					4. 48 4.	803,000	Do.	
	11.	37.6					4. 46	793,000	Do.	
	13.	37.6					4.54	795,000	Do.	
	16.	36.9 36.7					4. 41 4 4	771,000	Do.	
	18.	36.3					4.37	754,000	Do.	
	19.	36.1					4. 39	754,000	Do.	
		35.6					4.37	741,000	Do.	
	1890.									
Mar.	$\begin{aligned} & \text { 17, a. m. } \\ & \text { 17, p. m. } \end{aligned}$	46.6	147, 100	69.8	118.0	2,108	9. 96	$\begin{aligned} & 1,376,000 \\ & 1,392,000 \end{aligned}$	Meter. Do.	
Mar.	1891.b									
	24.	46.1 46.1	156,100 155,800	73.7 73.6	105.3 105.8 1	2,117	9. 21 9.66	$1,437,000$ $1,506,000$	Do.	
	26.	46.2	155, 400	73.3	107.2	2,121	8.83	1,372,000	Do.	
	27.	46.2	156,400	73.8	106.7	2,119	8.94	$1,399,000$	Do.	
	28.	46.2	157, 700	74.4	111.8	2,119	8. 83	1, 393,000	Do.	
	${ }_{30}^{29}$	46.2 46.2	155,900 156,600	73.5 73.8	110.9 111.2	2,122 2,123	8.78 9 9	$1,365,000$ $1,525,000$	Do.	
	31.	46.3	158, 500	74.4	109.4	2,130	9.46	1, 499,000	Do.	
Apr.	1.	46.4	154,700	72.6	116. 6	2,130	8.93	1, 382,000	Do.	
	2.	46.4	151.500	71.1	109.7	2,130	9.63	1,459,000	Do.	
	3.	46.4	148,200	69.6 70.8	106.2	2,130 2,135	9.13	1,353,000	Do.	
		46. 4	152,900	71.6	109.5	2,135	8.93	1,365,000	Do.	
	7	46.4	152,600	71.5	115.4	2,135	8.91	1, 359,000	Do.	
	8.	46.4	156,600	73.4	116.5	2,135	9.02	1, 413,000	Do.	
	9.	46. 4	148,700	69.7	118.4	2,135	9.02	1,341,000	Do.	
	13.	46.4	145, 500	68.3	119.0	2,130	8.33	1,358,000	Do.	
	14.	46.4	147,000	69.2	118.7	2,124	8.95	1,316,000	Do.	
	15.	46.4	143, 300	67.6	118.9	2,119	9.22	1,321,000	Jo.	
		46.3	142,900	67.4	118.9	2,119	9.09	1, 299,000	Do.	
May	$\begin{gathered} 1882 . c \\ 16 d . . . \end{gathered}$	47.0	151, 100	69.5	119.3	2,173	9.15	1,383,000	Da.	
	17 d	47.1	150,300	69.2	120.2	2,173	9.10	1,368,000	Do.	
	19 d	47.2	153,100	70.5	120.3	2,173	8.93	1,367,000	Do.	
	20.	47.2	154,100	70.9	123.8	2,173	9.21	1,4i9,000	Do.	
	21.	47.1	151,500	69.7	125.0	2,173	9.26	1,402, 000	Do.	
	23.	47.1 47.1	154,200 153,100	71.0 70.5	1198	2,173 2,173	9.18 9.11	$1,416,000$ $1,395,000$	Do.	
	25.	47.1 47.0	163,100 151,300	70.5 69.6	128.1 121.4 1	2,173 2,173	9.11 9.06 9.06	$1,395,000$ $1,371,000$	Do.	
	27.	47.0	165, 200	71.4	119.0	2,173	8.90	1,381,000	Do.	
	28.	47.1	150,600	69.3	118.6	2, 174	8. 70	1,310,000	Do.	
	30.	47.1	152,800 151,000	70.3 69.4	122.8 124.3	2,174 2,175	8.76 9.02	$1,339,000$ $1,363,000$	Do.	

a 4.7 feet have been subtracted from gauge readings of 1858 as originally published to reduce them to present United States engineer gange at Natchez, whose zero is 36.89 feet above the Cairo datum plane.
b Observations by fourth district officer and reduction by Secretary Mississippi River Commission. Tabulation of 1890, Report Chief of Engineers, 1891, p. 3538; of 1891, Chlef of Engineers 1892, p. 3136; and of 1893, Chlef of Engineers, 1893, p. 3690.
: Reports on observations, Chief of Engineers, 1892, p. 3125, and 1893, p. 3679.

- Cbservatlons unrellable.

Results of discharge observations, Mississippi River-Continued.
NATCHEZ, MISS.--Continued.

Date.	Gauge readIng.	Area of cross seotion.	Depths.		Wldth.	Mean velocIty per second.	Discharge per second.	Method.
			Moan.	Maximum.				
1892.	Feet.	$s q . f t$.	Feet.	Feet,	F'eet.	Feet.	Cu. feet,	
June 2.....	47.4	154,000	70.8	121.0	2, 176	8. 99	1,385, 000	Meter.
3.	47.4	158, 800	72.9	128.4	2, 177	8.83	$1,403,0003$	Do.
6.	47.4	153, 400	70.5	119.6	2,177	9. 18	1, 408,000	Do.
7.	47.4	152,900	70.2	117.6	2, 177	8.94	1,367,000	Do.
14.	47.6	153, 200	70.3	121.3	2, 178	8. 68	1, 315,000	10.
15.	47.7	158,600	72.8	123.5	2,178	8. 46	1,341,000	Do.
16.	47.7	160,600	73.7	124.0	2,178	8. 48	1,362, 000	Do.
17.	47.8	156,800	72.0	121.6	2, 178	8. 49	1, 331, 000	Do.
18.	47.9	155,700	71.5	120.9	2, 178	8. 41	1,309,000	Do.
19.	48.0	157,000	72.1	122. 3	2, 178	8. 11	1,273,000	Do.
20.	48. 0	157, 800	72.5	123. 1	2, 178	8. 39	1, 324,000	Do.
21.	48.1	152,300	69.9	120.2	2,179	8. 68	1,322,000	Do.
22.	48.1	156,300	71.7	122.2	2, 179	8. 68	1,357, 000	Do.
23.	48.1	158, 400	72.7	122.5	2, 179	8.14	1,289, 000	Do.
24.	48.1	159,900	73. 4	122.3	2, 179	8.22	1,315,000	Do.
25.	48.1	161,900	74.3	123.1	2,179	8. 12	1,314,000	Do.
27.	48.1	165,200	75.8	122.8	2,179	8.07	1,333,000	Do.
28.	48.0	167,800	77.0	124.6	2,179	7.94	1,332,000	Do.
29.	47.9	170,600	78.3	123.6	2,178	7.80	1,330,000	Do.
30.	47. 7	169, 300	77.7	122. 1	2,178	7. 63	1,274,000	Do.

- Observal ons unreliable.

RED RIVER LANDING, LA.

${ }^{a}$ Delta Survey gauge read 46.3 feet. See Humphreys \& Abbot's Report on the Mississippi River, 1861, edition of $1876, \mathrm{pp} .381$ and 520
b Observations and reduction 1881-82 by Secretary M. R. C. Section was about 200 feet below the warehouse. Report on work, Report Chiel of EngIneers 1884, p. 2636; tabulation, ibid. p. 2642. All gauge readings at this station were taken on the United States engineer standard gauge whose zero is 23.85 feet above the Calro datum plane.

Results of discharge observations, Mississippi River-Continued.
RED RIVER LANDING, LA.-Continued.

Date.		Gange read. ing.	Area of cross section.	Depths.		WIdth.	Mean velocity per second.	Discharge per second.			Method.	
		Mean		Maxinum	River.			Bank.	Total.			
1882.			Feet.	Sq. $f t$.	Feet.	Feet.	Feet.	Fret.	Cu, ft.	Cu.ft.	Cu.ft.	
Feb.	11.	41.6	194,300	51.4	70.0	3,783	5. 61	1,090,000			Double floats.	
	14.	42.1	196,400	51.8	71.0	3,788	5.92	1,163,000			Do.	
	15.	42.2	197, 100	52.2	70.5	3,780	5.90	1,162,000			Do.	
	17.	42.5	200,900	53.0	71.4	3,785	5.88	1,182,000			Do.	
		42.6	204, 100	53.9	71.8	3,786	5.75	1,173,000			Double and rod tloats.	
	21.	43.2	207,200	54.7	73. 0	3,789	5.86	1,213,000			Double floats.	
	22.	43.3	209, 800	65.4	72.5	3,791	5. 70	1,197,000			Do.	
	23.	43.4	209,900	55.3	73.4	3,793	b. 84	1,227,000			Do.	
	24.	43.6	209, 400	54.6	71. 5	3,831	5.77	1,207,000			Do.	
	$27 .$	44.1	214,000	55.5	72.0	3,853	6. 74	1, 228,000			Do.	
	$28 .$	44.3	217, 300	56.4	72.0	3,853	5. 69	1,237,000			Do.	
Mar.	2.	44.8	218,900-	56.0	73.5	3,909	5.63	1,232,000			Meter.	
	3.	45.1	219, 200	56.2	74.0	3,899	5.69	1,247,000			Do.	
		46.0	228, 400	58.4	76.5	3,914	5. 82	1,330,000			Double floats.	
	8.	46.2	229,600	58.7	76.0	3,914	6. 81	1,335,000			Do.	
	9.	48.5	230,100	58.8	75.3	3, 914	5.91	1,361,000			Do.	
	10.	46.8	230,200	58.8	76.8	3,914	6.07	1,397,000			Do.	
	11.	46.9	231,000	59.2	77.2	3,904	6.94	1,371,000			Do.	
	13.	47.2	233, 200	59.7	77.5	3,904	6.04	1,403,000			Do.	
	14.	47.3	233, 300	59.8	78.5	3,904	6.00	1, 407,000			1).	
	15.	47.4	233, 600	59.6	78.6	3,918	6.28	1,467,000			Do.	
	16.	47.5	237,600	60.6	79.0	3,918	6.08	1,444,000			Do.	
	17.	47.6	237,800	60.7	79.0	3,918	6.17	1,468,000			10.	
	18.	47.6	234, 100	59.7	79,0	3,918	6.20	1,451,000			Do.	
	20.	47.8	234, 600	59.9	79.0	3,918	6.00	1,408,000			Do.	
	23.	48.1	231,800	59.2	77,0	3,918	6.09	1,411,000			1 O.	
	24.	48.2	234,300	59.8	78.0	3,918	0.29	1,474,000			110.	
	25.	48.3	231,000	59.0	77.5	3,918	0.36	1,469,000			1 n .	
	27.	48.5	234, 500	59.8	79.0	3,918	0. 22	1,459,000			Do.	
	28.	48.4	237, 500	60.9	80.5	3,899	6.16	1, 534,000			Do.	
	29.	48.4	237, 400	60.9	80.2	3,899	6. 48	1,539,000			1).	
	30.	48.4	234, 200	60.1	80.0	3,899	6.43	1, 505,000			$1) 0$.	
	31.	48.3	235, 100	60.4	80.5	3,899	6.78	1,595,000			10.	
Apr.		48.1	236,200	60.6	78.0	3,899	6.45	1,523,000			Do.	
	4	48.0	235, 400	60.4	77.0	3,899	0.06	1,427,000			Do.	
	5	47.8	233, 700	59.9	77.0	3,899	0.06	1,416,000			Do.	
		47.7	234,400	60.1	77.5	3,899	6. 34	1,485,000			Do.	
		47.6	233, 400	59.9	79.0	3,899	6. 26	1,460,000			Do.	
	8.	47.4	236,200	60.6	78. 5	3,899	5.98	1, 412,000			Do.	
	10.	47.0	237, 100	61.2	79.5	3,876	6.01	1,426,000			Do.	
	12.	47.0	237, 200	61.2	78.7	3,876	6.33	1, 502,000			Do.	
	13.	46.9	240,200	62.0	79.5	3,876	0.34	1,522,000			Do.	
	14.	46.8	242,200	62.5	80.0	3,876	6.07	1,471,000			Do.	
	15.	46.6	244, 600	83.1	79.8	3,876	5. 93	1,451,000			Do.	
	17.	46.3	245,300	63.3	79.8	3,876	5. 55	1,361,000			10.	
	18.	46.1	243, 300	62.8	78.6	3,876	5. 64	1,372,000			1).	
	19.	46.0	244, 800	63.2	79.7	3,876	5.51	1,348,000			Ho.	
	20.	45.9	247, 100	83.8	79.2	3,876	6. 61	1,363,000			Do.	
	21.	45.8	247, 300	63.9	80.0	3,871	5. 62	1,364,000			Do.	
	22.	45.8	248, 400	64.2	79.5	3,871	5. 48	1,362,000			Do.	
	24.	45.6	247, 500	63.9	78.7	3,871	5. 52	1,365,000			Do.	
	25.	45.5	251, 400	64.9	79.5	3,871	5.21	1,309,000			Do.	
	26.	45.4	250, 200	84.6	78.6	3,871	5. 27	$1,317,000$			Do.	
	27.	45.3	246,000	63.6	79.4	3,871	5. 35	1,317,000			Do.	
	28.	45.1	245, 400	63.4	79.3	3,871	6. 36	1,315, 000			I) 0.	
	29.	45.0	244, 600	63.2	78.7	3,871	6.17	1,265, 000			Do.	
May		44.7	239,600	61.9	79.0	3,871	6. 20	1,247, 000			M-lerand doubie floats.	
		44.6	239,200	61.8	79.0	3,871	b. 12	1,235,000			Jo ible floats.	
	3.	44.3	237, 600	61.4	79.0	3,871	5.08	1,208,000			Do.	
	4.	44.2	238, 700	61.7	77.0	3,871	6. 40	1,289,000.			Do.	
		44.1	238,400	61.6	77.2	3,871	5. 16	1,230,000			Do.	
		44.0	238,200	61.5	78,0	3,871	6. 22	1,243,000			Do.	
	8.	43.9	238, 200	61.5	78.0	3,871	6. 04	1,202,000			Do.	
	10.	43.6	237, 400	61.3	77.5	3,871	4.90	1,164,000			Do.	
	11.	43.3	236, 500	62.7	76.3	3,774	4.84	1, 145, 000			Do.	
	12.	43.1	235,600	62.6	76.8	3,766	5.31	1,251,000			Mrter.	
	13.	42.9 42.6	234,200 236,500	62.2 62.8	76.3 77	3,766 3,763	4.97 5.18	1,164,000			Do.	
	15.	42.6 42.5	236,500 235,800	62.8 62.6	77.5 78.0	3,763 3,763	5.16 5.01	$1,219,000$ $1,181,000$			Do.	
	17.	42.4	235,600	62.6	77.0	3,761	5. 06 5. 06	1,192,000			Do.	
	18.	42.2	236,600	62.9	76.5	3,761	5. 12	1,210,000			Do.	

Results of discharge observations, Mississippi River-Continued.
RED RIVER LANDING, LA.…Continued.

Results of discharge observations, Mississippi River-Continued.
red river landing, lat--Continued.

a Ropport on observations, and tabulation, Report Chlef of Englneers 1887, pp. 2846 and 2852. Section 100 feet below that of 1881-82. This section was used with only a small change untll 1862 , inclusive. Observations and reduction under secretary Mississippl River Commission. Observation March 21 by "Patrol" party under secretary Missistippl River Commision. Results In Roport Chiel of Engineers 1885, p. 2850

Results of discharge observations, Mississippi River-Continued.
RED RIVER LANDING, LA.-Continued.

Date.	Gauge reading.	Area of cross section.	Depths.		Width.	Meanveloc-itypersec-ond.	Discharge per second.			Method.
			Mean.	Max1mum			River.	Bank.	Total.	
1884.	Fect.	Sq.fl.	Fret.	Fect.	Feet.	Feet.	Cu.ft.	Cu.ft.	Cu.ft.	
Oct. 25.	15.4	126, 400	35.0	52.0	3,615	2.92	369, 000			Metar.
28.	15.2	127, 000	35.2	52.2	3,613	2.87	3155,000			Do.
30.	14. 6	125,500	34.8	51.5	3,610	2. 78	348,000			Do.
Nov 31.	14.2	124, 100	34.4	50. 5	3, 604	2.84	353,000			Do.
Nov. 1.	14.0	128, 200	35.6	52.1	3,605	2.80	359,000			Do.
4	13.8	126,500	35.1	51.2	3,604	2.70	353, 0100			Do.
5.	13.9	124, 800	34.6	51.9	3, 604	2.75	343, 000			Do.
6.	13.9	124,800	34. 6	50.9	3, 605	2. 76	344,000			Do.
7.	13.8	121,900	33.8	43.0	3, 605	2.75	33i, 040			Do.
8.	13.7	123, 000	34.1	50.2	3,605	2.71	333, 0190			Do.
10.	13.4	121, 100	33.6	50.2	3,599	2.66	323, 000			Do.
11.	13.1	118, 800	33. 0	48.1	3,600	2.67	317,000			Do.
12.	12.8	117, 400	32.7	48.0	3,596	2. 72	320, 000			Do.
13.	12.4	115, 400	32.1	47.2	3,590	2.62	303, 000			Do.
14.	12.0	113, 900	31.8	47.1	3,585	2. 64	301, 000			Do.
15.	11.5	113, 300	31.6	47.5	3,584	2. 55	289,000			Do,
17	10.6	110,900	31.0	46.0	3,578	2.61	289, 000			Do.
18.	10. 2	108, 300	30.3	44.5	3,669	2.61	282,000			Do.
19.	9.7	107,600	30.2	45. 0	3,569	2. 43	201,000			Do.
20.	9.3	104, 000	29.3	44.0	3,587	2. 49	260, 000			Do.
21	9.0	103, 300	29.0	44.2	3,566	2.50	259,000			Do.
24.	8.4	101, 300	28. 4	43.6	3, 663	2.43	247,000			Do.
25	8.2	100, 400	28.2	43.0	3,561	2. 38	239, $\times 10$			Do.
26.	8.0	193,000	27.8	42.5	3,560	2. 33	230,000			1).
28.	7.9	100,000	28.1	42.5	3, 559	2.25	225,000			Do.
29	7.8	97,600	27.4	40.3	3,659	2.35	229,000			Do.
Dee. $\begin{array}{r}1 \\ 2 \\ 3 \\ 4 \\ 6 \\ 8 \\ 9 \\ 10 \\ 12 \\ 13 \\ 16 \\ 19 \\ 20 \\ 22 \\ 23 \\ 24 \\ 26 \\ 30\end{array}$	7.5	98, 800	27.8	41.9	3,555	2. 40	237,000			Do.
	7.5	98,600	27.7	42. 0	3,556	2. 38	235, 000			Do.
	7.7	98,400	27.7	42.2	3,558	2. 36	232,000			Do.
	8. 1	101, 600	28.5	43.0	3,560	2. 50	254,000			Do.
	9.6	105, 200	29.4	-44.0	3, 574	2. 44	257,000			Do. ${ }^{\text {D }}$
	10.0	107, 100	29.9	45.5	3,578	2. 46	264,000			Do.
	10.0	107,000	29.9	45.1	3, 578	2. 42	259, 000			Do.
	9.8	105, 700	29.5	45.2	3, 578	2. 47	262, 000			Do.
	9.4	103, 500	28.9	45.0	3,576	2. 48	256, 000			Do.
	8.7	102, 400	28.6'	44.6	3,574	2.34	239,000			Do.
	8.0	100, 200	28.2	44.0	3,558	2.34	234,000			Do.
	8.8	102,000	28.6	44. 0	3,569	2. 46	251,000			Do.
	10.0	107, 200	29.9	45.5	3,576	2.72	291,000			Do.
	13.2	118, 100	32.8	47.0	3,605	2.81	332,000			Do.
	14.4	122,000	33.8	49.5	3,611	2. 70	336, 000			Do.
	15.2	125, 800	34.8	48.4	3,617	2. 88	362,000			Do.
	16. 0	128, 300	35.4	51.2	3, 625	2, 73	350, 000			Do.
	18.4	130,700	37.5	52.5	3, 643	3.08	421,000			Do.
	19.6	141,200	38.7	55.0	3,646	3.18	449,000			Do
1885.										
Jan. 2.	21.2	145,900	39.9	57.0	3,660	3,32	484,000			Do.
3.	22.9	153, 700	41.9	68.0	3,667	3. 40	522,000			Do.
7.	31.4	196,700	52.4	69.5	3,758					
8.	32.8	202, 200	53.7	73.0	3,761	4. 09	826, 000			Do.
8.	34. 1	204, 400	54.2	75.0	3,770	4. 07	832,000			Do.
10.	35.1	209, 700	55.6	75.1	3,772	4.27	896, 000			Do.
12.	36.6	217, 100	57.5	77.0	3,778					
13.	37.2	218, 200	57.7	77.0	3,781	4. 45	971,000			Do.
16.	38.8	227,300	60.0	81.0	3,790					
17.	39.1	225, 700	59.6	80.0	3,791	4. 64	1,048,000			Do.
19.	39.7	224, 200	59.1	79.5	3,792	4. 78	1,073,000			Do.
21.	40.2	226, 700	69.8	81.0	3,793	4.86	1,101,000			Do.
22.	40.5	228,200	60.1	80.5	3,794	4.95	1,130,0n0			Do.
26.	41.5	229, 300	60.1	82.5	3,815	4.88	1,120,000			Do.
27.	41.7	232,800	61.0	82.0	3,817	487	1,134,000			Do.
29.	41.8	228, 700	59.9	79.0	3,819	4. 93	1,127,000			Do.
Fe 30.	41.9	230, 600	60.4	79.2	3,819	5.08	1,171,000			- Do.
Feb.	42.1	228, 600	59.8	87.0	3,821	4. 95	1,132,000			Do.
	42.1	232, 500	60.8	85.5	3,821	5.04	1,171,000			Do.
	42.1	236, 700	61.9	85.5	3,822	4.95	1,173, 010			Do.
	42.1	232, 200	60.8	87.0	3,822	4.90	1,137,000			Do.
7.	42.0	2:2, 300	60.8	84.5	3,822	4.87	1,130,000			Do.
9.	41.6	229,900	60.2	84.6	3,818					Do.
10.	41.4	235, 300	61.7	92.0	3,816	4.73	1,113,000			Do.
	41.0	229, 000	60.2	89.0	3,804	4.56	-1,043,000			Do.
12...	40.6	229, 600	60.4	87.0	3,800	4.59	1,053,000			Do.
	38.8	223, 600	59.0	86.0	3,792	4.38	979,000			Do.

Results of discharge observations, Mississippi River-Continued.
RED RIVER I,ANDING, LA.-Continued.

Date.		Gauge readIng.	Area of cross section.	Depths.		Width.	Meanveloc-itypersec-ond.	Discharge per second.			Method.	
		Mean.		Maximum	River.			Bank.	Total.			
Feb. 1885.			Fert.	Sq. ft.	Feet.	Feet.	Feet.	Feet.	Cu.ft.	Cu. ft.	Cu.ft.	
		33.0	223, 000	58.8.	86.5	3,792	4.23	943,000			Meter.	
	17	38.0	220, 500	58.2	87,0	3,788	4.37	964,000			Do.	
	19	37.9	212, 300	56.0	86.0	3,788	4.17	886,000			Do.	
	20.	37.7	216,500	57.2	84.5	3,787	4.09	884,000			Do.	
	21	37.4	215,400	56.9	84.0	3,786	4.04	871,000			Do.	
	24	37.0	212, 300	56.1	86. 5	3,784	4.10	870,000			Do.	
	25	36.9	212,500	56.2	84.0	3,782	4.06	863,000			Do.	
	27.	36.1 35.5	209,800 207,300	55.6 55.0	83.1 80.9	3,774	3.88 3.83	815,000 793,000			Do.	
Mar.	2.	34.1	201, 100	53.4	81.1	3,769	3.62	729,000			Do.	
	3.	33.2	198,400	52.7	79.5	3,767	3.56	705,000			Do.	
	5.	31.5	190, 500	50.6	79.1	3,763	3. 48	663,000			Do.	
	6.	30.6	189, 400	50.4	79.0	3,759	3.37	638,000			Do.	
	7.	30.0	185, 800	49.5	77.0	3,756	3.44	638,000			Do.	
	9.	29.0	179, 200	47.8	75.0	3,753	3.44	617,000			10.	
	11.	28.6	178,600	47.7	78.0	3,741	3.50	625, 000			Jo.	
	13.	28.9	176, 200	47.1	77.5	3,743	3.52	621,000			Do.	
	14.	20.2	179, 700	48.0	74.1	3,748	3.47	623,000			Do.	
	18.	31.5	189, 900	50.4	76.5	3,768	3.77	715,000			Do.	
	19.	32.0	195, 600	51.8	79.0	3,771	3.80	743, 000			Do.	
	20.	32.4	198,000	52.5	79.0	3,771	3.83	758,000			Do.	
	21.	33.1	200, 300	53.1	80.5	3,772	3.84	769,000			Do.	
	23.	34.0	202, 300	53.6	82.5	3,774	3.85	778,000			Do.	
	24.	34.3	203, 300	53.8	84.1	3,775	4.08	829,000			Do.	
	30.	35.4	204,900	54.2	84.5	3,777	3.93	806,000			Do.	
$1889 . a$												
Jan.	10..	19.5	112, 200	29.7	50.2	3,780	3. 84	431,000			Do.	
	11.	19.4	111.900	29.6	49.5	3,780	3. 95	442,000			Do.	
	12.	19. 2	113, 800	30.1	53.0	3,775	3. 79	431,000			Do.	
	14.	18.9	114, 100	30.3	52.6	3,770	3.85	439,000			Do.	
	16.	19.9	116, 400	30.8	52.4	3,780	3.71	432,000			Do	
	18.	22.3	130,400	34.4	56. 0	3,790	4.15	541,000			Do.	
	19.	23.6	136, 700	36.0	58. 0	3,795	4. 38	599,000			Do.	
	27.	31.8	170,100	44.2	66.8	3,852	4.69	787,000			Do.	
	28.	32.3	171, 600	44.5	68.1	3, 857	4.76	817,000			Do.	
	29.	32.6	172,400	44.6	66.8	3,865	4.7\%	823,000			Do.	
	30.	32.8	176, 100	45.5	70.2	3,870	4. 69	826,000			Do.	
Feb.		33.2	175,000	45.1	69.8	3,878	4.36	762,000			Do.	
	2.	33.1	178,900	46.2	70.2	3,875	4.52	809,000			Do.	
	6.	33.0	173, 300	44.7	$73: 8$	3,874	4.50	779,000			Do.	
	7.	33.1	170,600	44.0	72.8	3,875	4.33	739,000			Do.	
	9.	33.3	175, 200	45.2	69.6	3,878	4.31	756,000			Do.	
	13.	33.5	177,800	45.8	70.4	3,881	4.30	764,000			Do.	
	14.	33.4	176,400	45.5	70.5	3,879	4. 34	765,000			Do.	
	16.	32.8	176,700	45.7	70.1	3,865	4.23	748,000			Do.	
	18.	31.6	174,700	45.3	69.8	3,853	4.02	702,000			Do.	
	20.	29.9	166,200	43.3	66.5	3,839	3. 94	655,000			Do.	
	21.	29.0	161,900	42.2	65.4	3,834	3.80	616,000			Do.	
	23.	27.0	155,100	40.6	64.9	3,819	3. 60	558, 000			Do,	
	25.	25.3	148,200	38.9	63.1	3,812	3.82	666,000			Do.	
	23.	26.6	152,200	39.8	64,1	3,820	3.99	608,000			Do.	
Mar.	4.	31.2	170, 100	44.2	68.6	3,850	4.13	702,000			Do.	
		31.8	173,700	45.0	69.8	3,860	4.14	718,000			Do.	
		32.3	176, 100	45.6	70.5	3,803	4.25	748,000			Do.	
		33.1	178, 900	46.1	70.7	3,877	4.26	762,000			Do.	
	9.	33.4	181,300	46.8	71.8	3,877	4.16	754,000			Do.	
	13.	31.0	183, 700	47.2	72.4	3,888	4.35	798,000			Do.	
	14.	33.9	180, 500	46.4	72.3	3,888	4.22	762,000			Do.	
	18.	32.5	173, 200	44.8	68.9	3, 862	4.13	715, 000			Do.	
	21.	31.5	172,400	44.8	68.3	3,851	3.99	688,000			Do.	
	23.	30.5	169, 000	44.0	68.6	3;839	3.91	660, 000			Do.	
	25.	29.6	165, 300	43.1	68.3	3,838	3.88	641, 000			Do.	
	28.	28.3	156, 500	40.9	65.6	3, 827	3. 94	616,000			Do.	
	30.	28.0	154, 700	40.5	63.8	3, 824	1.00	618, 000			Do.	
Apr.	3.	29.9	163, 400	42.5	67.0	3,842	4.18	682,000			Do.	
		30.5	165, 600	43. 0	66.3	3,848	4.12	682,000			Do.	
		30.6	166, 100	43.2	67.3	3,849	4.08	678, 000			Do.	
	8.	30.4	165,300	42.9	67.3	3,849	4.08	675, 000			Do.	
	10.	29.9	164,600	42.8	67.7	3,847	4.02	662, 000			Do.	

[^40] p. 3516 . Observations 1889 to 1893 taken under Mississippi Biver Commission fourth district officer. Keduction in secretary's office.

Results of discharge observations, Mississippi River-Continued.
red river landing, La.-Continued.

Date.	Gruge reading.	Area of cross section.	Depths.		Width.	Mean velocity per second.	Discharge per second.			Method.
			Mean	Maxlmum			River.	Bank.	Total.	
1889.	Ficet.	$s q . f t$.	Fiel.	Fect.	Feet.	Fret.	Cu.ft.	Cu.ft.	Cu. 11.	
Apr. 11.	29.6	162,600	42.3	67.7	3,846	4.10	666,000			Meter.
15.	28.8	159,300	41.5	67.5	3,838	4.00	638,000			Do.
17.	28.4	157,800	41.2	65.9	3,829	3.98	625,000			$1)$
18.	28.0	156, 200	40.8	65.7	3,826	3.90	610,000			$1) 0$.
20.	27.2	154,200	40.4	65. 6	3,820	3.87	597,000			10.
22.	26.3	150, 200	39.3	63.7	3,818	3. 86	580,000			$1) \mathrm{O}$
24.	25.4	147,700	38.8	63.9	3,809	3.74	552,000			Do.
25.	25.1	146,500	38.5	61.6	3,808	3.78	553,000			1 DO
27.	24.8	146,500	38.5	62.5	3,810	3.81	558,000			Do.
May 13.	19.2	124, 600	33.1	56.3	3,768	3.61	449,000			Do.
15.	17.6	118,900	31.6	66. 0	3,764	3. 64	432,000 458,000			Do.
16.	17.0	117, 200	31.2	55.7	3,757 3,754	3.61 3.57 1	458,000 405,000			Dr.
18.	16.4 15.9	113,600 110,900	30.3 29.6	54.0 53.3	3,754 3,749	3.57 3.59	405,000 398,000			10.
22	15.2	109,700	29.3	52.1	3,740	3. 54	388, 000			Do.
23.	14.8	106,900	28.6	51.0	3,736	3.49	374,000			Do
25.	14.0	103,400	27.7	49.9	3,730	3. 51	363,000			Du.
27.	13.7	101,900	27.3	50.0	3,728	3. 53	360,000 364,000			Do.
29.	13.8	100,800	27.0	51.0	3,728	3.61	364, 000			Do.
$\begin{array}{r} 1890 . a \\ \text { Feb. } 22 \ldots \end{array}$	41.8	196, 300	50.2	79.4	3,915	5. 25	1,031,000			Do.
23.	41.8	196, 000	50.1	10.4	3,915	5. 18	1,016,000			Uo.
24.	41.9	105, 400	49.9	79.7	3,915	5. 25	1,026,000			Do.
26.	42.3	108,600	50.7	79.2	3,915	5.16	1,024,000			Do.
27.	42.3	197,900	50.6		3,915	5.15	1,023,000			Do.
28.	42.6	197,900	50.5	80.2	3,920	5. 24	1,037,000			Do.
Mar. 3.	42.6	201, 500	51.4	80.0	3,920	5. 18	1,043,000			Do.
18.	44.9	209, 100	53.1	81.5	3,935	5. 42	1,134,000			Do.
28.	44.8	210,500	52.8	80.8	3,989	5. 29	1,114,000	4,000	1,117,000	Do.
Apr. 1.	44.9	213,900	53.6	81.7	3,989	5. 22	1,117,000	4,000	1,121,000	Do.
Apr 8.	46.0	216, 600	54.3	83.6	3,990	5.45	1,181,000	4,000	1,185,000	Do.
12.	46.7	217,400	54.0	81.9	4,024	5.59	1,215,000	4,000	1,218,000	Do.
16.	47.4	218,900	54.4	82.5	4,025	5.70	1,247,000	13,000	1, 220,000	Do.
18.	47.8	221, 000	54.9	82.5	4,025	5.76	1,273,000	10,000	1,283, 000	Do.
May 1.	47.4	231, 400	57.5	77. 2	4,025	6.09	1,408,000	10,000	1,418,000	Do.
7.	47.2	232, 500	57.8	82.3	4,025	6.19	1,439,000	13, 000	1,453,000	Do.
10.	46.9	234, 200	58.2	80.1	4,023	5.79	1,356,000	9,000	1,365,000	Do.
13.	46.6	228, 100	56.7	79.5	4,022	5.88	1,340,000	11,000	1,351,000	Do.
15.	46.5	233, 300	58.0	82.4	4,022	5.77	1, 46,000	10, 000	1,356,000	Do.
20.	46.0	226, 200	57.3	82.4	3,950	5.74	1,298,000	6,000	1,304,000	Do.
$\begin{gathered} 1891 . b \\ \text { Mar. } 10 \ldots . \end{gathered}$	43.2	210,800	52.8	81.5	3,991	8.13	1,082,000	2,000	1,084,000	Do.
Mar. 16.	44.5	209,800	52.5	81.1	3,993	6.24	1,098,000	2,000	1,100,000	Do.
18	44.8	210, 100	52:6	82.7	3,993	5.23	1,100,000	2, 000	1,102,000	Do.
20.	45.0	211, 700	53.0	82.8	3,993	5.23	1,107,000	2,000	1,109,000	Do.
94	45.0	213,500	53.5	79.1	3,993	5. 29	$1,130,000$ $1,131,000$	3,000 3,000	$1,132,000$ $1,134,000$	Do.
27.	45.0	211,000	52.8	80.7	3,993	5. 36	1, 131,000	3,000	1, 134,000	Do.
Apr. 2.	45.2	213,400	53.4	84.2	3,994	5.32	1, 136,000	3,000	1,139,000	Do.
7.	45.2	211,200	52.9	79.9	3,994	5.34	1,128,000	3,000	$1,131,000$ $1,118,000$	Do.
10.	45.4	216,900	54,3	82.3	3,994	5.14	1,116,000	3,000	1,118,000	Do.
13.	45.5	219, 200	54.9	82.1	3,995	5. 12	1,122,000	3,000	1, 125, 000	Do.
16.	45.4	218, 200	54.6	82.3	3,995	5.08	1,109, 000	3,000	1, 112,000	Do.
20.	45.4	222,700	65.7	83.3	3, 995	4.93	1,098,000	3,000	1,100,000	Do.
Oct. 15	2.1	54, 000	15.7	37.7	3,440	2.91	157,1000 149,000			Do.
16.	2.0 1.9	54,500 52,400	15.8 15.2	42.3 37.8	3,446 3,446	2.74 2.72	149,000 143,000			Do.
Nov. 17.	1.9 1.9	52,400 63,800	15.2 15.6	37.8 42.6	3,446 3,442	2.72 2.63	143,000 141,000			Do.
Nov. 22.	1.8 3.0	[55, 100	16.0	44.0	3,445	2.78	153, 000			Do.
$1892 . c$		166, 200	42.3	78.5	3,934	4.42	735,000			©o.
	34.2	168,700	42.9	78.9	3,934	4.62	779,000			Do.
	35.0	171,200	43.5	80.9	3,937	4.70	805,000			Do.
21.	40.8	192,600	48.6	85.0	3,965	5.20	1,002,000			Do.

[^41]Tabulation of 1891, Report Chlef of Engineers, 1892, p. 3215. Report on work, Report Chief of Engineers, 1892, p. 3125. The discharge over bank is on line of discharge section and partly around the end of an old levee on the right bank. The field notes of thits overflow are very incomplete; hence these results are not exact.
csection of 1892 approximately the same as in former years. Tabulation, Report Chief of Enginecrs, 1893, p. 3691. Report on work, Chief of Engineers, 1893, p. 3679.

Results of discharge observations, Mississippi River-Continued.
RED RIVER LANDING, LA.-Continued.

Date.		Gauge ing.	Ares of cross section.	Depths.		WIdth.	$\begin{gathered} \text { Mean } \\ \text { veloc- } \\ \text { ity } \\ \text { per } \\ \text { gec- } \\ \text { ond. } \end{gathered}$	Discharge per second.			Method.	
		Mean.		Maximum.	River.			Bank.	Total.			
1892.			Feet.	Sq. ft .	Frect.	Feet.	Feet.	Feet.		Cu.ft.	Cu. fl.	
May	4.	43.8	199,600	60.1	87.5	3,981	5.42	1,082,000			Meter.	
		44.1	201, 700	50.7	86.8	3,981.	8.41	1,092,000			Do.	
		44.8	205,900	61.7	87.7	3,982	5.42	1,117,000			Do.	
	19	45.4	207, 600	51.4	86.2	4,040	6. 44	1,130,000	2,000	1,132,000	Do.	
	21	45.4	208, 400	b1. 6	87.0	4,040	5.43	1,132,000	3,000	1,135,000	Do.	
	23	45.4	208,800	51.7	89.6	4,040	5.34	1,115,000	4,000	1,119,000	Do.	
	25.	45.5	210,400	52.1	88.7	4,041	5. 40	1, 137,000	6,000	1, 142,000	Do.	
	27.	45.6	211, 700	52.4	88.1	4,041	5.38	1,140,000	6,000	1,146,000	Do.	
June	1.	46.0	212,900	52.7	88.6	4,042	6. 40	1,149,000	6,000	$11,165,000$	Do.	
	3.	46.1	211,300	52.3	87.4	4,043	5.37	1,135,000	7,000	1,141,000	Do.	
	7.	46.5	214, 100	52.9	86.6	4,044	5.38	1,152, 000	7,000	1,169,000	Do.	
	9.	46.7	219, 700	54.3	88.2	4,044	5.32	1, 170,000	7,000	1,177,000	Do.	
	11.	47.0	222, 400	55.0	87.7	4,044	5.31	$1,181,000$	7,000	1, 188,000	Do.	
	14.	47.1	226, 500	56,0	88.9	4,044	5.36	1,213,000	8,000	1,221,000	Do.	
	16.	47.7	229, 700	56.8	89.2	4,044	5.45	1,252,000	8,000	1,260,000	Do.	
	20.	48.2	229,600	51.3	89.6	4,045	5.57	1,279,000	9,000	1,288,000	Do.	
	23.	48.6	231, 400	57.2	90.0	4,045	8. 64	1,304,000	8,000	1,312,000	Do.	
	25.	48.7	229, 700	56.8	91.0	4,045	5.77	1,325, 000	9,000	1,334,000	Do.	
	27.	48.8	228, 600	86.5	91.0	4,046	5.78	1,321,000	10,000	1,331,000	Do.	
${ }^{1893 . a}$										1,065,000	Do.	
May	23.	44.2 44.3	199,300 207,900	49.4 51.5	72.3 80.8	4,038	5.32 8.27	1,060,000	6,000	1,100,000	Do.	
	26	44.4	208, 200	51.6	79.6	4,038	5.20	1,084,000	5,000	1,089,000	Do.	
	29	44.5	203, 200	51.6	81.1	4,038	5.11	1,065,000	5,000	1,070,000	Do.	
June	1.	44.5	208, 200	51.5	82.0	4,039	5.07	1,055,000	5,000	1,060,000	Do.	
	3.	44.6	218, 600	54.0	80.0	4,044	4.83	1,056,000	6,000	1,061,000	Do.	
	7.	45.0	221,200	54.7	81.1	4,044	4.90	1,084,000	5,000	1,089,000	Do.	
	9.	45.2	221,800	54.8	82.0	4,044	5.07	1,124,000	B, 000	1,129,000	Do.	
	13.	45.7	228, 800	56.6	81.8	4,044	5.06	$1,157,000$	5,000	1,162,000	Do.	
		46.5	224, 100	65.3	82.7	4,050	6. 19	1,164,000	5,000	1,169,000	Do.	
	22.	47.4	229, 600	66.8	81.0	4,044	6.33	1,225,000	6,000	1,230,000	Do.	
	24.	47.6	227,800	56.3	83.5	4,044	8.08	1,157,000	6,000	1,163,000	Do.	
	27.	47.7	228,000	56.1	83.3	4,044	5.14	1,172,000	6,000	1,177,000	Do.	
	10.	43.1	205,900	51.0	76.7	4,038	4.72	1,973,000	5,000	977,000	Do.	
May	246	44.3	231,000	50.4	58.7	4,585	4.60	1,063,000			Do.	
	26 b.	44.4	227, 500	49.6	56.9	4,585	4.85	1,103,000			Do.	
	298.	44.5	234, 200	51.2	62.6	4,573	4.65	1,088,000			Do.	
June	3 b .	44.6	240,200	52.4	60.6	4,580	4.61	1,107,000			Do.	
	70	45.0	240,000	52.4	61.2	4,580	4.60	1,105,000			Do.	
	98.	45.2	243,800	53.2	67.1	4,680	4.82	1,174,000			Do.	
	136.	45.8	251,600	54.9	63.9	4,580	4.80	1, 208,000			Do.	
	$17{ }^{\circ}$.	46.5	252,000	55.1	66.0	4,580	4.81	1, 215,000			Do.	
	20 b .	47.1	256,000	55.7	65.1	4,680	4.80	1, 226,000	1,000	1,220,000	Do.	
	246.	47.7	260,000	56.8	03.9	4,580	4.56	$1,185,000$	1,000	1,180.000	Do.	
	268.	47.7	262,300	57.3	66.5	4,580	4.67	$1,225,000$	1,000	1,226,000	Do.	
	27.	47.7	263, 400	57.5	66.1	1,580	4.60	1,213, 000	1,000	1,214,000	Double floats.	
	296.	47.6	259,300	56.6	65.4	4,580	c4. 42	1,146,000	1,000	1,147,000	Double floats.	
	29 b	47.6	259,300	66.6	65.4	4,580	d4.76	1,235,000	1,000	1,236,000	Do.	
July	18.	47.2	259,000	56.5	64.4	4,580	e4. 40	1,141,000	1,000	1,141,000	Do. Do.	
	98.		241, 400	52.7	69.7	4,580	14.60 4.23	$1,192,000$ $1,021,000$			Mater.	
	100.	43.0	237, 500	52.0	58.6	4,570	4.20	997,000			Do.	

a Report on observations of 1893, Report Chlef of Engineers, 1894, p. 2837. Report on work, Chief of Engineers, p. 2823.
bSection at Torras Landing, one-half mile above Red River Landing.

- Surface floats reduced to mean of vertical.
© Eloats at 0.8 depth reduced to mean of vertical.
- Floats at mid-depth reduced to mean of vertical.
f As ohserved at mid-depth.

Results of discharge observations, Mississippi River-Continued.
RED RIVER LANDING, LA.-Continued.
[765 miles below Cairo.]
[Red River Landing gauge; elevatign of zero 23.85 feet above Calro datum.]

[^42]Results of discharge observations, Mississippi River-Continued.
RED RIVER LANDING, LA.-Continued.

Date.	Gauge reading.	Area of cross section.	Depths.		Width.	$\begin{gathered} \text { Mean } \\ \text { reloc- } \\ \text { ity } \\ \text { per } \\ \text { sec- } \\ \text { ond. } \end{gathered}$	Discharge per second.			Method.
			Mean.	Maximum.			River.	Bank.	Total.	
	Feet.	Sq. ft.	Feet.	Feat.	Feet.	Feet.	Cu.ft.	Cu. ft.	Cu.ft.	
Dec. 14.	5. 00	60, 100	16.5	39.9	3, 630	3.19	192, 000			Double tloats
$14 .$	5. 00	59, 300	16.3	40.4	3, 629	3. 08	183, 000			Meter
14.	5.00 4.70	59,500	16.4	40.7	3,629	3.08	183, 000			Do.
15.	$\left\{\begin{array}{l}4.70 \\ 4.70\end{array}\right.$	$\} 59,000$	16.3	40.4	3,625	3.09	182,000			Do.
15.	4.70	59,500	16.4	40.0	3, 825	3. 14	187,001			Do.
15.	4. 70	59, 400	16.4	40.6	3, 627	3.07	182, 0×7			Do.
	4.70	59, 400			3,627	3.12	185,000			Double floats.
1898.										
Apr. 28.	$\left\{\begin{array}{l}44.30 \\ 44.30\end{array}\right.$	\}192, 600	47.2	81.4	4,076	5. 63	1,084, 00,			Meter.
28.	44.30	192,600			4,076	5.89	1,134, 000			Double floats.

The discharge section was just below Red River Landing, at the same place as in former years.
[766 miles below Cairo.]
[1904 velocities are means of simultaneous observations with Haskell meter, wheel No. 1, and Price inetar No. 34. Discharge section is the same as used in 1898 , just below Red River landing. Overbank discharge measured on right bank. Observations and reduction under direction of Capt. Win. B. Ladue, Corps of Engineers, secretary Mississippi River Commission. Reports Chief of Engineers, 1903, supplemert, page 117, and 1905, page 120.]

$1903 . a$										
Apr. 8.	49.98	230, 300	55.0	82.1	4, 187	5.20	1,197, 000	9,000	1,206, 000	Meter.d
	49.98	220, 200	52.6	88.4	4,187	5.05	1, 112,000	b9,000	1, 122,000	Do.el
1904.										
Apr. 29.	43.70	c203, 300	48.7		4, 174	$5.01{ }^{\prime}$	1,018, 000			Do.
Mry ${ }^{30}$.	43. 70 43.60	203,300 203,100	48.7 48.7	80.7 81.0	4,174 4,174	4.95 4.94	$1,007,000$ $1,004,000$			Do. Do.

a Red River Landing United States engineer gauge, whose zero is 3.57 feet above mean Gulf level.
b Deduced from olservations of April 8 .
c Used area of A pril 30 .
d Haskell meter, wheel No. 4.
e Some velocities measured with Haskell meter, others with Price meter No. 40.
[765.3 miles below Cairo.]

Date.	Gauges.			Cross section of discharge.					
	$\begin{gathered} \text { Stand- } \\ \text { ard } \\ \text { gauge. } \end{gathered}$	Local.	Change In 24 hours.	Area.		Depth.			
				Water.	Below datum.	Mean.	$\begin{aligned} & \text { Mean } \\ & \text { datum. } \end{aligned}$	Maximum.	Width.
Apr. 25....... $\begin{array}{r}1906 . a\end{array}$	Fect. 44. 00	F'cet.	Fcel. +0.20	Sq. ft. 200.887	Sq. ft. 203.716	Feet.	Ficti. 47.5	F'cet.	Feet.
A 26.	44. 12		$+.15$	- 2006,912		4.9			
27.	44. 30		$+.15$	212,937	214, 480	49.7	50.0	83.0	4,286
28.	44. 40		$+.13$	219, 533	220, 646	51.2	31.5	87.0	4,286
30.	44. 66		$+.09$	218,015	218,015	50.9	50.9	83.0	4,286

[^43]Results of discharge observations, Mississippi River-Continued.
RED RIVER LANDING, LA.-Contintied.

a Observations and reductions male under direction of Capt. G. R. Lukesh, Corps of Engineers, U. S. Army, secretary, Mississippi River commlssion. Red River Landing, U. S. E. gange: Zero is : int feet above mean Guif level. The datum line for computing datum areas was taken at 46.93 feet on the athe. Price meter No. 29 was used. The discharge section used is the same as that used in 1904 and is just below Red River Landing.

Appendix No. 20.

PRESENT AND PROSPECTIVE COMMERCE OF THE MISSISSIPPI RIVER FROM 8T. LOUIS TO THE GULF OF MEXICO.
[Compiled under direction of the Board on Examination and Survey of Mississippi River.]

i

The Mississippi River, including its tributaries, drains about half the United States, and it has a total of about 16,000 miles of river (Census Bureau reports) susceptible of navigation. As every one knows, it is not many years since this river was noted for its large steamboat commerce, very large in proportion to the commerce of the entire country; and it, in fact, was the great highway for not only freights but passengers passing into and through the Middle West. For many years, however, its water commerce has been steadily diminishing, while the inland water commerce of the cutire country has been as rapidly increasing, so that to-day its water supremacy is gone; and such condition of affairs is well known not only to the Mississippi Valley but to the United States public in general, who are wondering why the river is not more utilized and how it can be made more useful. But it is also well known to the engineering public of the country that the present river conditions of the Mississippi Valley are many times better than in the days of its greatest commerce; the river from St. Paul to deep water above New Orleans having now a navigable depth nearly twice
as great everywhere as in former days, and its obstruction by snags and wrecks being at present so slight, as to be rarely mentioned. The marked diminution of commerce, under such circumstances, can not be due to questions of navigation and river engineering, and must be due to other conditions, such as those of demand and supply, water and rail competition, and of business management in general.

This situation on the Mississippi River (and its tributaries) is not the only similar case in the United States. Even Chicago, Ill., in spite of its size, its increasing population and factories, its direct frontage on deep water of the Great Lakes, and its excellent inner harbor (Chicago River) of the olden type, has recently found itself in the same predicament and hasbeen obliged to make special search for the reasons thereof.

Prior to the date when the present Board was ordered by Congress, there was available to the general United States public but little printed matter touching upon such subjects, and few people outside of the large railroad organizations knew much of the fundamental rules governing the development of transportation, nor much of the actual conditions of transportation matters, either abroad or at home. In 1905, however, the Interstate Commerce Commission published its report upon the statistics of railways in the United States for the year 1904, giving in great detail a full description of the United States railway plant, mileage, cost of construction, cost of operation, revenue, rates, etc., which is a most valuable mine of information on transportation matters. This report was too extended in scope to be repeated yearly; and it is still, and must for several years be, the standard of information in such matters, subject to minor changes from year to year as described in later annual reports of the same commission.

By the act of Congress of February 21, 1891, agents of all vessels navigating waterways under federal improvement are required to furnish statements of their vessel cargoes to the United States engineer officer in local charge of such improvements. Cupies or summaries of these reports are then furnished by the engineer officers to the Bureau of Statistics, Department of Commerce and Labor, who receive in similar fashion from the collectors of customs and other port officers much other traffic information, publishing the results monthly and annually under the title of "Summary of Commerce and Finance" with a subtitle of "Summary of Internal Commerce of the United States." In 1908 the Department of Commerce and Labor, through its Census Bureau, published a valuable compilation of such reports in a volume entitled "Transportation by Water, 1906," giving for the entire United States (with a separate chapter for the Mississippi River Valley) much the same full information for water transportation as had been given for rail transporation for 1904 by the Interstate Commierce Commission, but adding valuable comparisons with previous similar conditions of 1889.

In 1908 also appeared in print the 1906-7 report of the Ohio River board of 1905-6 (H. Doc. No. 492, 60th Cong., lat sess.) upon the further improvement of the Ohio River from Pittsburg, Pa., to Cairo, Ill., with a view to giving to it a 9 -foot depth throughout the entire year by the aid of locks and dams; the report being favorable to such improvement, and containing a large amount of valuable information as to freight movements by boat and by rail, including costs and freight rates.

In 1907, Chicago, Ill., began to realize that some radical action was necessary to stop its decadence as a commercial port and to build up its commerce anew; and its mayor appointed a special harbor commisaion to visit other large ports of the United States and of Europe and to examine into the reasons for the waning commerce and to recommend action to restore it. This commission was one of business men interested in the future welfare of the city, and their report, rendered in March, 1909, contained subreports (made and printed in 1908) by Prof. J. P. Goode, of the Chicago University, upon "Modern Development of Commercial Ports;" of Mr. G. C. Sikes (who had had prior experience on street railway commissions and local transportation committees) upon "Obstacles to Chicago's Water Shipping Development;" and of Mr. G. C. Tunell (formerly with United States Treasury Devartment, and experienced in Lake traffic and railroad traffic research) upon the "Volume and Trend of Traffic to and from the Central West." These reports outline the results of experience at the foreign ports of London, Liverpool, Manchester, Glasgow, Newcastle, Southampton, and Cardiff in Great Britain, and Havre, Antwerp, Rotterdam, and Hamburg in continental Europe, and upon the continental rivers Elbe, Weser, Scheldt, Meuse, and Rhine.

In 1908 the president of the harbor commission of the city of Montreal, Canada, and the chief engineer, St. Lawrence River Ship Canal, realizing that "upon the development and efficiency of its transporation would depend the future prestige of Canadian commerce and the integrity of the nation," submitted to the minister of marine and fisheries, Dominion of Canada, a special report (No. 21C, 1908; Supplement to Fortieth Anuual Report, Marine and Fisheries) upon modern British and continental porta with
a view to the development of the port of Montreal and Canadian transportation, containing results of experience at the foreign ports of London, Li verpool, Manchester, Glasgow, Newcastle, Bristol, and Cardiff in Great Britain, and of Mavre, Marseilles, Antwerp, and Hamburg on the Continent. In their study of this subject, the Canadian officials were assisted by Mr. R. C. H. Davison, British civil engineer, whose specialty is the development of ports.

In January, 1908, the American Academy of Political and Social Science published, as volume 31 of its Annals, a special collection of monographs entitled "American Waterways," which take up the water transportation of the whole United States by sections, and treat the subject from the point of view of political economists as well as of that of commercial and business men.
${ }^{\text {T }}$ To anyone specially interested in the Mississippi River itself, there is, outside of the Mississippi River Commission annual reports (see Annual Reports of Secretary of War and Chief of Engineers, U. S. Army) and other government documents, one book of statistical and general information deserving special mention, viz, the collection of essaysentitled "Riparian Lands of the Mississippi River, Past-Present-Prospective," edited and published in 1901 by Frank H. Tompkins, of New Orleans, La. (1 vol., 4to, 640 pp .), containing much back history of the Mississippi River Valley and waterways and much detail as to past methods and future possibilities, the articles having been prepared by Members of Congress, army engineers, civil engineers, steamboat officials, manufacturers, merchants, newspaper editors, and other civilians of all professions and interests.

All the above reports are full of valuable information which should be carefully studied in full by all persons specially interested in transportation development in the United States. These reports are partially quoted or referred to in the exhibits and remarks that follow herewith; but the careful student should familiarize himself with the originals.

There are also two other publications of conference and reports not made public during the meetings of the present Board, which when printed and distributed in 1909 will also contain valuable information upon the question of water and rail commerce - and rates and should be looked up. These are the Report of the Proceedings of the Conference of Governors at Washington, D. C., May 13-15, 1908 (especially the paper by Prof. Emory R. Johnson upon navigation resources), and the "Preliminary Report of the Inland Waterways Commission, February 3, 1908," to appear as S. Doc. 325, 60th Cong., 1st sess. (especially the papers on "Navigable Streams of the United States," Commerce of Interior Rivers, Relation of Water and Railroad Rates, Water and Rail Traflic, and Materials A vailable for 'Transportation by Inland Waterways).

There are six different points of inquiry to be specially investigated in any serious examination of the present and prospective commerce of any waterway, viz, (a) the extent of population and of manufacturing, "agricultural, and other business interests which call for water transportation; (b) the waterway itself, with its navigable channels, and especially their condition and capacity; (c) the boats, including their equipment and service; (d) the amount and character of the freights either actually carried or demanding carriage; (e) the ports or other terminal points of load and discharge, including their harbors, piers, wharyes, slips, docks, unloading and loading machinery, and other transfer facilities; and (f) the rail and water competition and their relative capacities, facilities, service, and freight rates. These will be taken up briefly in the above order.

Population and business interests.--The Mississippi River Valley for miles back on each side of the river between St. Louis and the Gulf is mainly an alluvial valley, richly endowed by nature, and susceptible of rapid, extensive, and valuable future developrnent, which is at present delayed mainly by lack of population and funds.Exhibits 1, 2, and 3 apply to the entire valley and Exhibits 4 and 5 to St. Louis.

$$
\text { H. Doc. } 50,61-1-21 *
$$

Exhibit No. 1.-Area and population adjoining Mississippi River, St. Louis to New Orleans.

Eximbit No. 1.-Area and population adjoining Mississippi River, St. Louis to New Orleans-Continued.

West bank.		Countles and cities.	East bank.	
Area in square milles.	Population (1900 census).		Population (1900 census).	Area in square miles.
Louistana.			Louisiana.	
576	25,777	Poonte Coupee.		
		West Feltiana (including St. Francisville, 1,059)......... East Baton Rouge (including laton Rouge, 11,269).....	15,994	386
286643	$\begin{aligned} & 10,285 \\ & 27,0064 \end{aligned}$	West Baton Rouge.	31, 153	451
		Iberville (including Plaquemine, 3.5is); Whitecastle, 1 ,sifo). Ascension (Including Donahlsunville a 10 D)		
		St. James... .	20, 297	310 280
		St. John the Baptist	12,330	209
300413	9,07215.321	St. Charles.		
		Jeflerson (including Gretia, 3,332).		
		Orleans (inchuding New Orleans, 287,104).	257, 104	197
		Staquemines	$\begin{array}{r} 6,031 \\ 12,0 \end{array}$	721
13,520	995, 829	Total	1, 0:00, 201	16.100

Grand total; 2,046,520 population; 20,620 square miles area.
Over two-thlrds of the total area is fine alluvium ground capable of high cultivation when drained, protected from floods, and well populated.
The population is about 76 per square mile, including eities, and abofut 35 per square uile outside of cities.
Areas in square miles taken from Rand-McNally \& Co. maps.

Exhibit No. 2.-Cities and towns of over 1,000 inhabitants in 1900 located on the Mississippi River, between St. Louis and New Orleans.
[From Unifed States Consus Report. 1900.]

Name.	Population.	Name.	Population.
St. Louis, Mo	575, 238	Vleksburg, Miss.	14, 834
East St. Louts, Ill	29, 655	Vidalia, la..	1,022
Cape Glrardeau, Mo	4, 815	Natehez, Miss.	12,210
Cairo, Ill......	12, 566	St. Francisville, La	1, 059
Columbus, Ky	1,235	Paton Rouge, La.	11, 269
Nickman, Ky ${ }^{\text {Now }}$	1,589 1,489	Plaquemine, La.	3,590 1,850
Caruthersville, Mo	2,315	Donaldsonvillo, İa.	4,105
Memphis, 'Tenn.	102, 320	Gretna, La....	3,332
Helena, Ark..	5,550	New Orleans, Las.	2Si, 104
Arkansas City, Ark	1,091		
Greenville, Miss.....	7, 6.42	'Total.	1,087,136

Exhbre No. 3.--Areas, population, and railuay mileaye of lower Mississippi Valley, 1900) or 1909, as compared with entire United States and Europe.
[Based upon figures of World Almanac, 1909; American Almanac, 1903; and foreign reports.]

States adjoining lower Mississippl.	Area.	Population.		Rallway mileage.		
		Total.	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	Total.	Per 1,000 population.	Per 100 square miles.
1009.	Sq. miles.			Miles.	Miles.	Miles.
Illinots.	56,650	4,821,550	86	12,206	2.5	22
Missourl.	69,415	3, 106, 665	45	8,102	2.6	12
Kentucky	40,400	2, 147, 174	53	3,484	1. 6	3
Tennesseo.	42,050	2,020,616	48	3,761	1.9	9
Arkansas.	53, 850	1,311, 564	24	4,883	3.7	9
Mississippl	46, 810	1,551, 270	33	4,169	2.7	9
Louisiana.	48,720	1,381, 625	28	4,738	3.4	10
Total.	357, 895	16,340, 464	46	41,343	2.5	12
Entire United States (1009).	3, 602,990	87, 971, 000	26	227,671	2.6	6
Austria 1909.			180			8
Belgrium.	11, 373	7,074,910	620	5,000	0.7	14
France.	207, 054	38, 961, 945	190	26,500	0.7	13
Germany	208, 830	60,641,278	290	34,400	0.6	16
Holland.	12,648	5,591,701	440	1,700	0.3	13
Entire Europe	3,555, 000	a 380,200,000	107	b 175,000	0.5	5

a In 1800 .
b In 1909.
The above tables of area, population, and railroad mileage of counties and States along the Mississippi River between St. Louis and the Guli and of the busy countries of Europe (Exhibits 1, 2, and 3) bring out forcibly the difference between this part of the world and Europe.

It will be seen from these tables that the United States is very much better off than Europe in the amount of land and length of railroads per head of population. Other sources of information give approximate estimates for 1900 of about 4,000 miles of waterways in Austria, 1,400 in Belgium, 7,500 in France, and 8,000 in Germany. This information, all taken together, indicates approximately 5 miles of railway, three-fourths of a mile of waterway, and 11,000 population per 100 square miles of country in Europe, against 6 miles of railway, two-thirds of a mile of waterway, and 2,600 population per 100 square miles in the entire United States. They also indicate that the 7 States adjoining the lower Mississippi River have about one twenty-fourth the population, one-tenth the area, four-tenths the density of population, one-fourth the total railway mileage of entire Europe, giving to the lower Mississippi River States about 5 times as many miles of railroad per head of population, and about $2!$ times as many per square mile of land as has Europe; and that these 7 lower Mississippi River States together have about one-fourth the total population, seven-fourths the area, one-seventh the density, and eight-sevenths the total railway mileage of Germany alone. This also gives to the above-named 7 Mississippi Valley States about 4 times as many miles length of railway per head of population as Germany, although only two-thirds as many per square mile, and about 7 times as many miles length of navigated waterways per head of population as Germany, although only about the same number of miles length per square mile.
France and Austria are about 8 times as densely populated as Arkansas, and Belgium about 7 times as densely populated as Illinois.
Although the large cities and towns of the Mississippi Valley are few, they are dosing finely in view of their limited population. St. Louis is the fourth and New Orleans the twelfth city in the United States in order of size; and they are first and fourth in rank in the Central West between the Alleghany and Rocky Mountains (omitting the cities on the Great Lakes). Memphis is in size the second city in the United States east of the Rockies and south of the junction of the Ohio and Mississippi rivers. In proportion to their population, these cities, as regards manufactures and other business interests, are on a par with the most advanced cities of other parts of the United States. Cairo, Vicksburg, Natchez, and Baton Rouge are in like manner all large and important cities for their respective States, and are all im-
portant and growing centers of manufactures and railway transportation. When Ohio River coal can be delivered daily at cheapirates at all these Mississippi River towns, their manufacturing and business interests should begin to develop with great rapidity.

But no very large amount of local commerce can be expected when the population is as low as 86 to 24 per square mile, including cities, and where, in a total length of about 1,265 miles, there are only 7 towns or cities of above 10,000 population or only 23 of above 5,000 population each. There is, however, an excellent opportunity for future growth, which must necessarily come in due time. As the population' increases in this rich alluvial valley of the lower Mississippi, so will the agricultural and manufacturing industries increase; and the lower valley will have a surplus of products to distribute to the upper valleys or to foreign countries.

The following exhibits (Nos. 4 and 5) show what developments are occurring in St. Louis, as presented by its business men. They indicate a development natural to this section of the country, and which may be expected later at other points after the country is thickly populated.

Eximbit No. 4.-Extract from the report of the St. Louis Merchants' Exchange for 1908,

ST. I,OUIS IN 1908.

The fourth city of the United States in population.
The largest and most important city in the Louisana purchase.
The largest manufacturer of tobacco in the world.
Has the largest drug house in the United States.
Has the largest woodenware house in America.
Has the largest hardware house in the country.
Is the best dry goods market west of the Alleghanies.
Has the largest shoe house in the world.
The largest shoe distributing city in the Union.
Is the second largest millinery market in America.
The largest inland coffee distributing center.
One of the great railroad centers.
The principal city on the longest river in North America.
The largest hard-wood lumber market in America.
Makes more street and railroad cars than any other point.
The largest horse and mule market in the world.
Holds fourth place as a manufacturing center.
Leads in output of American-made chemicals.
Prominent in manufacture of proprietary medicines.
Receipts of grain in 1908, 70,967, 740 bushels.
Receipts of flour in 1908, 2,763,700 barrels.
Flour manufactured in 1908, 965,832 barrels.
Flour shipped in 1908, 3,192,790 barrels.
Banking capital and surplus, 1908, \$84,212,110.
Bank clearings in 1908, $\$ 3,074,806,759$.
Leads in manufacture of stoves and ranges.
Tonnage received and forwarded in 1908, $39,644,900$.
Death rate per thousand in 1908, on basis of 722,200 population, 13.56 .
Largest brewery in the United States.
Has 105 public schools, with 92,765 scholars.
Largest and most complete railway station in America.
Has 27 public parks, containing 2,318 acres.
St. Louis post-office ranks first in ratio of expenses to receipts.
Receipts at St. Louis post-office in $1908, \$ 3,974,834$.
Pieces of mail matter originating in St. Louis in 1908, 309, 155,738.
Is renowned for beautiful residence districts.
Has 19 miles of river front.
Real estate transfers in $1908, \$ 39,866,644$.
Value of buildings erected in 1908, $\$ 21,190,369$.
Real and personal property assessed, $\$ 524,302,020$.
Value of manufactured product in $1908, \$ 314,185,326$.
The largest manufacturing stationers for bank and county supplies in the world.

Extract from the report of the St. Louis Merrhants' Exchange Jor 1908.
Area, $62 \frac{1}{2}$ square miles.
Population, 750,000.
Real estate and personal, assessed value, $\$ 524,302,020$.
Bonded debt, $\$ 18,344,178$.
Houses erected during $1908(9,119)$, cost, $\$ 21,190,369$.
River front, 19 miles.
Public parks, number, 27; 2,318 acres.
Paved streets, 581.47 miles.
Paved alleys, $1 \nabla 2.70$ miles.
Public sewers, to January, 1909, 648.22 miles; cost, $\$ 16,259,628$.
Conduits for underground wires, 194 miles.
Water supply, capacity per day, $160,000,000$ gallons.
Water supply, average daily consumption, $68,960,000$ gallons.
Receipts for water licenses, $\$ 1,830,870$.
Public schools, 1908: Number, 105; teachers, 2,116; scholars, 92.765; cost, $\$ 11,560,534$.

Union Station, 32 tracks, covers 11 acres.
Railroad lines terminating in St. Louis, 26.
Street railroads, single track, city, 348.41 miles; county, 107.46 miles; total, $40 \overline{5} .87$
miles.
Passengers carried, $310,589,278$.
Municipal revenue, year ending in April, $\$ 8,502,067$.
Death rate per thousand, basis 1908 (722,200 population), 13.56.
Post-oflice, cash receipts, $\$ 3,974,834$.
Post-office, pieces of mail originating in St. Louis, 309,155,738.
Tonnage, total tons received, $23,871,102$.
Tonnage, total tons shipped, $15,772,898$.
Manufacturers, product, $\$ 314,185,326$.
Bank clearings, $\$ 3,074,806,750$.
Banks and trust companies, capital, surplus, and profits, $\$ 84,212,110$
'Tobacco, manufactured 1908, 72,759,588 pounds.
Tobacco tax paid, $\$ 4,452,219$.
Grain receipts, $70,967,740$ bushels.
Flour manuiactured, 965,832 barrele.
Flour received, $2,763,700$ barrels.
Public elevators, 8 ; capacity, $7,000,000$ bushels.
Private elevators, 31 ; capacity, $5,125,000$ bushels.
Lead received, 1,998,370 pigs.
Revenue from harbor fund, $\$ 135,364$.
Zinc and spelter, $3,776,260$ slabs.
Cattle received, 1,293,564.
Hogs received, $3,199,922$.
Sheep received, 724,781 .
Horses and mules received, 120,853.
Cotton receipts, 675,842 bales.
Coal (all kinds) received, $7,365,091$ tons.
Goods to the following amount were sold:
Dry goods and notions, $\$ 65,000,000$.
Millinery, $\$ 6,000,000$.
Vehicles and implements, $\$ 16,000,000$.
Plumbers' and steamfitters' supplies, $\$ 7,500,000$.
Groceries and kindred lines, $\$ 70,000,000$.
Boots and shoes, $\$ 53,000,000$.
Tobacco and cigars, $\$ 45,000,000$.
Hardware, shell and heavy, $\$ 37,000,000$.
Woodenware, $\$ 18,000,000$.
Lumber, $\$ 47,000,000$.
Candies, $\$ 5,500,000$.
Beer (3,194,520 barrels), $\$ 22,361,640$.
Clothing, $\$ 11,500,000$.
Furniture and kindred lines, $\$ 22,700,000$.
Stoves, ranges and furnaces, $\$ 5,000,000$.
Electric supplies, machinery, and lamps, $\$ 10,000,000$.
Paints, paint oils, and white lead, $\$ 12,000,000$.
Saddlery and harness, $\$ 3,250,000$.
Hats, cape, and gloves, $\$ 4,200,000$.

Drugs and kindred lines, including proprietary goods, druggist sundries, and chemicals, $\$ 19,000,000$.

Glass, plate and window, ornamental, $\$ 3,000,000$.
Clay products, $\$ 4,500,000$.
Furs, $\$ 7,500,000$.
Railway supplies, $\$ 15,000,000$.
Trunks and bags, etc., $\$ 2,500,000$.
Steel castings and foundry and machine shops products, $\$ 18,500,000$.
Wool receipts, $1908,23,123,340, \$ 6,500,000$.
Hides, receipts, 1908, 70,587,900, \$11,500,000.
Carpets and kindred kinds, $\$ 5,250,000$.
Railroad and street cars manufactured, value, $\$ 9,000,000$.
Paper, stationery, and envelopes, $\$ 9,000,000$.
Dry plates, $\$ 1,750,000$.
Glass and queensware, $\$ 2,125,000$.
Bakery products, $\$ 7,000,000$.
Tin and enameled ware, $\$ 5,500,000$.
Soap and candles, $\$ 9,000,000$.

Exhibit No. 5.-Extract from the report of the St. Louis Merchants' Exchange for 1908.
MANUFACTURING INDUSTRIES IN ST. LOUIS FOR 1008.
[By Edward J. Troy, secretary Missouri Manufacturers' Association]
The paucity of failures among the manufacturers of St. Iouis during the rast year, when the panic conditions were prevalent, and in the face of numerous important failures in other commercial centers, this city boasted a record of few industrial failures, and those that were recorded were rather unimportant.

This record suffices to forcibly illustrate the ultraconservatism that characterizes the manufacturing operations of St. Louis concerns, and gives a reason for the steady progress of the manufacturing and dependent industries of this great commonwealth. This conservatism is often made the subject of criticism, but in time of depression, such as was experienced, the criticism becomes the highest form of laudation of a business scheme.

The foresight of the rank and file of manufacturers in this city will enable them to prepare for the inevitable demands of an increased business, which has manifested its coming during the new year by many indications of unmistakable character.

Official statistics of the manufacturing activities of St. Louis during 1907, show a gain of $\$ 33,000,000$ over the previous year, and it is expected that the official figures for the year just closed will be correspondingly optimistic.

The figures tabulated below, from the state burcau of labor statistics, give a comparison indicating the capital invested, the value of the manufactured products, the number of persons employed, and other interesting topics bearing on the general subject of St. Louis manufactures:

Extract from the report of the St. Louis Merchants' Exchange for 1908.

[Manufuctures of St. Louls in 1907 as complled by the State Board of Labor Statistics, J. C. A. Hiller, commissioner.

	Number of establisht ments reporting.	Total value of goods manufactured in 1907.		Number of estab-lishments reporting.	Total value of goods mannfactured in 1907.
Agrioultural implements.	2	\$209, 012	House furnishings.	15	\$176,371
Asphalt, tar roofing... .	6	337, 941	Ice. .	8	622, $8: 30$
A wnings, tents, fiags.	10	954, 858	Iron, structural.	19	2,691,088
Badges, regalia. ...	9	121,980	Jewelry	12	417,392
Bags, bagging. .	5	7, 422, 949	Ieather.......................	16	1,888, 845
Bakerles...	354	6,890,599	light, hent. power..........	5	7, 049,488
Bank and store fixtures	19	1,334, 217	Liduor, reetifying, blending.	39	6,572, 992
Bosts.	1	14,236	Liqutior, malt.	27	20, 289, 684
Boller works	10	1,324,273	Malt.........................	5	337, 445
Boots and shoes	22	25, 753, 158	Millinery	185	2, 282, 103
Boxes, paper	16	1,041,848	Musleal instruments.	9	112, 173
Boxes, wood.	25	2, 413,289	Novelties....................	10	268, 882
Brick, tlle..	20	4, 9105, 479	Olls, grease.	10	2,079, 960
Brooms, brushes...	21	291, 421	Packing houses.	26	22, 788, 663
Candy, confections..	23	3,346,032	Paints, varnish.	28	7, 115, 713
Canning, preserving.	21	3, 262, 152	Pattorns, models.	12	86,149
Car works........	8	22, 851, 505	Photographle, art supplles..	10	802, 252
Carbonated beverages	41	832, 701	Planing, mills...	38	3, 294,278
Carriages, wagons.	160	7, 449, 209	Pottery stoneware	6	67,898
Cigars........	292	1, 737, 098	Printing, binding.	156	7,303,917
Cleaners, dyers...	10	345, 448	Publishling...	87	6, 044, 678
Clothing, women's	44	3, 681, 637	Roillng mills	2	2,791,738
Coffins, caskets	5	1,229, 723	Roje, twine................	4	1, 263, 899
Cooperage..	18	1,958, 977	Rubber goods	7	449, 389
Copper, brass.	27	3, 686, 181	Signs....	5	99, 078
Cotton mills.	2	436, 324	Smelters...	4	736,945
Concrete, artificial stone	6	995, 029	Sorps, candles, glue.	14	3, 484, 466
Creameriés..	6	811, 132	Stationery supplies.........	9	771, 233
Cutlery, tools.	24	936, 075	Stone, marble..	30	1,064, 005
Drugs, chemicals	88	9, 863, 539	Stoves, ranges.	19	7,516,364
Electrical apparatus	26	2, 394, 496	Surgical instruments.	8	53, 884
Electro plating.	10	133, 153	Tailors	287	11,686, 127
Fagraving, electrotyping.	32	484, 871	Tinware, sheet, galvanized,		
Flour, feed.	9	3, 199,098	iron	85	5, 975, 335
Foundries, machine shops	107	14, 492,260	Trunks, vallses..............	12	1,520,770
Furniture............. .	50	5,867, 662	Tobacco.	6	21, 127, 154
Furs, furnishings	26	983,813	Wire goods	5	2,913, 021
Qlass............	14	1,616, 294	Wood working	41	711, 043
Grocers' sundries	50	11, 704, 514	Miscellaneous.	13	313,077
Hair goods......	6	48,000			
Harness, saddles	37	$1,512,018$	Total.	2,855	314, 185, 326
Hats, caps.	11	409, 456			

Memphis is typically the same class of city as St. Louis, except as to size, and is one of the most progressive and prosperous cities of the valley.
New Orleans has not been considered as needing special description, because of its well-known standing as a commercial port of size, being the twelfth city in the United States in point of size, and the second, city in point of foreign trade. Its foreign trade for 1908 (receipts and shipments) was 3,527,097 tons (Annual Report, Chief of Engineers, U. S. Army) valued at $\$ 159,455,773$ for exports and $\$ 42,785,606$ for imports, total $\$ 202,241,419$ (World Almanac, 1908).
The development of the lower Mississippi River must necessarily affect the development of the entire river basin including the basins of the upper Mississippi above St. Louis, the Missouri, and the Ohio.
The States between St. Louis and St. Paul are'still largely undeveloped. On the west side of the river some timber still remains to be cut, iron and cement ores are a waiting cheap transportation, agricultural products and live stock will be raised in larger quantities, and manufacturing plants will be established as the country fills with population. Illinois is richly underlaid with coal, sufficient for many years to furnish considerable quantities for export trade as well as for local demands.
The Missouri River States, Missouri, Kansas, Nebraska, Iowa, and both Dakotas, under increase of population will add enormously to all classes of products, agricultural, mineral, and manufaciured, for export after supply of home demands.
The Ohio River Valley (see Ohio River Board report of 1906-1908) has yet large areas of timber, cement, and coal lands to develop and shows every indication of great future developmeni of population, farming, and manufacturing industries.

All these three upriver basins may be expected to interchange their surplus products with those of the lower-river basins, calling upon the latter for such articles as rice, sugar, molasses, etc., which are better produced in the southern alluvial valleys.
The waterway and its channels.-As regards the navigable waterway itself, between the Gulf and the Great Lakes (the only feature connected with the transportation development for which the War Department is in any way responsible), it has been possible for several years, even during low-water seasons, to freely send boats of 25 to 30 feet draft from the Gulf 270 miles to New Orleans, Baton Rouge, and Bayou Sara, 9 feet draft thence 840 miles to Cairo, 8 feet draft thence 182 miles to St. Louis, thence $4 \frac{1}{2}$ feet draft 365 miles up the Mississippi and Illinois rivers and through the Illinois State Canal to Chicago. Connected to this through route are good boat channels of at least $4 \frac{2}{2}$ feet at low water (7 feet during 1907-8) from the mouth of the Illinois River 620 miles up the Mississippi to St. Paul; and of at least $2 \frac{1}{2}$ feet at low water from just above St. Louis 2,285 miles up the Missouri to Fort Benton (with $3 \frac{1}{2}$ feet below Sioux City and 4 feet below Kansas City); and of 9 feet at mean stages of water from Cairo abouit 1,000 miles up the Ohio to Pittsburg (under improvement to 9 feet depths at low water), and thence with 5 feet low-water depth 128 miles up the Monongahela to the Pennsylvania coal fields; and 6 feet at low water for 90 miles up the Kanawha to the West Virginia coal fields, besides long distances at mean and high water stages up all the many other less important tributaries, among which are the Allegheny, Little Kanawha, Muskingum, Kentucky, Cumberland, Tennessee, St. Croix, Minnesota, Osage, Gasconade, St. Francis, Yazoo, Arkansas, Red, all of which carry good depths at mean stages of water and penetrate regions of great fertility and great natural resources, though as yet sparsely settled and largely undeveloped. This waterway system of about 14,000 miles length of navigated rivers, so far as concerns its existing boat channels, their depth and capacity for boat travel, is, as a whole, the equal of anything in Europe, where much of the canal and upriver boat traffic is done on 3 feet draft; most of it is done on 6 to 8 feet draft, and where as much as 10 feet draft is exceptional. All the rivers of the Mississippi Valley, so far improved, are in far better navigable condition at the present time than before improvement work was started.
As to the upper Mississippi River, the last annual reports of the Chief of Engineers and the officer in charge show the river to be far better in every way to-day than formerly, and show also that there is no difficulty whatever in securing for the entire length of river at least 6 feet depth at times of dead low water, with reasonable rapidity, as soon as the cost of the same shall be provided by the Federal Government. During the fiscal year 1907-8 (see annual reports for 1908) there was not at any time at any point of the river from St. Paul to the mouth of the Missouri (except in the Des Moines Rapids Canal) a channel depth of less than 7 feet.
On the Missouri River the work laid down by the Engineer Corps in past years contemplated and prophesied a good channel wherever and whenever provided for by the necessary funds. In this case the work was started at a point between St. Louis and Kansas City and carried on downstream with the idea that the funds would be regularly forthcoming until the work was completed, such arrangement being best suited to quickness and economy of work. But as the appropriations were not continued long enough, the improvement neyer reached St. Louis. However, in the last annual report (1908) of the Chief of Engineers, including the report of the officer in charge of the Kansas City office of the Missouri River improvement, it is shown that over the completed stretch of river, including 45 miles of the worst parts of the old river, a depth of at least 6 feet at low water has been secured and is still maintained, the construction works are still doing excellent service, much valuable new land has been reclaimed, and much valuable old land has been protected from future destruction. The whole river will be made equally good as soon as funds are forthcoming. Meanwhile 4 feet draft can be carried up to Kansas City, $3 \frac{1}{2}$ feet to Sioux City, and 2 feet to Fort Benton every day of the year except when the river is closed by ice.
On the Mississippi River from St. Louis to Cairo the increase in depth and width of channel during past years, while under improvement by the Engineer Corps, has been quite marked, and to-day there are only a few days at a time for a few times each year when a boat drawing 8 feet can not freely go up and down the river anywhere between St. Louis and Cairo. Such improvement affords conveniences and facilities to navigation far in advance of anything at present being utilized or being demanded by the boating interests, and such improvement is practically equal to that which the Ohio Valley interests are at present demanding for their own river, and with which they will be well satisfied. The delays of navigation on this stretch of river from St. Louis to Cairo are trifles in comparison to the winter delays of navigation on the Great Lakes, where the boat commerce is many times greater and where all reasonable demands of commerce are to-day fully met and satisfied.

On the Mississippi River below Cairo the river is also in far better condition now than ever beiore, and except for a few days a few times each year there has been maintained for several years a least depth of 9 feet, capable of carrying all boats that may reach it from the Ohio River after the improvements in progress thereon shall have been completed.

As a matter of fact, there are very few rivers anywhere in the United States or Europe that are to-day in better condition for navigation than the Missouri, the Mississippi, and the Ohio, taken as an entire system. Moreover, so far as their improvement has been carried out under the Engineer Department methods, the results obtained per dollar of cost have equaled anything in foreign countries, the main trouble to-day being that the improvement is only partial, having been carried on of course only so fast as the Federal Government furnished funds for the work.

The past decrease of commerce and the present lack of increase of commerce on these rivers is not due to lack of depth in the river so much as due to the conflicting interesits of land and water transportation, and to the laws governing the movement of raw products toward the centers of manufacture, and of manufactured products toward the centers of consumption, combined, perhaps, with a lack of development in steamboat construction and driving power. No river improvement can be expected to send either grain, or coal, or iron, or manufactured products, from places where their value is high to other places where the values are lower. At the present time the question is one almost entirely of demand and supply. No great development of boat commerce can be expected until it is evident that the goods carried can be moved from a place where they can be bought at low prices to a place where they can be soid at hisher prices, so that the freight charges can be paid out of the profits of the sales. The present lack of development of commerce on the Mississippi River is properly due to the economic laws governing natural lines of travel of raw materials and manufactured products, and to the existing conflict of interests between steamboats and railroads.
The small extent of water transportation over the waterways of the United States in the Mississippi Valley, and its marked decadence in recent years, has been a matter of great surprise to many American engineers, as well to the engineers of Europe. The mileage of navigable waterways of the Mississippi basin, including its canals and the depth and width of the navigable channels therein, is great, even in comparison with those of the inland waterways of Europe; and the river facilities, so far as the navigable channel is concerned, were good years ago, and as above shown have been very much improved and increased in recent years. In special cases, such as lumber on the upper Mississippi and coal on the Ohio, the individual load carried by or towed by single boats on the Mississippi is larger than in Europe. But the length of river haul is long per unit of population served; except at New Orleans, the dockage facilities are very slight, sometimes nothing more than a sloping bank, and are always expensive; and except at New Orleans the terminal facilities, including arrangements for transfer to rail connections, are almost entirely lacking. Freight rates by water are therefore high in the Mississippi Valley as compared with the rates by rail between the same terminals.
In Germany and the adjacent European countries, with their dense population, with a less waterway mileage, and only about one-quarter the railway mileage per head of population that there is in the Mississippi Valley, and with high railroad rates, it is comparatively easy for them to keep their waterways full of steamers and barges, distributing to the interior of the country quantities of freight far in excess of anything that can be expected in the United States for many years.

The main feature of difference between the Mississippi Valloy system and those of European rivers at the present time is that in the Mississippi Valley (the Ohio River excepted) there is a lack of freight demanding transportation at rates high enough to justify the establishment and operation of good boat service, that the paralleling railroads with gentle grades stand prepared to carry all the freights more directly, more quickly, and more cheaply than steamboats can do even in wide and deep channels such as those between New Orleans and Baton Rouge, and that the local conditions and laws favor the railroad service rather than the boat service in matters of transportation. As population and general business incresse, as the railroad service becomes congested, and as the boat service improves in its methods of handling freights and of collecting goods from the shipper and delivering them to the consignee, the waterways will probably again resume their proper place as a valuable and economical method of freight transportation, at least for the heavier and bulkier classes of goods.
The boats with their equipment and service.-The Department of Commerce and Labor, Census Bureau, special report on transportation in 1906 is especially full and complete in the matter of boat description. A few only of its tables are here inserted (Exhibits Nos. 6, 7, 8, and 9) and these have been modified somewhat in arrange-
ment and a few percentages added to better attract attention to certạin features For the benefit of persons not accustomed to the daily use of such tables the follow. ing explanations may be found useful: Vessel tonnages must not be confused with cargoes or freights, as the tonnage refers usually only to the measured capacity of the vessel, remains the same whether the vessel be loaded or empty, and is usually reported only once a year, while the cargo or freight is an actual load reported each time that the vessel is loaded or unloaded. Moreover, the registered tonnage of a vessel may often differ by 10 to 25 per cent from the tonnage of its full cargo, according to the methods of measurement and loading and to the character of the cargo. River or port commerce or traflic usually means the total of shipments and receipts, which is nearly double that of either alone. Even within the limits of a closed district the shipments and receipts may not agree in amount, owing sometimes to the consumption of the cargo by the vessel or its passengers, sometimes to a credit of some of the freights to other districts, and somelimes to incompletences of reports.

In descriptions of vessels of the Mississippi system the Department of Commerce and Labor makes St. Louis the dividing point between the upper and lower Mississippi systems, crediting the upper system with whatever it sends to or by or receives from St. Louis, and crediting the lower system in similar fashion, but giving all the local business within its harbor to the lower Mississippi. In its division between rivers of these systems credit is given to a river only when the movement starts or stops within the river, and not to a movement which both starts and stops beyond the limits of the river, so that grain freight from points on the Missouri to points on the Tennessee, or coal freight from the Monongahela to the lower Mississippi, would be credited to these rivers and not to the Ohio through which it passes on its way. This is done to avoid a confusing duplication. The 1889 reports in some cases represent a somewhat difierent distribution, so that comparisons of 1889 and 1.906 reports are subject to minor discrepancies. Where reports are based upon combinations of reports of various departments there are also sometimes slight differences due to the fact that the census reports cover calendar years and all boats of 5 tons or more measurement, while the navigation reports cover fiscal years and only documented boats. In all the census reports the federal vessels have been omitted, as also all boats of less than 5 tons burden. The group of vessels termed "unrigged" by the Census Bureau includes barges, flatboats, lighters, scows, dredges, derricks, pile drivers, hoisting barges, floating elevators, canal boats, and all similar craft, when without means of self-propulsion. The unrigged craft alone or in tows, handled by a small towboat, perform for the river the same functions as are performed by drays and express wagons on land, and are increasing in large numbers every year.

Exhibit No. 6.-Vessels and capacity of the lower Mississippi River from St. Louis to New Orleans for 1906 as specially reported in 1908 by the Department of Commerce and Labor (Census Bureau).

	Vessels.			
	Number.	Gross tonnage (tons).	Proportion ofentire Mississippi system.	
			Number.	Tons.
Commercial vessels:			Per cent.	Per cent.
Tugs and towboats.	131	10,004	21	16
Packet boats......	-90	17,474	23	32
Barges and tows.	354	-94, 14.496	$\stackrel{4}{4}$	$\stackrel{2}{65}$
Ferryboats.... Yachts........	$\stackrel{52}{37}$	14,498 858	17 17	${ }_{26}^{65}$
All others.	8	437	21	20
Grand total.	672	137, 482	7	3

Exhiri No. 7.-Vessels, tonnage, and service-Freight vessels of Mississippi Valley, 1906, as compared-with entire United States, and with 1889, as

Exhibit No. 8.-Number of hoats of different tonnage capacities, Mississippi River, 1906, as reported in 1908 by Depariment of Commerce and Labor (Census Bureau).
[Omitting ferryboats, yachts, and small pleasure boats.]

By system and class.	Size of boat by tonnage.								
	5 to 49 tons.	50 to 99 tons.	$\begin{aligned} & 100 \\ & \text { to } 199 \\ & \text { tons. } \end{aligned}$	200 to 299 tons.	300 to 399 tons.	$\begin{aligned} & 400 \\ & \text { to } 499 \\ & \text { tons } \end{aligned}$	$\begin{aligned} & 500 \\ & \text { to } 999 \\ & \text { tons. } \end{aligned}$	$\begin{gathered} 1,000 \\ \text { to } 2,500 \\ \text { tons. } \end{gathered}$	Total all sizes.
Lower Misslsslppl system:									
Freight and passenger packets.	30	21	7	10	4	5	12	1	90
Tugs and towing vessels.	68	39	14	6	1		3		131
Barges and tows..	28	63	90	52	36	31	43	11	354
Ohlo River system:									
Frelght and passenger packets.	70	29	26	19	9	3	9	2	167
Tugs and towing vessels.	168	87	81	20	15	7	20	1	399
Barges and tows....	367	189	1,582	651	29	371	1,988	2,227	7,404
Freight and passenger packets.	80	22	14	8	1	2	62	133
Tugs and towing vessels.	55	24	7	3					89
Barges and tows......	200	165	57	5	1	1			429
Whole Mississippl system:									
Freight and passenger packets.	180	72	47	37	14	10	27	3	390
Tugs and towing ressels..	291	150	102	29	16	7	23	1	619
Barges and tows.	595	417	1,729	708	66	403	2,031	2,238	8,187

Exhibir No. 9.-Value of freight-carrying vessels of United States in 1906, as reported in 1908' by Department of Commerce and Labor (Census Bureau).

By class.	Atlantic and Gulf.	Pacific, including Alaska.	Great Lakes and St. Lawrence.	Mississippl, including tributaries.	All other inland waters.
A verage tonnage per vessel:	T'ons.	Tons.		Tons.	Tons.
Steam (sell propeller).	269	486	1,143	102	
Unrigged (barges and tows)	260	192	270	521	133
A verage value per ton:					
Steam...	\$133	$\$ 117$ 30	\$61	\$90	$\$ 103$
Unrigged.............	18	30	32	2	10
Steam....	35, 826	56,698	69,799	9, 196	6, 604
Unrigged.	4,789	5,776	8,540	1,179	1,310

The table of vessels and capacities of the lower Mississippi (Exhibit No. 6) shows that while the lower river carries two-thirds of the ferry service of the entire Mississippi system it handles only about one-third of the packet-boat freights and only about one.fiftieth of the barge freights, except where it receives these barges from the Ohio River or from the upper Mississippi.
The table of vessels, tonnage, and service of the Mississippi as compared with the United States (Exhibit No. 7) shows that while the Mississippi Valley waterways have, since 1889, actually gained in total number of vessels, value of vessels, and gross income, they have relatively fallen far behind in every way in the general advance by the freight-boat service of the entire country in tonnage, value, income, etc.
The table giving number of boats of different tonnage capacities in the Mississippi River (Exhibit No. 8) shows that on the lower Mississippi the majority of the boats are of less than 200 tons capacity, although barges and towboats are broadly distributed among all sizes up to 2,000 tons. This is in decided contrast with the upper Mississippi River, where the majority of boats are less than 100 tons, and in equally great contrast with the Ohio River, where more than one half of the barges are over 500 tons. This table, taken in connection with the preceding table, shows very plainly that the mass of the freight in the Mississippi Valley is being carried on barges of comparatively light draft rather than in packet boats.
The table giving the value of freight-carrying vessels in the different parts of the United States (Exhibit No. 9) brings out forcibly the much greater cost of vessels per ton of freight carried along the ocean frontages than on the inland rivers. The greatest contrast between the cost of the barge or tow and the self-propelling vessel per ton of freight carried is in the Mississippi Valley, where the self-propelling vessel shows a first cost per ton 45 times that of the barge.

The Ohio system includes nearly two-thirds of all towboats and a little more than three-fourths of all towboat tonnage of the Mississippi Valley. The lower Mississippi is prominent in ownership of ferryboat tonnage, and the upper Mississippi in the ownership of yachts and pleasure craft.

A little over two-thirds of all the barges and tows in the Mississippi Valley, constituting nearly four-fifths of the total tonnage, belong to 10 owners, all of the Ohio system, i. e., large coal companies of the Pittsburg district. The barge equipment of these 10 owners handled over 40 per cent of all the barge freight, even including all harbor work and car ierries.

The Mississippi River and its tributaries had, in 1906 as well as in 1889, almost as many wooden boats as the rest of the United States, but there is a tendency at the present time. by reason of their short life, higher rate of insurance, and greater cost for repairs, for them to be replaced on the river in the same way as in the past on the ocean and Great Lakes, by iron and steel boate.

The old wooden coal barges, which could be used but once and then sold for rough lumber on their arrival at the lower river ports, are gradually being abandoned in favor of steel barges, which, besides being stronger than the wooden barges, will carry about 20 per cent more cargo on the same drait of water. The barge freight which in 1889 was about six times the barge tonnage, had become in 1906 about four times the barge tonnage.
The flat-bottom stern-wheeler still holds its preeminence as the prevailing and most useful type of steamboat on the Mississippi. Side-wheelers, where used, are employed mainly for packet service, and especially ferry service, and the center-wheelers almost exclusively for ferry service. Screw-propeller boats, while forming nearly 25 per cent of the total number, carry only about 6 per cent of the total tonnage. Gasoline boats amounted in 1906 to nearly 40 per cent of the total number, but their tonnage was only about 4 per cent of the totals and their horsepower about 4 per cent also. A large amount of the river business is being captured by these small gasoline boats, which for light work are replacing the more expensive steamboats. This accounts for the large increase in number of new vessels showing a decrease in average tonnage. The boats in actual use on the Mississippi River at and near St. Louis are shown by Exhibits Nos. 10 and 11.

Exiribit No. 10.-Extract from the report of the St. Louis Merchants' Exchange for 1908. STEAMERS AND BARGES.
Number of vessels and their tonnage enrolled and licensed at the port of St. Louis, Mo., December 31, 1908:

Class of vessel.	Number of vessels.	Gross tonnage.	Net tonnage.
Permanent enrolled wood steamers	55	16,022	15,252
Permanent enrolled barges (wood).	5	431	431
Permanent enrolled steamers (metal)	9	2,940	2,257
Permanent enrolled barges (metal).	1	1,162	1,162
Licensed (under 20 tons) steamers (wood)	27	279	247
Licensed (under 20 tons) barges	1	16	16
Licensed (under 20 tons) steamers (metal).	2	37	21
Permanent enrolled steam yachts (wood).	6	393	- 269
Permanent enrolled steam yrachts (metal).	3	274	- 220
Licensed (under 20 tons) steam yachts (wood)	6	122	94
Total.	115	21,676	19,969

Exsibit No. 11.-Extract from the report of the St. Louis Merchants' Exchange for 1908.

Stedmers plying between s'r. Louis and other ports during 1908.

"Diamond Jo" Line.-Steamers Sidney, St. Paul, Dubuque, and Quincy, on upper Mississippi River.
Eiagle Packet Company.--Steamers Spread Eagle and Bald Eagle, on upper Mississippi River; steamers Grey Eagle, Cape Girardeau, and Eagle, on lower Mississippi River; steamer Alton, excursion boat; tug Echo, St. Louis Harbor.

Lee Line.--Steamers Stacker Lee, Peters Lee, Ferd Herold, and Georgia Lee, on lower Mississippi River.

St. Louis and Tennessee River Packet Company.-Steamers City of Savannah and City of Saltillo, on Tennessee River.

Independent Cape Girardeau Packet Company.-Steamer City of Memphis, on lower Mississippi River.

Afissouri River and Kansas City Transportation Company.-Steamers Chester and Tennessee, on Missouri River.

St. Louis and Calhoun Packet Company.-Steamer Belle of Calhoun, on upper Mississippi River.

Burrett Line.-Barrett, Major Slack, and steamer Beaver, on lower Mississippi River.

West Kentucky Coal Company.-Towboats Jno. A. Wood, Harry Brown, Pacific No. 2, Fred. Hartweg, W. W. O'Niel, Wash Hornsbell, and Mariner, on Ohio River.

City boats.-Steamer Erastus Wells, St. Louis Harbor; steamer Saturn, Chesley Island.

Madison County Ferry Company.-Ferryboats Madison and C. S. Greely, North Market street.

Wiggins Ferry Company.-Transfer boats Geo. H. Madill and Menry Sackman; tug Henry C. Haarstick; ferryboats Samuel B. Wiggins, Henry S. Clark, Alonzo O. Church, and Andrew Christy, St. Louis Harbor.

Interstate Car Transfer Company. - Transfer boat Wm. McClelland, transfer barge Holbrook, and tug W. K. Kavanaugh, St. Louis Harbor.

St. Clair Ferry and Transfer Company.-Ferryboat Florence, Sidney street.
Waterloo-Carondelet Ferry Company.-Ferryboat Dr. Frederich Mill, Davis street.
Ivory Station and Missouri Pacific Railroad ferry. -Transfer boat James Y. I.ockwood, and barge E. S. Jewett, Ivory street.

Tugs plying in St. Louis Harbor.--Colorado, and R. E. Carr, Union Sand and Material Company; Susie Hazard, Illinois Central Railroad Company; Reliance, Consolidated Coal Company.

Independent packets and towboats.-Steamers New Haven, Helen Blair, and Omaha, upper Mississippi River; steamer J. F. Silber, Missouri River; steamer Mary, Illinois River; steamer Hy. Wohlt, Missouri River; steamer J. M., upper Mississippi River; steamer J. R. Wells, Missouri River.

United States boats.-Steamers Mississippi, J. N. Macomb, Lily, Illinois, H. G. Wright, Missouri.

Pleasure boats.-Steamers City of Providence, Chaperon, David Swain, Alton, Remora, Columbia, Kabekano, W. W., Wanderer, Liberty, D. Cawley, J. S., Swan; yachts Crescent, Geraldine, Mary B. Franklin, Wooden Shoe, Monkey Wrench, Durc, Wildwood, Independence, Columbia, Bachelor, Frolic, Nevermind, Theociste, Josephine, Leisure Hour, Louise Rumsey, Clarence S., Irma, Dragon, Victoria, Nomad, Mary Franklin, Allamakee, Margery II, Jennie M., Idle Hour, Comet, Lydia, Castaline, Kid, Burr Oak, Duchess, Olympia, Navomobile, Harriet, Emma Della, Sylph, Jane, Kity Sparks, Mary Sparks, Come On, Albion, Phyune, Richfield.

On the lower Mississippi and Ohio rivers, as on European improved rivers and canals, the tendency is to seek economy of freight transportation by towed barges rather than by self-propelling packet boats. Wherever the traffic is offered in lots of over 200 to 1,000 tons the use of towboats and barges becomes the most economical.

Three and a half million tons of coal or heavy freights can be sent from Pittsburg to New Orleans by use of 9 -foot drait steel barges and stern-wheel towboats in large fleets at a cost not exceeding $\$ 7,000,000$ for plant and $\$ 2,700,000$ for annual operation or about 0.03736 cents per ton mile (Ohio River Board report).

One stern-wheel towboat has been known to handle as much as 56,000 tons of freight in one tow (Ohio River Board report), a freightage equal to that of 5 of the largest lake vessels or 3 of the larges ocean steamers, or of 8 to 15 miles leng th of railroad cars; and to handle as much as $2,000,000$ feet of logs, enough to fill 14 trains of 24 cars each by rail (Ex-Governor Van Zant of Minnesota, 1904 Dubuque Convention).

Where the current is swift and the river winding, a small light draft stern-wheel boat lying across the front of the tow of barges is sometimes added to help steer the tow around bends.

In 1864-1891 barges of 500 to 1,000 tons and shallow draft have carried ore and coal between Sulphur Springs, Mo., and Pittsburg, Pa., a 1,127-mile route, at 1.5 mills per ton mile (Ohio River Board report).

On the 1,200 or more miles of Belgian waterways around Antwerp the barge traffic of about $7,500,000$ tons is mostly carried on shallow-drait barges of less than 1,200 tons each (Montreal Harbor Commission report).

On the 7,500 or more miles of German waterways connected with Hamburg the barge traffic of about $8,500,000$ tons is handled by about 1,400 self-propellers and about 5,000 barges of from 100 to 1,500 tons of from 3 to 6 feet draft (Montreal and Chicago harbor commission reports).

On the Rhine, where the traftic is over $16,000,000$ tons, much of the traffic is carried by barges (towed tandem in groups of two to five) of about 460 feet length, 47 feet breadth, and carrying about 3,500 tons when fully loaded to about 10 feet draft, the channel depths varying from 6 to 10 feet (Chicago Harbor Commission report), as well as by smaller barges of 1,000 tons each (Ohio River Board report).
On the Volga, with traffic of over $14,000,000$ tons, of which three-fourths is upstream, economical rates of as low as one-half mill per ton-mile are reached during good water by tows of barges of 11 to 12 feet draft (Ohio River Board report). But the controlling depth on crossings of lower 1,300 miles was reported in 1908 as only $5 \frac{1}{4}$ feet.
No vessels of over 2,500 tons make use of the Mississippi Valley except in the deepwater portion of the river below the mouth of Red River. Although every deep-drait boat reaching New Orleans could easily proceed up the river about 130 miles further, to Baton Rouge, there is apparently no incentive for its doing so, as the goods can best be put ashore at New Orleans, where the terminal facilities are gool, after which railroad charges for delivery at factory sidings are usually less than river freights combined with drayage up the bank and across the city or country to the factory. The daily expense of large steamers is so great that they must avoid all possible delays in loading and unloading in order to be profitable. For example, on the Great Lakes, where modern efficient transportation methods are already in use, a steamer, the If. J. Earling, has been fully loaded with 9,277 tons of ore in seventy minutes, a veraging 7,288 tons per hour, and the George W. Perkins has been fully unloaded of 10,346 tons in four hours and ten minutes, averaging 2,582 tons per hour (Census Bureau Report, 1906). The keynote of cheap transportation service on the Great Lakes is not simply large boats, but is preeminently the reduction to a minimum of all delays at terminals as well as en route.

The Great Lakes have been often referred to as an illustration of the enormous development of freights by reason of the existence of deep draft and as an argument for deep drafts in rivers. The experience of the Great Lakes navigation development is, however, not properly applicable to that of waterways in the other parts of the United States, as the Great Lakes, for the greater part of their distance, have broad, deep channels, more like the ocean than like any rivers of North America except the lower St. Lawrence. The movement of deep-draft boats in broad, open channels can not be properly quoted as an illustration of what would happen to similar boats in narrow, winding, river channels.
Large, deep-draft, heavily loaded boats are unwieldy, especially when trying to back against the current; and when coming downstream such boats can not be handled safely except in wide, dcep channels, such as are far greater than can ever be expected in the Mississippi River above the mouth of Red River. While an ocean steamer might safely go slowly up the Mississippi against the current with a draft somewhat less than the channel depth over its bars, it is very doubtful whether it could ever get down the river with safety except during high freshets when all bars were deoply submerged.

In order to put the Mississippi River Valley waterways, as regards facilities of transportation, on a par with the railroad systems of the valley, which have branches or sidetracks to every city or town within easy reach, it would be necessary that the box cars of railroads should be represented on the river by barges of uniform draft for the entire river system, so that one or more barges could be loaded at factories and freighted along the river in large tows, to be later collected at depots at the mouth of each tributary, where new tows could be assembled for through towage to their final destination, cach barge, at the end of its route, delivering ari unbroken cargo to the consumer. Such condition is practically achieved in Europe by the great number of its light-draft barges and the great number of small harbors or havens scattered along its rivers and canals.

Amount and character of freights carried and demanding carriage by water routes.-Letters were sent out in the fall of 1907 to commercial organizations and individuals supposed to be specially interested or specially well posted as to river valley commerce at all the large cities from the mouth of the Illinois River to New Orleans, asking information as to the existing local shipments and receipts by rail, and especially those which might have been taken care of by boats if a 14 -foot draft in the river had been available continuously during the preceding year. Later, in 1908 and the early part of 1909 , further letters were sent out to secure additional information and especially to find out what definite information existed among the commercial organizations of the valley as to the relation between boat and rail rates along the river valley. The replies were considerably fewer and lexs full than expected.

Commercial organizations along this river do nut appear to have yet made any special study of the ratio of boat and rail rates or of the reasons for the wide differences of rates in some cases and the lack of differences in others.

The more important of the 1907 letters and their replies are as follows:
Exhibit No. 12.-Circular to commercial organizations sent out December 27, 1907.
Sirs: Referring to the agitation of a project for a 14 -foot waterway from Chicago to the Gulf, and to the apparent desire of the commercial organizations of the Mississippi Valley for such waterway, and in view of the fact that the action of Congress in the matter will depend not only on the report of the Board on Examination and Survey of the Mississippi River as to the feasibility and practicability of such an undertaking from an engineering slandpoint, and its probable cost, but also on the amount of commerce that can reasonably be expected to be carried on such waterway, the Board above mentioned, of which the undersigned is chairman, would be glad to have your cooperation in the compilation of cetrain commercial statistics, of which the following is an outline of the information desired:

1. What amount of freight (stated in tons, if possible) was received at your city, by rail, during the calendar year 1907?
2. What amount of such freight was carried by roads running approximately parallel to the Mississippi River for any appreciable distance?
3. What amount of such freight, in your opinion, could reasonably be expected to have been carried by boat had the 14 -foot channel been in existence during 1907?
4. What amount of freight was shipped from your city, by rail, during the calendar year 1907?
$\overline{\bar{j}}$. What amount of such ireight was shipped over roads ruming approximately parallel to the Mississippi for any appreciable distance?
5. What amount of such freight could reasonably be expected to have been shipped by boat had the 14 -foot waterway been in existence during the year 1907 ?

This request is being sent to commercial organizations at the iollowing places: Grafton, Ill., Alton, Ill., St. Louis, Mo., Cape Girardeau, Mo., Caruthersville, Mo., Chester, Ill., Cairo, Ill., Paducah, Ky., Memphis, Tenn., Greenville, Miss., Rosedale, Miss., Vicksburg, Miss., and New Orleans, La. In order that the entire reach of the river from Grafton to the Guli may be covered, it is desired that the information supplied by you include not only the freight received and shipped from your own city, but also the freight received and shipped from all shipping points (on both sides of the river) between your city and the city next below you which will receive a copy of this request.

The first paragraph of this letter will indicate the use which is to be made of the information desired. The object is to secure the total amount of freight handled by rail along the Mississippi River during 1907, and the proportion which could have been practically diverted to river transportation. Information concerning the river traffic for 1907 is being compiled from other sources.

The information supplied by you will be merged into a general total, thus burying the individual data for any particular road, which, if desired, will be treated as confidential.

> Vory respectfully, \quad Cunton B. Sears, Senior Member, Board of Examination and Survey Mississippi River.

Memorandum: Under date of Deceraber 27, 1907, the above letter requesting data as to freight carried on the Mississippi River was mailed to commercial organizations and individuals at Grafton, Ill.; Alton, Ill.; St. Louis, Mo.; Cape Girardeau, Mo.; Caruthersville, Mo.; Chester, Ill.; Cairo, Ill.; Paducah, Ky.; Memphis, Tenn.; Greenville, Miss.; Rosedale, Miss.; Vicksburg, Miss.; New Orleans, La.

Replies containing some of the information requested were later received from the organizations at St. Louis, Caruthersville, and Rosedale.

Exhibit No. 13.-Letter of the Lakes-to-the-Gulf Deen Waterway Association.

$$
\text { St. Louis, Mo., February s, } 1908 .
$$

My Dear Sir: Replying to your letter of December 27, I beg leave to answer the questions you propose as follows:

Question 1. What amount of freight (stated in tons, if possible) was received at your city, by rail, during the calendar year 1907?

Answer 1. Freight in tons received by railway at st. Louis during the calendar year 1907, $29,417,845$ tons.

$$
\text { H. Doc. } 50,61-1 \cdots-22^{*}
$$

Question 2. What amount of such freight was carried by roads running approximately parallel to the Mississippi River for any appreciable distance?

Answer 2. 9,921,748 tons of freight were carried into St. Louis during the calendar year 1907 by railways running parallel to the Mississippi River, this freight being collected by the railways from St. Paul, Minneapolis, New Orleans, Memphis, and points between.

Question 3. What amount of such freight, in your opinion, could reasonably be expected to have been carried by boat had the 14 -foot channel been in existence during 1907?

Answer 3. More than $6,000,000$ tons of this freight would have been carried by boat. had the 14 -foot channel been in existence during 1907. This would have left the railways irce with their equipment to carry much freight that was not carried on account of the congestion, and the boats also would have carried very much more of the freight that was not carried but was ready to be handled. Moreover, by this ready movement of freight there would have been a very large development of freight which, without the $1 \cdot 1$ foot chaunel, is not carried at all.
Question 4. What amount of freight was shipped from your city by rail during the calendar year 1907?
Answer 4. The freight shipped from St. Louis by rail during the calendar year of 1907 was $17,846,155$ tons.

Question 5. What amount of such freight was shipped over roads running approximately parallel to the Mississippi for any appreciable distance?

Answer 5 . The amount of freight shipped out of St. Louis during the calendar year of 1907 over roads running approximately parallel to the Mississippi River was $5,299,158$ tons.
Question 6. What amount of such freight could reasonably be expected to have been shipped by boat had the 14 -foot channel been in existence during the year 1907?
Answer 6. More than $3,000,000$ tons of this freight would have gone by boat had the 14 -foot channel been in existence during the year of 1907 .

It is absolutely certain that had the 14 -foot chamel been in existence during the year of 1907 not only would the boats have carried, as is stated above, more than twothirds of the total of the freight carried by the railways, but so much more freight would have developed that the railways would have carried as much as they did, which was all they could carry, and the boats not only would have carried two-thirds of the freight carried by the railways, but they would also have carried as much as their capacity would have allowed. In considering the necessity for adding a 14 foot channel to the present rail freight facilities the Mississippi Valley has, it must always be kept in mind that the railways are not carrying the freight which is offered, and that we have not had for ten years an opportunity to test the amount of freight which would be offered to carriers were the facilities adequate.

Very truly, yours,
W. F. Saunders, Secretary.

Col. Clinton B. Sears,
United States Engineer in Charge, Room 428, Custom-House, St. Louis, Mo.

Exbibir No. 14.-Letter of the Board relative to statistics.
Boari of Examination and
Survey of Mississippi River, Ofpice of the Senior Member, Room 428, Custon-House, St. Loutis, Mo., November 20, 1908.
Dear Sir: Confirming verbal request of several days ago, I have herewith to make oricial request upon your association that you obtain, as far as possible, and present to me in writing, full statistics as to the present and prospective commerce of the Mississippi River from St. Louis to the Gulf, both local and general, and upstream as well as downstream.
The above information is included in that which, by the act of March 2, 1907, is requested by Congress from the Board of Engineers for the examination of the Mississippi River below St. Louis--commonly known as the 14 -foot Waterway Board-. of which I am the senior member.
In its past inquirics the Board has met with a great deal of difficulty in obtaining any definite valuable statistics of commerce, although they have been promised by various partics along the river.

Such statistics as have already been received from the St. Louis Business Men's Leegue, while showing considerable traffic on the river, do not in any way seem to indicate that the existing facilities of navigation have been utilized to full extent, and do not seem to indicate any need for a wider or deeper channel for any greater number of days during the year than already exists. A great deal more is yet needed in the way of statistics of present commerce to make evident the fact that the present navigation facilities of the river are insufficient for the commerce of the present time and of the next few years.
The prospective commerce, however, as to which Congress aske full information, may very properly include anything and everything which it is probable will develop in case of the construction of a 14 -foot depth channel, of suitable width, from St. Louis to the Gulf. Should there be any evident demand for such commerce, or should there be any progress of construction in steamboats requiring 14 -foot draft (or even any other depth between 8 and 14 feet) for proper utilization, it seems desirable to have the matter brought out very fully and plainly. It would be also very desirable to have brought out with equal plainness the future saving in freights, or any other future decided gain to the transportation interests of the country, that will result from the construction and maintenance of a 14 -foot depth channel in place of the present good 8 -foot depth channel.
It is presumed that as your association is urgent in the demand for this increased facility of navigation from St. Louis to the Gulf, it must either have in its possession, or can easily secure, all the information above called for; and in view of the fact that other parties along the river are not furnishing much information in this direction, it is hoped that you will be able to make your reply as full and complete as possible, and that you will let me have it from you sometime within the next three or four weeks.

Very respectfully, W. I. Bixby,

> Colonel, Corps of Engineers, U. S. Army, Senior Member of the Board.

Mr. W. F. Saunders, Secretary,
Lakes-to-the-Gulf Deep Waterway Association, 704 Locust Street, St. Louis, Mo.

Eximit No. 15.-Letter of The Lakes-to-the-Gulf Deep Wuterway Association.

St. Louis, December s, 1908.

My Dear Colonel Bixby: I have the honor to hand you, with this, figures concerning the tonnage between Chicago, St. Louis, St. Paul, and New Orleans, which I hope will serve the purpose of your letter addressed to me of November 20 . These figures have been obtained by Mr. P. W. Coyle, commissioner of the freight bureaut of the Business Men's League, after a thorough examination of the records of the railways and after much correspondence with organizations between Chicago and New Orleans and St. Paul and New Orleans, which have records as to tonnage.
I have the honor to add to this statement of Mr. P. W. Coyle information as to tonnage, present and prospective, gathered by myself from correspondence with commercial organizations and with railway freight officials, which information is indorsed by Commissioner Coyle as being accurate.

Very truly, yours,
W. F. Saunders, Secrelary.

Col. Wm. H. Bixby,
$\quad \begin{aligned} & \text { Corps of Engineers, U. S. Arny, } \\ & 428 \text { Custom-House, }\end{aligned}$ St. Louis, Mo.
data from commissioner p. W. Coyle, of the freioht bureau of the buniness MEN'S LEAGUE.

All rail.-Tonnage between Chicago and points in Michigan and Illinois and St. Louis, 5,500,000 tons.
Between St. Paul, Minneapolis, and Northwestern points and St. Louis, including grain and grain products, $4,500,000$ tons.
St. Louis to New Orleans and intermediate points, $3,500,000$ tons.

From New Orleans to St. Louis and Chicago, including lumber, sugar, coffee, rice, molasses, and bngging, $7,500,000$ tons.

Between Chicago and Michigan points and Ohio River crossings, such as Cincinnati, Lonisville, Evansville, ete., origimating at or having destination in the Mississippi Valley south of the Ohio River, 3,500, (100 tons.

Movement by river to and from St. Louis for the year 1907, 368,075 tons.

DATA FROM WM. F. SAUNDERS, gRCRETAIY ANJ GENERAI, MANAGER OF THE BUSINESS MEN'S LKAGUE.

Some time ago I had the honor of appearing before the Rivers and Inarbors Committee of the House of Representatives and submithing to Mr. Theodore F. Burton, chairman of that committee, through Mr. P. W. Coyle, information as to present and prospective tomnage over the territory to be served by the lakes-to-the-Gulf deep waterway, which it has taken us nearly a year to prepare. The figures of the present tonnage were prepared for the year ending 1900, which-considering present freight conditions-serve this year fairly well.
There are six roads carrying tomnage between Chicago and St. Louis-the Wabash, the Chicago and Alton, the Illinois Central, the Chicago and Eastern Illinois, and the Chicago, Peoria and St Louis. Thesesix roads carried in $19065,500,000$ tons in both directions, the movement being equally divided between north and sonth.

In addition to this and based upon the actual movement for one month, I believe it is fair to estimate that $1,500,000$ move ammally betweon Chicago and what are known as Chicago Junction points and points in the territory south of the river, east of the line of the Mobile and Ohio and west of the Carolimat to the Gulf. I am unable to obtain absolute figures upon which to base an estimate covering the traffic originating in Illinois or at Chicago and beyond moving through Ohio River crossings without passing through St. Louis, but from my experience in the handling of such trafic with a line directly interested in it, 1 believe it is fair to estimate that the tonnage pasing between that particular territory and the territory south of Cairo, east of the Mississippi River, and west of the line of the Mobile and Ohio, including New Orleans, at 2,000,000 tons annually. a
In making estimates I have endeavored to confine myself to the territory from and to which tonnage is moving by rail, a percentage of which is susceptible of diversion or which would naturally seek the improved waterway service. There is in addition to this, of course, immense traftic that would come under the influence of such rates as would necessarily follow the establishment of such a permanent channel. a
Mr. William V. Byars, internal-commerce expert, who is well known as a commercial writer, was formerly one of the editors of the New York World and of the St. Louis Republic and is now a special writer for many newspapers, in his report to the Board of Engineers at St. Louis upon the extent of deep-waterway traffic, said:
"The freight passing between Chicago and St. Louis is not separately reported. It is estimated at $20,000,000$ tons south, $15,000,000$ tons north, ammally, including shipments on the Vandalia and the Big Four lines."
Mr. Byars remarks, in further explanation of these figures, that all the freight from Chicago passes by St. Louis just as the very great grain tomage of Chicago goes by st. Louis, though not through it, and all the tonnage originating at towns between thicago and St. Louis going in either direction was included in his estimates. lieports of the Chicago and St. Louis boards of trade, such tonnage reports of the railways as are kept of this class of freight, and correspondence with shippers in the towns concerned were the basis of his estimates.
We contend that this proposition should not rest with so much importance on the question of tonnage now moving between Chicago and St. Louis, but that it should be considered upon the broad ground of its effect on the commerce, not only of the Mississippi Valley, but of the entire territory between the Atlantic coast and the Rocky Mountains. It is a fact that the rail lines now operating between Chicago and St. Lovis are unable to handle the traffic offered either to their batisfaction or to the satisfaction of the shipper, notwithstanding the fact that within the past ten years their facilities have been increased to the extent of two new through lines and the double trackings of a large part of two of the old lines. It is also a notable fact that during that period the old lines have gradually increased their tonnage until they now carry double what they did ten years ago. Hence it is fair to arsume that the projectors of the two new lines could not have based their enterprise on the prospective
tonnage that might be diverted from the old lines, but rather upon the broader ground of general development, just as we insist this enterprise should be based. That there is an immediate necessity for the construction of this deep waterway is shown by the facts already stated, and the further faci that under the present consoliflation of rail lines and the concentration of their management we have no reason to expect private capital to invest in railroads to the extent necessary to relieve the present general congestion of traffic. That the establishment of a permanent deep-water channel from Chicago to the Gulf would do this in a large measure must be apparent to those who have given the subject even superficial comsideration. In touching on this feature I wish to say in passing that we are convinced from our intercourse with the representatives of the railroads that the broad-minded traffic men of the country to-day would hail this deep, waterway as a practical and a conservative measure of relief, and a benefit, not only to the shippers, but to the carriers as well. Many railroads to-day are carrying raw material to the industrics on their lines either at cost or at raters that in the abstract do not yield a reasonable profit to the carriers, simply for the purpose of fostering and developing such industries to the end that the carriers may enjoy the profitable traffic of the finished products of such industries. While this project would not, of course, reach all such conditions, it would do so to such a degree that the rail lines would be able to utilize their equipment to a much greater extent than at present in the hauling of the higher class of traftic requiring more expeditious movement, leaving the heavier or raw material traflic to the water lines, who could carry such freight with sufficient dispatch and at rates profitable to themselves and satisfactory to the shipper. This subject can not reasonably be considered as local to the Mississippi Valley in its elieet upon rates, but should be considered in the light of a means of establishing a new basis for the readjustment of rates between the Atlantic seaboard, the Great Lakes ports, and the great West, just as the completion of the Panama Canal should establish new basis of rates across the continent. The basis of rates to-day between the Atlantic coast points and the West were established as the results of the rates originally made by the Erie Canal between New York and Buffalo, due to the fact that such rates were the basis of the rates originally established by the New York Central between these points. Then as the rail lines were extended west the basis of rates was predicated on another waterway, and the rates between Chicago and Liew York are now used as the unit of all the rates by all the rail lines between Atlantic States, the Lake ports, and the Missiesippi River. Therefore, as these rates are the basis of the rates to the western territory, it must be apparent to you that the establishment of a permanent deep waterway from the Great Lakes to the Guli would necessarily establish a new basis of through rates predicated on the water rate to the Mississippi River. This is as vital to the manulacturers at Cleveland, Buifialo, and other lake cities as to the manufacturers of the East and mutually important to all of us. That this project should be viewed with favor by the railroads of the East should be apparent, when we take into account the fact that all the lines terminating at Bublalo are largely interested in ireight boats plying between that port and Chicago. These boats, like all others plying the Great Lakes, are idle at least three months of the year. Hence the channel proposed would furnish the means of conducting tratfic in the more favorable climate of the south during the closed season of the North, thus utilizing a vast capital that now remains idle during that term. Therefore we ask that you favorably consider this proposition for this permanent waterway, first, because it is necessary to relieve the great congestion of traffic that now threatens the weliare of the commerce of the country; second, because it is necessary to the complete development of the great Mississippi Valley, and finally, by so doing, establish a basis upon which the rates may be more equitably adjusted between all our great commercial centers.

From the lower Mississippi were received statements that on the east side of the river there is moved annually for local consumption by the railroads at some points about 15,000 to 20,000 tons of merchandise per mile of river, which might be carried just as well by water as by rail; this being mainly cotton, lumber, grain, and provisions; and that a large part of the cotton and lumber intended ior export might be loaded directly onto ocean boats at the point of first shipment if deep water existed all the way from such point to the Gulf. Other statements, irom the west side of the river, claim that at some points there were large amounts of freight moved by rail in directions parallel to the river, of which fully two-thirds might have been shipped by boat just as well as by rail if deep water had been available.
Some of the business interesta of Chicago have contributed the following communication as representing the importance of development of the north and south connection between the Great Lakes and the Gulf. It is credited to the house of Rothschild, aud understood to have been furnished by that business house to the British Government in 1896 during the consideration by that Government of the question of a friendly alliance between it and the Uuited States.

Exhibir No. 16.
"This century will not close before we shall have seen a general reorganization of international relations throughout the world, and alliances and combinations on new lines to meet conditions which have long been changing, silently and slowly, and have reached now the stage where the bud must burst into flower.
"The development of the United States is almost wholly the outgrowth of its railway system.
"The railway system of the United States grew up in meeting temporary emergencies, in meeting the demands of a popular policy covering a desire for most widely scattered and thinly expanded pioneer development; which sought hurriedly to embrace the whole country with very inadequate population and means.
"For a very long period the public lands for settlers, native or immigrant, and great land grants to stimulate railway construction, gave the United States a practical monopoly in European investment money, which at first went largely into railway building and then into collateral enterprises growing out of the opening up of new country. This stimulated a fever, which naturally led to both overbuilding and overcapitalization.
"In the meantime the concentration of capital, skilled labor, machinery, and a high industrial, commercial, and banking organzation in the New England States gave them great wealth, which was very heavily reinvested in expanding their local industries for most profitable employment.
"The result of this scramble is now very apparent on any close observation; and it has saddled upon the United States one-half of the railway mileage of the world, in large part very badly located because permanent conditions for sustaining it do not exist. Those portions of the country richest in resources to permanently sustain dense population have been little touched upon, and a shifting of population and industries to them must henceforth come under increasing pressure; and this will bring about widespread readjustment of trade and values.
"To illustrate how badly located are the industrial institutions and population of the United States-a location directly traceable to railway location-the figures show that, for a population of $70,000,000$, the railways of the United States are called upon to move a tonnage almost as great as that of Europe for more than five times the population, and whose labor produces a vastly greater output; and when, in addition to this, the average distance hauled in the United States is considered, which is four times as great as in Europe, the discrepancy becomes amazing. For 1894 the tons of freight moved in the United States reached $675,000,000$.
"The mileage haul shows that the average distance hauled was about 123 miles, 3 per cent more than the previous year; that is to say, 10 tons per capita 123 miles, against this Europe's haulage of less than $800,000,000$ tons an average of 35 miles. Reduced, that it takes at least seventeen times as much railway hauling per capita to serve the population of the United States as to serve that of Europe.
"An examination of the fundamental conditions of the great industrial centers makes plain the reason for this enormous waste. As for instance, the New England States are without natural resources to in any measure sustain their population and institutions. The material they work up, their food, their fuel, their shelter, must all be brought from greatly distant fields. Yet there is concentrated the highest productive capacity of men, machinery, and capital. New York is not greatly different, though better. But through her territory run the great lines of transportation and her harbor monopolizes in great part the trade of the country with other countries.
"England is a shop and a bank and a carrying country. But England has seaway. In the United States it is railway, infinitely more expensive to operate, and every mile of which not only must be maintained but interest on its cost earned day by day.
"One result has been that American railways have already been cut down below the safety point in carrying charges. It is impossible for the industries to share in further cutting. Labor will prevent it on one side, and the manufacturer, with his badly located plant, who has to haul material and fuel and then ship back his products, in competition with other countries, and with only an uncertain margin of customs tax, can not reduce his cost of production and live.
"Yet, reduction must continue. Step by step it must invade fixed charges and compel reorganizations so far as the railways are concerned, and removal and relocation by the manufacturers. The emergency work and the emergency conditions of settling new country, and emergency profits, are things of the past. Permanent conditions must be met. The West is each year becoming less and less dependent on eastern induatries. Europe each year becomes lesa dependent on the American
exports, which have heretofore cut so large a figure; and between these upper and nether millstones the great investments in transportation must be ground.
"There are three great central regions of concentrated resources in that portion of the United States lying east of the Rocky Mountains.
"The first in importance and in extent is the mountainous region lying in the center of the Southern States east of the Mississippi, with the Pennsylvania and Ohio coal fields added. This comprises about 130,000 square miles, being 150 to 250 miles wide by over 700 miles long, extending to northern Georgia and Alabama. If this region'were settled like the New England State of Massachusetts, it would contain $40,000,000$ of people; if like Saxony, it would hold $20,000,000$ more than the present total population of the United State日; area for area it has resources of all kinds several times greater than those of Saxony. Its natural conditions are all of the highest class and constitute it a natural magazine and workshop not equalled elsewhere in the world.
"Round it on all sides lie estates naturally rich. A great part of it is wilderness. It seems to have been avoided by the railway system of the United States in the South; doubtless because of grades. But its topography bonds it together, its coal field along one side and its minerals and great forests on the other, across a rich valley running through its center for its whole length. Opened up, its conditions would enable it to compete with any country, even with the oriental countrics soon to become of the world's account as producers for export. Here the carrying would be even less than in Europe, per capita, considering the resultant product, and the distance. Its proximity to the Altantic coast from Baltimore southward, and to the coast of the Gulf of Mexico, are all in its favor in considering transisthmian and Spanish-American trade.
"The next great region, lying both in the United States and the British Dominion of Canada, surrounds the upper Great Lakes. The possibilities of the development of this region are beyond calculation. Chicago is its natural point for concentration and distribution, and it has many natural centers of minor importance. When the isthmian possibilities are considered, and the relation of North America to Central and South America, it is very plain that the true transcontinental line is not from New York to San Francisco across the high mountain country of the interior, but by the St. Lawrence and Mississippi, with water most of the way, and its summit in the low gap of Chicago, only some 600 feet above sea level. As compared with the line by the middle lakes and the Erie Canal the short cut from Georgian Bay, in Lake Huron, to Lake Ontario, and thence to Montreal by low-grade railways and by water, at an insignificant cost, compared with that of existing trunk lines to New York and their collateral lines-the difference is brought out in very bold relief.
"The region between Georgian Bay and Ontario and the upper St. Lawrence would be a solid belt of manufacturing country. As great power can be created here, all under absolute control, as capital may care to make-as great as that of Niagara, if every foot, too, of that great cascade could be utilized. The difference in the levels of Michigan, Superior, and Huron lakes and that of Ontario is the stored-up dynamic force of that part of the transcontinental line-just as the coal in the southern mountains is the reducing force of that region.
"The level lands and the Mississippi River will give cheap competing rail and water carrying facilities for the current of trade that must change toward the South when the Isthmian Canal is completed.
"Year by year America's trade with Europe will decrease in relative importance, for the reason that as the breadstuffs market is taken up by competing countries American and European surplus products will assume a similarity, and competition for markets will take the place of exchange of products.
"The third great region is around St. Louis. The rich soil of all surrounding States, the coal fields of Illinois and Missouri, and iron and other minerals of Missouri, Arkansas, and Oklahoma, the great forest wealth, and the great waterways are the principal factors."

Under the provisions of act of February 21, 1891, all agents of vessels navigating waterways under federal improvement are required to furnish statements of their cargoes, etc., to the United States engineer officer in local charge of such improvements. From such statements the Mississippi River Commission has been able to compile totals of each year's commerce, which are fairly complete so far as concerns the river from St. Louis to New Orleans. Such statistics, put into tabular form as below and also put into graphic form as by attached chart, show the amount and movement of river commerce from St. Louis to Cairo for the calendar year of 1907. The commerce of 1908, though not as yet completely compiled, will show results much the same as those of 1907, although on the whole the receipts and shipments have been somewhat less.

Exhibit No. 17a.-Tonnage and traffic of the Mississippi River, St. Louis, Mo., to New Orleans, La., calendar year 1907.

Received between Memphis and Cairo.....	3,4:0	3,193	1,037	1,075			35,589					
Discharged between Memphis and Cairo.	13, 3 , 43	3,	1, 19	1,98			35,539	11,000				36, 3 542
Discharged at Cairo.	4,138	3,103	572	977			161,718	231,359		2, 517		5,748 38,437
Received st Cairo.	3,943	75	542	200	268	166,350	23,156			2, 195		38,437 2,533
Received betweon Cairo and St. Louls.	8,138	8,16i			10,114		257		30	700	4	2,533 9,149
Discharged betreen Cairo and St. Louls:..	1,485	442			10, 28					'25		9,148 975
Discharged at St. Louls.	18,891	7,794	1,522	260	10,354	15f, 350	24,876	39.000	30	870	4	$\begin{array}{r}\text { 15,875 } \\ \hline 15\end{array}$

Eximbir No. 18.-Mississippi River ferry trafic between St. Louis, Mo., and New Orleans, La., calendar year 1907.

Note.-Owing to deficiency and inaccessibility of records of some transportation companies coasiderable tonnage which should appear under classified heads above has to be facluded with "Miscellaneous and unclassifled."

Exhibit No. 19.--Receipts and shipments ut the port of St. Louis, calendar year 1907.

a The Steamboat-Inspection Service reports 464,259 passengers carried in local excursion trable.
Note.-'This table was compiled from reports of the Merchants' Exchange of St. Louls and from records in the oflice of the secretary of the Mississippi River Commission.

These tables, especially the graphical table (Exhibit No. 17), show very clearly the comparatively small amount of tonnage carried by the Mississippi River between St. Louis and New Orleans; especially small if omitting the coal which comes out of the Ohio River on barges of light draft.

Starting at St. Louis and proceeding downstream, it will be seen that the average load from St. Louis to Cairo by water is only about 80,000 tons, of mixed character. At Cairo, about $1,240,000$ tons of coal come into the river, of which about $1,070,000$ tons go downstream, about 200,000 tons being dropped off at Memphis and about 120,000 tons more being dropped off at various points in small quantities between Cairo and New Orleans, leaving about 750,000 tons delivered at New Orleans. At various points along the river below Memphis and Vicksburg small quantities of coal come aboard from local mines or storehouses for use either on local steamboats or distribution to local landings in the neighborhood of the points of shipment. Between Cairo and Memphis about 170,000 tons of logs and lumber are picked up by the boats fne delivery, mainly at Memphis. Below lemphis, about 900,000 tons of sand and gravel and about 220,000 tons of logs and lumber are taken on board for delivery, mainly at points between Memphis and Vicksburg. Below Vicksburg, about 190,000 tons of loge and lumber, 150,000 tons of sand and gravel $, 100,000$ tons of oil, and 60,000 tons of cotton and cotton secd are taken up at various points for delivery, mainly at New Orleans. Outside of the above the freight is insignificant. The average through freight from Cairo to New Orleans is less than 900,000 tons of coal, aud less than 400,000 tons of all other freights.

The return freights between New Orleans and St. Louis by water comprise about 100,000 tons of oil taken on at New Orleans and delivered between there and Vicksburg, about 50,000 tons of cotton and cotton seed taken on above New Orleans and delivered between there and Vicksburg. Above Vicksburg, about 160,000 tons of \log, 140,000 tons of lumber, and about 40,000 tons of cotton and cotton seed are taken on board for delivery, mainly at points between Memphis and Cairo, inclusive., Above Memphis, about 200,000 tons of logs and about 160,000 tons of lumber come aboard for delivery, mainly at Cairo, although about 40,000 tons of logs and 30,000 tons of lumber go through to St. Louis. At Cairo, out of the coal received from the Ohio River, about

170,000 tons go upstream to St. Louis. The average upstream travel from New Orleans to St. Louis is only about 300,000 tons, mainly lumber, logs, and coal.

The passenger travel, both downstream and upstream, is small, except locally between Memphis and Vicksburg, where it amounts to about 60,000 either way.

The coal, logs, lumber, sand, and gravel are all most advantageously carried on light-draft barges, such as those at present used on the Ohio River. Once that this material has been loaded on the barge moving downstream the cost of transportation will be much less per mile by barge than it will by heavy-draft packet boat, if the cost of the upstream travel of the boat to receive the goods be taken into account.

There are no longer any through passenger or packet boats from St. Louis to New Orleans. All through freights (except on barges) must usually be transferred from packet to packet at Memphis and Vicksburg. In the same way passenger or packet boats from New Orleans rarely go up the Mississippi above Vicksburg, where freight must be transferred. Occasionally a few passenger boats make the through trip upstream or down for the benefit of excursionists, as at Mardi Gras, but only a few times per year.

Exhibit No. 20.-Freight shipments, Mississippi River system, for 1889 and 1906.
[Arranged by rivers, as reported in 1008 by Department of Commerce and Labor.]

	1806.					1889.	Change since 1889.	
	Self-propellers.		Barges and tows.		Total.	'Total.	Gain.	Loss.
	Tons.	Per ct.	Tons.	Per ct.	$\begin{array}{r} \text { Tons. } \\ 595,885 \\ 105,826 \\ 1,037,059 \\ 19,331 \end{array}$	Tons.$\begin{array}{r} 3,947,364 \\ 180,264 \\ 2,132,820 \end{array}$	Perct.	Per ct.$\begin{aligned} & 85 \\ & 41 \end{aligned}$
Upper Mississippl. . .	153,932	25.8	441,953	74.2				
Ilfinois River..........	32,784	31.0	73,062	69.0				
Missouri River.......	84,790	8.2	952,269	91.8				
Other tributaries above St. Louis....	1,876	9.7	17,455	90.3			42
Total upper river system. .	273, 362	15.5	1,484,739	84.5	1,758,101	6,260,448		72
Ohio River system...	1,246,437	8.2	13,980,368	91.8	$15,226,805$	15,796,968		3
Lower Mississippi system.	835,587	32.8	1,710,600	67.2	2, 546, 187	6,232,087		59
Total Mississippi system.	2,355,386	12.1	17,175,707	87.9	19, 531,093	28,289,503		31
Total upper and 10 wer systems.....	1,108,849	25.6	3, 195, 339	74.4	4,304, 288	12,492,535		65
Detalls of system, Lower Mississippi								
River:								
Arkansas.........	23,175	92.7	1,819	7.3	24,994	1,662,717	\cdots	85
Ouachita Black, La								73
Black, La..... Red...........	18,125 14,147	72.1 98.1	7,011 270	27.9 1.9	14,417	93,707 105,145		86
White.............	25, 133	57.9	18, 600	42.1	43, 933	86,393		49
Yaz00............	52,751	48.7	65,606	51.3	108,357	77,380	39	
Black, Ark.......	23	. 1	20,036	99.9	20,059			
Lower Missis- sippi proper....	693, 816	32.0	1,475,065	68.0	2, 168,581	4,206,745		45
Other tributarjes below Cairo....	8,417	6.0	132,293	24.0	140,710			

House Doc. Mo. 50 ; 61st Cong., Ist Sess.

Exhibir No. 21.-River commerce, lower Mississippi River, St. Louis to New Orleans, 1906, as compared to rest of United States, and to 1889 as reported in 1908 by the Department of Commerce and Labor (Census Burcau).

Waterway systems.	Freight shlpments.				Passengers harbor work.
	Self-propellers.	Barges and tows.	Total.		
			River alone.	River and harbor.	
Lower Mississippi system:					
	835, 587	1,710,600	2, 546, 187	4,900,241	6, 926, 816
	(?)	(?)	6,232,087	(?)	(?)
Loss slnce 1859..................do....	(?)	(?)	59	(?)	(9)
Whole Missisitipl system:					
1908..........................tons..	2,355,386	17, 175, 707	19,531,093	27,856,641	14, 122, 241
		(?)	28, 289, 503	29, 401, 409	10, 858,894
Gain since is80.............pur cent..	(?)	(?)	2, 28, 03	27,	- 30
	(?)		177, 519,758	265, 545,804	366,825,663
1889.........................do...	(?)	(?)	(?)	129,851,658	198, 092. 438
Gain since 1889..........pur rent..	(?)	(?)	(?)	103	84
Loss since 1889................do....	(?)	(?)	(?)		

Exhibit No. 22.-Freights at important harbors, Mississippi River, 1906, below St. Louis, as reported in 1908 by Department of Commerce and Labor (Census Bureau).
[Total of shipinents and receipts and harbor work.]

Freights through and crossing.	Total.	River frelghts.	Harbor work.
St. Louls, Mo.	$\begin{gathered} \text { Tons. } \\ \text { a } 1,712,983 \end{gathered}$	Tons. $743,981$	Tons. 969, 002
Cairo, III.....	a 261,839	247, 238	14,600
Memphis, Tonn	$a 857,308$ 60,403	662,308 60,463	195,000
Greenville, Miss.	178, 519	89, 519	89,000
Yazoo Clity, Miss	27, 130	27, 130	
\checkmark licksburg, Miss	375,454	375,454	
Natcher, Miss. L ,	56,966 96,906	56,968 5,478	21,430
Plue Bluif, Ark.	11,393	11,393	21,430
Monrue, La.	21, 141	21,141	
Shroveport, La.	4,026	4,026	
Alexandria, La..	6,147	6,147	
Baton Rouge, La	a ${ }^{57,908}$	${ }_{1}^{15,508}$	42,400 107,500
All other ports. .	a 1, $3,838,591$	2,923,469	1075,122
Total.	8,040,887	6,286,833	2,354, 0):54

a Jors not inchide freight ferrled in rallway cars.
The tables of freight shipments for the entire Mississippi River system showing a comparison from 1889 to 1908 (Exhibit No. 20), while bringing out very plainly the great and almost uniform loss in boat commerce since 1889 (the only gain being that of the Yazoo River), shows that the least loss has been in the Ohio River system, where the low-water depths are the least, and where only from one-fourth to one-half of the year is available for boats of 8 to 9 feet draft. At the same time it ahows that while on the tributaries a large proportion of the freights are carried by packet hoats, the lower Mississippi carries over two-thirds and the Ohio River carries as much as 92 per cent of its freights in barges and tows.

The table of Mississippi River commerce (Exhibit No. 21) as compared with that of the rest of the United States shows how rapidly the Mississippi River system has bern falling behind the United States as a whole, the Mississippi baving lost while the whole United States has doubled.

The table of freights of important harbors on the lower river (Exhibit No. 22) brings out plainly the large amount of local work in the river as compared with through freights. In order to reconcile this table with the previous table, it must be borne in mind that all freights are counted twice, once for shipment and again for delivery.

As bridges are built across the Mississippi the importance of ferry traffic diminishes. The river below St. Louis is at present crossed only by two bridges, one at Thebes and the other at Memphis.
Freight and passenger cars are ferried across the Mississippi River below St. Louis at eleven points, viz, from Ivory, Mo., to last Ivory, Ill.; Moro, Ill., to Little Rock Landing, Mo.; Cairo, Ill., to Bird Point, Mo.; Columbus, Ky., to Belmont, Mo.; Memphis, Tenn., to Hopefield, Ark.; Hclena, Ark., to 'Trotters Point, Miss.; Vicksburg, Miss., to Delta Point, La.; Natchez, Miss., to Vidalia, La.; Water Valley, mouth of Red River, La., to Angola, Miss.; New Orleans to Gouldeboro, La.; New Orleans to Algiers, La.

The grain traffic of the Mississippi River has for several years decreased very heavily, having lost about 78 per cent since 1889; tha decrease on the upper Mississippi being about 60 per cent and that on the lower Mississippi about 96 per cent. The latter decrease is due to the fact that the cost of the boat transportation from St. Louis to New Orleans, added to the extra cost of ocean transportation from New Orleans to Europe, is to-day (1907-8) greater than the rail charges from St. Louis to New York, plus ocean carriage New York to Europe.

Coal, sand, stone, etc., constituted in 1906 about 87 per cent of all barge freight, being about 86 per cent on the upper Mississippi, 92 per cent on the Ohio, and 47 per cent on the lower Mississippi. Next to coal, the chief commodity is sand in short hauls, often entirely within a single harbor.

Ranked by the quantity of rive: freight handled, New Orleans is third,-St. Louis is fourth, Memphis is fifth, Kansas City is seventh, Vicksburg is eighth, and Cairo is ninth in the Mississippi Valley; Pittsburg, Cincinnati, and Louisville on the Ohio River holding the first, second, and fifth places.

While New Orleans is the second most important commercial port of the United States for foreign commerce, its geographical location, combined with small density, of population in the adjoining States, and its good railroad connections, renders its good inland water connections of comparatively little usefulness at the present time, except as a safeguard against any serious increase of railroad freight rates or decrease of good railroad service. New Orleans with a population of about 290,000 , about 106 miles inland from the Gulf, and having wide channel approaches of over 26 feet depth at low water and with a total export and import trade of about $3,500,000$ tons in 1908, sends much less than 5 per cent of this up the valley by water and receives much leas than 40 per cent from the valley by water; the downstream receipts having been only about $1,410,000$ tons (about two-thirdf '?eing coal) and the upstream shipments having been only about 160,000 tons (mainly 1 and cotton seed) although the first 132 miles of river up to Baton Rouge has a channel of several hundred feet width and over 30 feet depth-large enough for all occan vessels reaching New Orleans. In contrast to this Hamburg, Germany, a city of about 850,000 population, on the Elbe, about 160 miles above its mouth, and having channel approaches limited to 650 feet width and 26 feet depth at low water, with an import trade of about $11,000,000$ tons, sends over $8,000,000$ (73 per cent) into the interior over about 7,500 miles of rivers and canals of less than 8 feet draft; and Antwerp, Belgium, a city of about 400,000 population, on the Scheldt, about 55 miles above its mouth, and having channel approacher with less width but about the same depth as New Orleans, with an import tonnage of about $9,400,000$ tons, sends over $7,500,000$ tons (80 per cent) into the interior through 1,200 miles of Belgian rivers and canals of less than 10 feet depth; receiving from the canals in return twice as much freight as from the railroads.
Exhibits Nos. 23 to 33, furnished by the business interests of St. Louis, give in detail the freight receipts and shipments of St. Louis both by water and by rail, and the extent of its foreign trade, which it hopes to develop by the aid of the improved Mississippi River and the future Panama Canal.

Exhibit No. 23.-Extract from the report of the St. Lrouis Merchants' Exchange for 1908.

RAIL AND RIVER TONNAGE.

STATEMENT GHOWING THE AMOUNT OF FREIGHT, IN TONS, RECEIVED AT ST. LOUIS BY EACH RAILROAD AND RIVER, FOR THREE YEARS.

Route.	1908.	1907.	1906.
Chicago and Alton R. R. (Missouri division)	232,054	204,990	265,541
Missourl Pacle R R. R . .	1,927,711	2,187,525	2, 139,740
St. Louls and San Francisco R.	1,202,009	1,386,042	1,278,413
Wabash Rallway (west)	839,184	575, 465	855, 600
Chieago, Rook Island and Proifie R	267,627	312, 381	2:0, 762
Missouri, Kansas and 'Texas R. R	405,399	462, 237	450,785
St. Louis-Southwestorn Ry	562,(328	565,063	518,609
St. Louls, Iron Mountain and Soulhern IR. IR	2,704,703	3,62i, 010	3,053,056
Illinols Central R. R	1,938,113	2,396,095	2,080,457
Loulsville and Neshville R. R	737,628	892, 199	1,154,983
Mobilo and Ohio R. R	1,728,572	2, 444,738	2,363,346
Southern R. R.	804,951	1,734, ©89	1,186,112
Baltimore and Ohio Southwestern R	1,264,625	1,502,165	1,436,622
Chicago, Alton and St. Louls (main line).	414,112	430,124	421,082
Cleveland, Cincinnati, Chleago and St. louls	562,523	627,075	568, 124
Vandalia R. R	1,182,791	1,557,427	1,168, 039
Wabash Rallroad (cast)	1,113,133	1,343,041	1,107,605
Toledo, St. Louls and Western R.	445, 739	688,078	772,828
Chicago, Peoria and St. Louis R. R .	378,244	443,578	543,729
Chicago, Burlington and Quincy [2. R. (east).	504,738	585, 759	633,049
Chicago, Burlington and Quincy R. R. (west)	1,279,223	1,557,915	1,577,673
Chicayo and Eastorn Illinols R. R	271,265	343,057	267,893
St. Louls, Troy and Eastern R. R	938, 406	956,955	870,400
Iftchtleld and Madison R. IR	498,046	704,634	604,145
Believille and Southern R. R		4,595	21,712
St. Louls and Belleville Electrle Ry	224,081	284,643	378,685
St. Louls and O'Fallon Ry.	815,713	935, 086	957,086
least St. Louls and Suburban Ry. Co	243,831	404, 252	305,222
11llnols Traction Systom.	874	1,076	6,359
Upper Mississippl River.	19,245	21,440	31,140
Lower Mississlppi River	70,165	91,325	106,670
Illinols Iztver.	y,475	9,115	14,5,50
Missouri River	4,365	3,655	2,485
Ohio Rjver	185,100	155, 470	160,120
Cumberland and Temmesiser rivers	4,830	8,570	10,93;
Upper Mississlppl River by ralts.			1,8:11
Total in tons.	$23,871,102$		$2 \pi, 620,28 \pi$
Total by rall.	23,577,922	20, 156,09]	$27,292,617$
Total by river.	293,180	2×9..7\%	327.187

Exhibrt No. 24.--Extract from the report of the St. Loulis Merchants' Exchange for 1908.

RAIL, AND RIVER TONNAGE.

statement showing thf amount of firight, in tons, suippei from st. houis by EACH RAILROAD AND RIVER FOR THREE YEARS.

Route.	1908.	1907.	1906.
Chicago and Alton R. R. (Missouri division)	312,705	254,892	320, 480
Missourl Pacinc R. R	1,194,284	1,439, 119	1, 458,090
St. Louls and San Franclsco IR	1, 113,038	1, 338, 270	1, 362, 503
Wabash Rallway (West).	548, 355	354, 836	616, 893
Chieago, Rock Island and Pacine R. IR	216,918	266,479	200, 228
Missourl, Kansas and Texas R. R	386, 725	586, 956	402, 293
St. Louis Southwestern Ry.	188, 204	263,716	173,541
St. Louls. Iron Mountain and Southern R. R	1, 910, 369	2,351,617	2, 322, 626
Illinols Central R. R	1, 263, 855	1,517,972	1,286, 318
Louts ville and Nashvillo R. R	1, 530, 757	-576, 168	1552, 876
Moblle and Ohio R. R.	1,266, 197	1, 649, 621	1,395,564
	-965, 128	1,420,585	1,262, 695
Baltimore and Ohto Southwestern R. R .	421, 203	402, 766	- 381,944
Chlcago, Alton and St. Louls R. R. (main line).	498,459	553, 247	487, 323
Cleveland, Clneinnati, Chleago and St. Louls R.	405, 708	553, 408	606,777
Vandalla R. R.	818, 487	845,362	672,565
Wabash Rallway (East).	911,077	1,055, 110	1,200,413
I'oledo, St, Louls and Western R. R	440, 426	545, 076	-623, 522
Chicago, Peoria and St. Louls R. R.	394, 841	389, 752	519,755
Chlcago, Burlington and Qulney 12. I2. (East)	705, 416	797,772	629,259
Chicago, Burlington snd Qulney R. R. (West)	783, 662	1, 016,358	1,024,721
Chicago and Eastern Illinols R. R	160,268	-191,383	195,456
Litehfield and Madison R. R.	122, 277	19,933	73,808
Illinols Traction System.	10, 651	7,018	11,456
Upper Mississippl ilver.	27,280	25,155	36,000
Lower Mississippl River	30,285	35, 550	34,905
Illinols RIver.....	5,000	7,590	7,835
Missouri River.	5,320	3,005	3,565
Ohio, Cumberland, and Tennessee rivers	3,955	7,110	6,880
Total in tons			17,861,191
Total by rall.	15,700, 168	18, 29t, 416	17, 772, 0006
Total by river	72,740	78,500	89,185

Exhibit No. 25.- Extract from the report of the Sl. Louis Merchanls' Exchange for 1908.
SHIPMENTS BY RIVER DURING 1908.

Artlcles.	By Illinols River boats.	By Missouri Rlver boats.	By Memphls and Way Point boats.	By Ten. nessee Rlver boats.	$\underset{\text { upper }}{\mathrm{By}}$ Missls- sippl River boats.
Apples................................ barrels.	135	5	3, 430	75	720
Ale and beer. packages. .	4,030	100	29, $2(0)$	505	12,345
Bagging. pleces. .	245		2,300	2,225	700
Barued wire.............................. pounds. .	63,500	85, 100	232, 400	20,700	113, 400
Butter.. . . do. .			20,360		2, 490
Bran... siacks. .	140		390	380	355
Cattle.... head. .	153		120	6	1,468
Corn. sneks. .			1,295	1,090	
Corn meal. barrels. .	70		1,985	2,150	40
Cotton................. .bales. .	15				100
Flour. .barrels. .	515	125	4,303	3, 485	2, 165
Hay. tons. .	25	5	330	40	35
Horses and mules. head. .	388	12	1,453	117	1,066
Hogs. do....	25				2,322
Homlny and grits................. barrels. .		35	1,040	500	10
Pork... do.					
Ifams....... pounds.	900	1,000	153, 200	50,700	7,800
Ments.... do.. . .	5,500	5,100	441, 100	126, 100	22, 200
Lard. do. . . .	12, 400	8,900	294, 800	71,900	19,500
Malt. sacks.		500	5,260		1,220
Oats............ do. .	4,240	405	11,910	825	255
Oats in bulk. bushels. .					
Onlons. packages. .	100	10	2,970	70	1,280
Potatoes. do. . . .	910	100	6,215	60	4,210
Rye.......... speks. .					
Sheep..., . head. .	50				866
Tallow...... pounds. .			800		
Tobacco................................ hogsheads. .					
Tobacco, manufactured. pounds. .	4,400	3,900	76,000	5,300	19,800
Wheat. .sacks Whisky \qquad \qquad barrels.	240		1,6.40		500
White tead.................................... pounds. .	119, 100	9,400	724, 610)	50,600	1,314,500
Merchandise and sundrles. perckages. .	74, 010	65,470	652, 60\%	76, 640	2\%2,645
Total tons.	6,900	5,320	30, 285	3,955	27, 280

Exhibir No. 26.-Extract from the report of the St. Louis Merchants' Exchange for 1908. BUSIN ESS OF THE ST, LOUIS BRIDOES ANDFERIRIESFOR 1909, AND COMPARISON WITU PIREVIOUS YEARS.

AMOUNT OF FREIGHT, LN TONS, TRANSFERRED ACROSS THE RIVER AT ST. LOUIS DURING 1908, FROM ST. LOUIS TO EAST ST. LOUIS, VENICE, MADISON, AND CARONDELET.

H. Doc. 50, 61-1 - ${ }^{23 *}$

Exuibit No. 26.-Extract from the report of the St. Louis Merchants' Exchange for 1908.-Continued.

BUSINESSOFTHEST. IOUIS BIRIDGESANDFERIRIESFOR 1008, AND COMPARISON WITII PREVIOUS YEARS-Contlnted.
fros fiast st. louis, carondelet, madison, and venice to st. louis.

Exhibit No. 27.--Extract from the Report of the St. Louis Merchants' Exchange for 1908.
LOCAL AND THROUGH TONNAGE.

	1907.		$100 \pm$.	
	Tons.	Per cent.	Tons.	Per cent.
Total tons frelght recelved, loral	18, 807, 221	63.87	16,691, 153	89.82
Total tons frelght received, through	10, 638, 448	36.13	7, 179, 949	30.08
Tons freight recelved by rall, local	18, 517,646	63.51	16, 397,973	69.65
Tons frelght recelved by rail, through	10,638, 448	36. 49	7,179,949	30.45
Tons frelght, excluding coal, recelved by rall, local.	11, 488, 252	55.85	10, 292,870	62.77
Tons freight, excluding coal, recelved by rall, through.......	9, 080, 265	44.15	6, 105, 052	37.23
Tons lrelght recelved by rall on east side, local...............	12, 692, 842	62.84	11, 188, 717	69.82
Tons frelght recelved by rail on east side, through...........	7,505, 632	37.16	4,826,841	30.18
Tons frelght, excluding coal, recelved by rail on east slde, local.	5,663, 448	48.78	5,063,623	57.44
Tons frelght, excluding coal, received by rail on east side, through.	5, 947, 449	51.22	3,751,944	42.86
Tons frelght recelved by rail on west side, local..............	6, 824,804	68.03	$8,229,256$	68.97
Tons frelght recelved by rall on west side, through..........	3, 132,816	34.97	2,353, 108	31.03

Exhibit No. 28.

AMOUNT OF COAI, RECEIVED IN S'T. HOUIS.

Route.	1908.	1907.	1906.	1905.
	Tons.	Tons.	Tons.	Tons.
Baltimore and Ohto Southwestern IR. R	913,282	1,018, 855	8is, 111	606,641
Cleveland, Cincinnati, Chicago and st. Souls R. R	S3, 315	65, 280	75,885	166, 165
Vandalia R. R	OC6, 770	738,092	554, 991	6i55, 154
Illinols Central R. R	931, 220	970, 436	982, 378	881,874
Wabash R. R	34:3, 111	371,084	279, (09)	321,227
Loulsville and Nashville R.	2-9,0x3	387,353	580, 238	493, 952
Southern R. R	Cill 401	1, 101, 832	773, 528	789,994
Mobile and Ohto R. R	51, 64,	58, 929	101, 471	140,606
Toledo, St. Louis and Western R. IR	Si, 437	84, 749	54, 414	59, 942
St. Louls and O'Fallon R. IR.	S1i, 713	93i, 086	953,086	541,591
St. Louls, Iron Mountaln and Southern R. K. (Inlnois Division)	425,860	405, 180	141,006	209, 195
St. Louls, Belleville and Southern R. R		4,595	21,712	38,641
St. Louls, Troy and Eastern R. R	923, 746	ใ44, 623	870, 801	922, 204
St. Louis and Belleville lilectrie 12	201,362	252,608	339,215	370,006
(hicago and biastern Illinols R. IR	121,477	118,738	133, 720	122,657
litchtield and Madison R. R	493,452	699, 195	592, 602	460, 126
Fiast St. Louls and Suburban li	2 10,897	397, 942	30:3,352	120,220
From Ohio River	18, 100	155, 470	160, 120	125, 755
'Total tons.	7,36i, 091	8, 743, 0.47	7,795, 839	7,027,950

RECEIPTS OF ANTHRACIT: COAL INCLUDED IN ADOVE RECEIPTS.

	Tons.		Tons.
1594.	186, 494	1902.	60,944
1:95.	207,784	1003.	160, 920
LS:H.	218, 935	1904.	15i, (0)7
15197	172, 933	1905.	159, 343
18188	225, 600	1906.	174,226
1899	292, 118	1007.	26.5,571
$19 \times 0)$	180, 050	1908.	2:30,0:36
1901.	200, 797		

LOCAL AND THMOUGH RECEIPTS OF ANTHRACITE COAL.

	Tons, local.	I Tons, through.
1001.	193, 673	7,124
$1(\mathrm{O} 2$.	58, 349	2,595
1903.	152, 765	13, 155
19.	118.045	7,002
1505.	151, 4 ${ }^{\text {d }}$	1,401
1000.	163, 393	10, :31
1907.	219,817	45, 034
1003.	207,764	28,272

RECEIUTS OF COKE.
'lons. : Tons.

	'I'ons.		Tons.
1902.	163,600	1906.	328, 400
1903.	203, 46.	1907.	371, 880
1904.	171, 162	1908.	162, 280
1905.	222,306		

Exhibit No. 29.--Extract from the report of the St. Louis Merchants' Exchange for 1908.

THE RIVERS.

The river traffic of 1908 about held its own, with slightly larger receipts and a small decrease in shipments. The business of the upper river was fairly satisfactory, especially in passengers, while on the lower rivers there was a decline in both passengers and freight.

	1006.	1907.	1808.
Tons recelved by steamboats and barges.	325, 900	289, 575	293,180
'Tons recelved by rafts....................	1,770		
'Tons shlpped by steamboats and barges	89,158	78,500	72,740
Total.	416, 855	368, 075	365,920

The upper river traffic closed November 1, except for the Alton and Illinois River packets, which coutinued their trips till the middle of December. Navigation southward ceased on December 22, on account of low stage of water. On January 6 the first ice formed, and on the 12th the river was frozen over at Alton. Navigation was suspended entirely during January, on account of running ice and low water, and was not resumed until February 5 .
There was a good stage of water out to Cairo during the season of navigation, the least depth on bars being 6 to 7 feet from August 1 to the close of the year.
Mr. Isaac P. Lusk, general freight and passenger agent of the Diamond Jo Line, makes the following report of the upper river traffic:
Notwithstanding the commercial depression extending over the country from the effects of the panic of 1907, our freight and passenger business for 1908 was very gond, and showed somewhat of an increase in the passenger business over the previons year.
The large side-wheel steamers St. Paul and Quincy, each accommodating 300 firstclass passengers, were in service between St. Louis, Mo., and St. Paul, Minn., from June until the iniddle of September.
The steamers Sidney and Dubuque were in service between St. Louis and Burlington and Davenport from April 10 to November 1.
Our service, both to St. Paul and to Keokuk and Burlington, was discontinued early in the season on account of low water, although there was a very fair stage of water in the upper Mississippi River until about the lst of September.
With the improvement of the upper Mississippi River there would be a large increase in the freight traffic, for frequently this last season, by refusing heavy freight shipments, we could run our steamers through to St. Paul and take care of the passenger traftic, but on account of low water our earnings from freight were materially decreased.

All of the local packets running short distances on the upper Mississippi River report a gcod business for 1908.
Mr. John E. Massengale, traffic manager of the St. Louis and Tennessee River: Packet Company, gives the following statement of the Tennessee River business:
Regarding our 'Tennessee River business for the year 1908, beg to say that we felt the panic to an extent during the greater part of the year, as the decline on lumber and other products of the forest stopped a great many mills, and thus curtailed its movement, but we found no material change in the movement of products of the farrn. Tennessee Valley, as a rule, made a good crop of cotton, tobacco, and peanuts. Our movement of merchandise and provisions from St . Louis and other cities serving that territory was about normal. We were not able to run as many steamboats during the season as we have in the past, but our business was very good, and the year winds up satisfactorily.
Capt. D. M. Conners, superintendent and general agent of the Lee Line steamers, running to Memphis, reports as follows:
I am sorry to say that both the passenger and freight business for 1908 was the lighteet that the Lee Line has experienced since in the St. Louis and Meraphis trade. Our outbound fell short one-third of 1907, and our inbound fully one-half of 1907.
And our passenger business fell off fully one-half of 1907, which, no doubt, was caused by the money panic, which caused so many of the working class to be laid off, and they therefore could not spare the money to go away. In former years they got their vacation with pay for one or two weeks, but in 1908 the majority of the class of
people we handle most of did not leave the city, as they were laid off without pay, and had no surety of their position or when they would be put back to work.

The class rates, per 100 pounds, from St. Louis to Memphis were as follows:
Cents.
First class
50

Third class. 33

Class A.............. 12
Flour, meal, and bacon and grain, and buggies and vehicles, same rate as 1907, and the same rate applied to Helena, Ark., Greenville, Miss., and Vicksburg, Miss., that applied in 1907.

Prosperity has not struck us, but we are trusting that it will do so at the opening of navigation in 1909.

Exhibit No. 30.-Extract from the report of the 'St. Louis Merchants' Exchange for 1908.
ARRIVALS AND DEPARTURES OF STEAMBOATS AND BARGES, 1908.
ARRIVALS.

1908.	Upper Mississippl.	Lower Mississippi.	$\begin{aligned} & \text { Illi- } \\ & \text { nols. } \end{aligned}$	Missouri.	Obio.	Cumberland and Tennessee.	Total steamers.	$\begin{aligned} & \text { Barges } \\ & \text { and } \\ & \text { scows. } \end{aligned}$	Tons of freight recelved.
January.	\ldots	13					13	21	9,660
February		4					4	1	400
March....	11	29	6			4	50	46	19,710
April..	28	43	8	4	4	87	85	62, 060
May..	40	32	9	7	5	93	61	45, 230
June.	43	36	10	16		3	108	78	46,590
July..	53	46	12	10		6	127	80	53,855
August	61	33	10	10		4	118	49	28, 620
Septenthar	58	22	12	5		4	101	11	9,805
October. .	51	21	24	4			100	10	8,450
November	39	19	13			3	74	3	6,990
December.	10	11	6			,	28	1	3,810
'rotal.	394	309	110	56		34	903	444	293, 180

DEPARTURES:

| 1908. | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

Exhmit No. 30.- Extract from the report of the St. Louis Merchants' Exchange for 1908-Contintued.

ARRIVALS AND DEPARTURES FOR 'TWENTY YEARS.

Arrivals.					Departures.		
Year.	Eoats.	Barges.	'rous of freight recelved.	Tons of lumber and logs by raft recei ved.	Year.	Boats.	'rons of frelght shlpped.
1908.	903	444	293, 180		1908.	903	72,740
1907.	942	388	289, 675		1907.	931	78,500
1906.	1,029	417	325, 900	1,770	1904.	1,013	89, 185
190%.	1,074	385	288, 640	1,210	1905.	1,057	80,575
1904.	1,222	413	291, 425	3,945	1904.	1,182	82,587
1903).	1,271	519	335,710	4,700	1903.	1,205	212,202
1902.	1,465	451	386, 045	30,875	1902.	1,448	224,261
1901.	1,541	592	412, 255	50,550	1901.	1,519	209,270
1900.	1,622	595	438, 670	73,340	1000.	1,605	245,585
1809.	1,570	680	394,650	71,960	1899.	1,532.	203,203
1898.	1,580	792	449, 525	57,060	1898.	1,514	399,585
1897.	1,692	927	507, 105	69,565	1897.	1, 576	469,360
1890.	2,045	1,425	587, 755	84,010	1896.	1,945	572,415
1895.	2,007	1,126	410,145	98, 685	1895.	1,004	303, 350
1894.	2,061	1,245	455, 175	128,355	1894.	1,993	363, 080
1893.	2,037	1,003	472,895	126,510	1893.	2,009	436,905
1892.	2,053	1,090	656,980	130, 220	1892.	2,013	502,210
1891.	1,881	1,019	450, 050	142,090	1891.	1,845	512,935
1890.	1,927	1,274	530,790	132,940	1890.	1,910	617,980
1889.	2,195	1,474	543,990	127,695	1889.	2,211	712,705

Expibit No. 31.-Extract from the report of the St. Louis Merchants' Exchange for 1908.

FOREIGN TRADE OF ST. LOUIS.

[By James Arbuckle, manager Latin-American and Foreign Trado Association.]
The year of 1908 will stand as an off year in the movement of the foreign commerce, not only of this country but of nearly all the countries of the world.

The panic which came in October, 1907, seemed to induce very heavy exports for several months thereafter, and the record of January, 1908, for exports, went up as high as two hundred and six millions; this was more than it ever had been for one month, and served in a measure to deplete the surplus stock of manufactured goods and agricultural products. Whilst the imports only amounted, for the same month, to eightyfive millions.

With exports two and one-half times greater than imports, the money situation became greatly relieved. The imports fell, in December, 1907, to ninety-two millions, and as low as eighty-four millions in May, 1908. This was, however, in one sense harmful, and showed that the industrial interests were suffering in manufacturers' materials not being imported.

For the calendar year, the exports shows a falling off of three hundred millions, and the imports a falling off of about a hundred and fifty millions.

The excess of exports over imports, will approximate six hundred and fifty millions, which is nearly equal to the highest surplus in any one ycar in the past fifteen years.

The comparison with other countries shows to the advantage of the United States, and we can look forward to prosperous times for some time to come.

The trade of the Mississippi Valley has been affected by the general conditions prevailing, and whilst the statistics of exports and imports are not yet fully compiled, there will be a considerable falling off in the movement.

MEXICO.

The financial situation was severely felt in Mexico, and the trade with St. Louis was considerably reduced in all lines.

No statistics are yet ayailable to show this, but the general consensus of opinion in all guarters is that there is a decided reduction in the exports from this city to Mexico.
The Mexican colfee crop for 1908 is estimated at 750,000 bays of approximate value of $\$ 15,000,000$, which is divided between Germany, England, France, and the United Stater.

CENTRAL AMERICA.

We have to note a larger movement with Central American points, indicated by the number of mercantile reports asked for on firms in this region. It is well that we should sell more goods there, to equalize the quantity of bananas that is imported from there via New Orleans. This is a fruitful tield, and the merchants of New Orleans are especially reaping some advantages from this trade.

OUBA.

Cuban trade has likewise been affected by the poor conditions, except the flour and grain interests.
The flour shipments show an increase of $\$ 201,706.80$ over the year oi 1907.
The following are the records from the Cuban consulate of this city, of cereal shipments:

	Articles.	1907.	1908.
Flour		\$1, $051,005.17$	\$1, 252, 711.97
Corn.		167, 148. 45	264, 184.24
Bran.		[0, 80ti. 66	
Oats.		26, 489.71	2,512.50
Hay.		1,476.24	52, 146. 14

Value of the articles exported irom St. Louis, Mo., to Cuba during 1907 and 1908 according to the records of the viceconsulate, as reported by Alberto Santiso, vice-consul:

Exhibit No. 32.--Extract from the report of the St. Louis Merchants' Exchange for 1908.
FORFIGN SHIPMENTS OF FIOUR AND GRAIN.
on through bhls of lading from st, houls by railmoads for the year 1908.

\begin{tabular}{|c|c|c|c|c|}
\hline Destination. \& Flour. \& Wheat. \& Corn. \& Oats.

\hline \& Barrels. \& Bushels. \& Bushels. \& Bushels.

\hline England. \& 225, 179 \& 8,127 \& 3,300 \&

\hline Germany \& 35, 166 \& 1,774 \& 1,088 \&

\hline Ireland. \& 93,615
9,089 \& \& \&

\hline Denmark \& 17,506 \& \& \&

\hline Norway. \& 3,235 \& \& \&

\hline Holland. \& 85, 661 \& \& 1,250 \&

\hline Belgium \& 1,485 \& \& \&

\hline Spain... \& 1,251 \& \& \&

\hline Veneruela. \& 5,118
3,167 \& \& \&

\hline Newfoundiand \& 6,294 \& \& \&

\hline Finland. \& 9,333 \& \& \&

\hline Canada \& 1,138 \& \& 9,442 \&

\hline Cuba. \& 172,517 \& \& 368,200 \& 13,750

\hline Porto Rico...... \& 40,154

2
1 \& \& \&

\hline South America.. \& 1, 1 , 456 \& \& \&

\hline Mexico.. \& ${ }^{676}$ \& \& \&

\hline Africa.. \& 1,260 \& \& \&

\hline Italy..... \& 220 \& \& \&

\hline | Portugal. |
| :--- |
| Trinldad. | \& 250

990 \& \& \&

\hline Seaboard for export \& 43,662 \& 057,630 \& 92,383 \& 39,58i

\hline Total for export \& 760,588 \& 667,531 \& 474,413 \& 53,331

\hline
\end{tabular}

Exhibrt No. 33.-Extract from the report of the St. Louis Merchants' Exchange for 1908.

EXPORTS OF ST, LOUIS MANUFACTURES DURING 1907.

[From the annual report of J. C. A. Hiller, Commissioner of State Bureau of Labor Statistics.]
To Europe: Agricultural implements, drugs and medicines, foundry work, furniture, printing, tobacco, metal goods, shoes, type, electric supplies, flour, leather belting, packing-house products, rubber goods, and soap and candles.
To Germany: Shoes, novelties, and packing-house products.
To Norway, Sweden, and Denmark: Flour and feed, leather belting, packing-house products, foundry work.
To South and Central America: Street cars and supplies, drilling tools, drugs and medicines, flour and feed, foundry work, liquors, surgical instruments, shirts.
To Hawaii and Porto Rico and Philippine 1slands: Chemicals, foundry work, novelties, saddlery, shirts, shoes; trunks, and wire goods.
To Canada: Awninge and tents, pretzels, show cases, brick tiling, brooms and brushes, coopers' tools, shovels, drugs and medicines, electrical apparatus, engraving, foundry work, furniture, glassware, grocers' sundries, leather belting, musical instruments, novelties, oils and paints, photographic supplies, rubber goods, soap and candles, stores, surgical instruments, trunks, tobarso, wire goods, and wood work.
To Mexico: Brandies, bags and bagging, show cases, boots and shoes, brick tiling, brooms and brushes, canned preserves, vehicles, railway cars, coffins, cooperage, brass castings, metal goods, type, shoyels, milling machinery, drugs and medicines, chemicals, electrical supplies, engravings, foundry work, adding machines, furniture, furs, glassware, grocers' sundries, hair goods and saddlery, structural iron, leather belting, malt, musical instruments, paints, oils and grease, photographic supplies, pottery, soap and candles, stoves, surgical instruments, tin goods, trunks, shirts, and tobacco.
To Cuba: Show cases, paper boxes, brick tiling, canned preserves, grocers' sundries, coffins, drugs and medicines, chemicals, flour and feed, foundry work, furniture, liquors, novelties, photographic supplies.

Ports and terminuls for water trafic.--The Montreal IIarbor Commission report makes a useful distinction between the words "port," "harbor," and "dock;" using the term "harbor" to mean a place of sheltor for shipping, the term "dock" to mean an interior basin, and the term "port" to mean not only" the collection of piers, slips, wharves, docks, harbors, roadsteads, entrance channels, but also the terminal accommodations and equipments by which freights are exchanged between boats and land conveyances.
Using a somewhat similar set of definitions the Chicago Harbor Commission unites with the Montreal Harbor Commission in bringing out forcibly the fact that water frontage alone does not make a port, and harbors and docks alone do not make a great port; but that the supremacy of a port depends mainly upon its ability to exchange land and water commerce easily, readily, and economically.
The Mississippi River from St. Louis to the Gulf has at present only one real port, New Orleans; and that one is so far but partially developed and most of its developments are limited to the interchange of ocean freights with steam railroads and common roads, without much attention to interchange with inland boats.
So far as channel approaches and water frontage are concerned Baton Rouge is as well provided as Manchester, England, or Antwerp, or Hamburg; but the latter cities have each recently spent amounts varying from $\$ 25,000,000$ to $\$ 100,000,000$ to provide themselves with the terminal facilities, useful wharves, docks, piers, slips, unloading and loading machinery, warehouses, railway sidings, railway storage, etc., necessary to transform them from harbors to ports.
St. Louis, Mo., has little wharfage either public or private except the graded river bank; East St. Louis has almost no public landingsand few private ones; Cairo, Ill., has several piers and slips and some few floating boat landings and warehouses, but all under private monopoly. Memphis and Vicksburg have limited public landinge consisting merely of graded banks and occasional floating warehouses. The other cities are less well provided. Such transfer facilities as exist at the Lake Superior and Lake Erie grain, ore, and coal harbors are unknown on the Mississippi. The injury to freights and cost of transfer by reason of necessary rehanding at the water's edge and subsequent cartage up the bank and across the city to the consignee are usually sufficient to outbalance a decided higher freight rate by rail.

The only people in the Mississippi Valley who have paid much attention to terminal facilities for freights are the railroads; and consequently they command the transportation business. Individual boats and small corporations can not afford to pay for such terminal facilities and the cities and towns have either not yet seriously considered the question of establishment of such facilities or are not prepared to pay for them.
Even on the Great Lakes, the railroads so dominate this situation that (Chicago Harbor Commission report) for the past many years only one out of many steamboats lintes has been abje to stand alone without being under the control of railroad terminals; and it is the water rates which are now being gradually raised to equal the rail rates, instead of the rail rates being lowered to or controlled by the water rates.
The harbor commissioners of Montreal in their report of 1908, of comparative study of modern port development in Europe, have the following suggestions to make as regards the best development, of commerce and harbors:
"The success of passenger and mail service depends upon the existence of costly ships, fast trains, first-class hotel accommodations at the terminals, direct route from business center to center, and harbors of sure and easy approach.
"Freight service and the handling of freight cargoes requires freight-handling devices that will handle freight in the least possible time, large storage areas for the collection of freight as near as possible to the ship's side, and direct railway or inland waterway connection to the centers of production and consumption.
"The ideal harbor for both passengers, mails, and freights will be one that attracts a paying business by its comfort, regularity, safety, as regards passenger service, and by its regularity of cargoes, efficient port management and equipment, and good locality as regards freights. These requirements mean the necessity of good channel approaches and of large-tonnage vessels, with rapid transfe: copliances for mail."
According to foreign experionce and present practice, every cify should be required, or at least urged and encouraged, to provide extensive free landings and good connections from the same to the center of the business part of the city easy for passenger and freight. The General Government can well afford to contribute much to the improvement of river fronts past good free landings and docks, because of the general development resulting from the establishment of good harbors at large commercial cities; but foreign practice indicates that the General Government should discourage the establishment of docks by private owners on governmentally improved streams except where there already exist free landings sufficient for ordinary service of all boats and where, at the same time, the private docks shall furnish improved
facilities fully worth their dock charges, and that especial care should be urged upon all States and municipalities to see that rights of way givon to railroads shall not unnecessarily prevent the later establishinent of boat landings or prevent the free use of existing and future landings or their easy and free connection with the business portion of the adjoining communities, and that where such facilities are not provided the river-front improvement should be assessed upon the dock owners or left undone in favor of other places where such requirements have been fulfilled.

That St. Louis at least is beginning to realize something of the above is shown by Exhibit No. 34.

Exhibit No. 34.-Extract from the report of the St. Louis Merchants' Exchange for 1908.

TERMINAL FAOILITLEG.

The credit of a city as a distributive center is largely measured by the promptness with which shipments are handled, and while during the past year there has not been much complaint of delays in St. Louis terminals, we must recognize the fact that these facilities are inadequato to take care of a tonnage like 1907 or the tonnage that we may anticipate for the year 1910. It behooves every industry to construct and acquire reasonable facilities for the accommodation of their traffic, and ton much importance can not be attached to the necessity for the lines serving St. Louis enlarging their present facilities by the addition of further team tracks, the erection of warehouses for the handling of merchandise and increased hold tracks, and the citizent of St. Louis should lend their support within reasonable limits toward the attainment of such results, reserving to ourselves at all times the right which the city has, in the granting of these franchises, of surrounding same with reasonable regulations looking to the protection of our business and the development thereof in the future.

Better service, by the more expeditious handling of our freight, is being rendered by the carriers. We are no longer confronted with delays and congestions incident to the enormous tonnage handled during 1007. The carriers have had an opportunity to study out plans and perfect operating conditions under which freight can be handled more expeditiously, and, with the development of businees, these measures 'hhould be continued.

RIVER TRANBPORTATION.

The success of a manufacturing and distributing community is largely dependent upon the ability to avail itself of cheap transportation for the purpose of handling its surplus and carriage of low-class freight, a condition which is takep advantage of in foreign countries through the development of their waterways and construction of a system of canals. There is no one thing that would give greater impetus to the business of this community than the development of our waterways and in particular the Mississippi River, by the means of which large quantities of our low-class freight would receive the measure of the lowest transportation charge. Determined efforts should be made to interest capital in the project of securing needed facilities for the handling of this river traffic, and the construction of suitable elevators and warehouses to be operated in connection therewith.

Regarding the best method in which the General Government and other interested parties can share in supplying the funds necessary for the development of inland navigation, the Eleventh International Congress of Navigation (St. Petersburg, 1908), in its summary of the proceedings, concludes that taxation in, as a rule, the best method of collecting the necessary funds, and that the taxes should be so arranged as to absorb a part of the profit obtained by the reduction of the cost of transportation due to the establishnent or improvement of the navigable highway, such taxes to be levied on the boats or the freight charges, and also by taxes on the increased value of the lands and buildings connected with the improvement, not to exceed in amount a half of the increased value; such taxes to conse as soon as the work has been prid for. It further concludes that local bodies, such as municipalities, boroughs, associations, industrial societies, etc., may be intrusted to secure the funds necessary for the construction, extension, or improvement, of river ports, landings, docks, warehouses, and the various equipments of the ports, as well as for the construction of local lines of approach and their connections, from settlements, factories, and centers of production, to the navigable highway.
From all the above investigations of the Chicago and Montreal harbor commission: and other modern engineering study, it seems to be quite generally admitted that all general governments may properly assume all responsibility for construction and
lirst cost of public waterway improvements so far as concerns the securing of through channel routes of necessary widths and depths; but_most foreign countries consider the improvement of torminals, including landings, wharves, piers, slips, docks, transfer machinery and sidings, ete, to belong largely if not wholly to the localities directly concerned. Where the General Government assumes control of the improvement of terminals it generally limits such control to the direction of supervision of work, axserssing the cost upon the locality.

- Rail and water competition.-The Ohicago and Montreal harbor commission reports show plainly that one of the main reasons for the great use of inland waterways abroad is their better terminal facilities and their higher freight rates, combined with the denser population and the greater need of transportation. Although the water rates abroad are less than the rail rates, the foreign water rato is often higher than the United States rail rates.
As recently explained by the Interstate Commerce Commission (Opinion No. 787, January 7, 1909), traffic entirely by water and traffic entirely within a State are outside of federal control; and (Opinion No. 848, March 8, 1909) the first railroad from St. Louis to New Orleans was obliged to make its rates as low as the then existing rates by water, all subsequent railroads being obliged to regulate their own rates accordingly in order to get any business. By strict attention to business and by improving their terminal facilities and their collecting and distributing arrangements, the railroads can to-day make profits at rates which are no longer proftable to steamboats. A comparison of rail rates and water rates from New Orleans to upriver points above Baton Rouge, and of rail rates and water rates from St. Louls to downriver points below Cairo (see Exhibits 44-45) will make this point quite evident. Until terminal facilities at the water's edge are much improved there is little to be gained by any increase of draft in the river greater than necessary to float barges of the draft found most economical in the Ohio and in Europe.
Railroad development in the United States, and especially in the Mississippi River basin, has been so enormous as to have attracted the attention of all foreign engineers; but such development is notable by reason of the enormous mileage for the total country, and for each 1,000 of population, and not by reason of the mileage per square mile, or other unit of area, as to which middle Europe is ahead of us; and the freight carried by American railroade is notable by the total for individual localities, or route, or 1,000 of population, and not for amount by the square mile or other unit of area. In the United States single trains often carry loads five times as great as in Europe. The habits of the Unitod States pubilic demand more freights and longer hauls per unit of population than in Europe. The large areas of comparatively level country in the southern Mississippi Valley, the northern Ohio Valley, and the great plains east of the Rocky Mountains have made possible in the United States long hauls and heavily loaded trains over gentle grades, resulting in low costs, impossible in Europe, and approaching even in the United States in some cases very closely to the cost of water transportation. The railroad freight of the United States in the last twenty years has nearly tripled in consequence. Existing rates, though low, would probably be carried still lower were it not for the fact that the demand for railroad freights has increased much faster than the mileage of terminal facilities of the railroads, requiring at the present tipe enormous expenditures for the latter in order to enable them to keep up with the buisiness.

Waterways as routes for transportation possess over railways certain decided advantages, as follows: Foremost in importance is the fact that the United States waterways are public highways, open to every boat irrespective of its ownership; second, their channels are usually so wide that boats can always freely pass each other, and each boat is usually independent of all others as to use of both channel and landings; third, landings can usually be made and passengers and freight discharged at any point along the route at the will of the boat agents; fourth, the use of the waterway and landing places is usually either free from tolls or charge for cost of construction and maintenance, or else the charge is slight. Other ad yantages exist, but' they are of minor importance. In proportion as any of these conditions are restricted by nature or by monopoly or by tariff charges the advantages diminish very promptly.
On the other hand, waterways as routes for transportation in comparison with railways have disadvantages, as follows: They are rarely straight, and so are usually much longer than corresponding rail routes, almost always 1.5 times as long and often three times. They are subject to special delays by weather conditions, as by fogs liable to occur at any time of day or night for uncertain and very variable intervals and by low water, freshets, and ice formations, occurring less often but lasting longer at a time. They naturally occupy the lowest levels of large areas, so that, necessarily all freights after being unloaded must be hauled uphill in order to reach a place of actual use or sale. Good natural wharvee and landinge are few; good artificial wharves or landings are too expensive for construction by amall communities, and cost of rohan-
dling from shipper to boat and from boat to consignee is usually lange. Boat service being easy of installation and comparatively free of monopoly and control is not easily organized under large companies; through shipments are not easily arranged and guaranteed between distant points. Repeated rehandling by irresponsible percons often becomes neceasary, and damage to through freights is not easily prevented nor its responsibility easily determined nor its cost easily adjusted. In proportion as these conditions are intensified the final coot of transportation increasee and the freight charge must be increased or the boat must go out of business. These disadvantages may often be so great as to determine shipment by rail even when the ton-per-mile freight charge by water is considerably less.

While boats can afford to carry bulky and heavy goods at much lower rates per tonmile than do railways, the difference may easily be more than counterbalanced by the damage to lumber and furnituire and frail materials by careless or repeated rehandling and also by the coet of haulage between the boat and the places of business of the shipper and consumer. Again, the rehandling to and from cars is almost always done under cover from rain 'and sun, while that from boats is usually done in the open. Furthermore, it must be remembered that in many caeee of ahipment by mail the shipper himself places the goods inside the car on a siding at his own factory or warehouse and the consignee unpacks the same in the same way, and not only doee the rail freight charge cover the entire cost of delivery from shipper to consignee, but the lesser amount of handling by rail diminishes both the risk of damage and the insurance chargee. For a proper comparison of the final cost of shipment by the two routee the boat and rail rates must both be increased by the cost of movement at both onds of the route between the terminale and warehouses. A similar increase must be made in any proper comparison of time delays in shipment by the two routee. Theee conditions alone are sufficient to explain why the lumber yards of Chicago and many other large citiea are losing their lake and river businees, even though located at the water's edge, and also why most of the Mississippi boat traffic is at present restricted to local businese, which can not be easily or economically reached by railroad sidings, and aleo why the Mississippi River is 80 little used over its 130 mileo between New Orleans and Baton Rouge, where there has existed from time immemorial at all hours of the day and every day of the year a clear channel of several hundred feet width and about 30 feet depth. The above remarks should be constantly kept in mind in inspecting and comparing the tables (Exhibits 35 to 45) which follow and which show the comparative water and rail ratee within the Mississippi Valley and between it and the Atlantic coast and Europe.
(A fuller statement of some of these rates and other intereating comparisons of the mme may be found in the Ohio River Board Report of 1005-6, previously mentioned in this eame appendix.)

Exmiert No. 35.-All and part rail freight rates on grain and grain products, November, 1908, from Chicago and St. Louis to East, at reportel November, 1908, by United States Bureau of Statiotice.
[All reter in ountres per 100 pounds.]

Detinationa.		Local rates from-							
		Chicago.				Esat At. Louls.			
	'	Grain products.		Flour.		Orain products.		Flour.	
		Domee tic.	$\underset{\text { Ex- }}{\underset{\text { Ex }}{ }}$	Domet tic.	$\begin{gathered} \text { Ex. } \\ \text { ported. } \end{gathered}$	Domes H.		Domes tlc.	$\underset{\text { ported. }}{\text { Fix. }}$
Now York.		173	17	178	16	194	184	198	173
Bonton.......		19	17	18.	16	21	188	21	17
Philadolphita.		155	38	15	$1 \begin{aligned} & 15 \\ & 14\end{aligned}$	17	16	17.	16
Battmars.........		14	4	14	14	16.	157	169	15.

[^44]Exerbry No. 36.-Class rates from East St. Louis to East, November, 1908, as reported November, 1908, by United States Bureau of Statistics.
[All ratos in cents per 100 pounds.]

Destlnation.

gea and rall sutas for Now York and Boston all year and for Philadelphia and Baltimore during oum mor aro ammo as lake and rall rates; but Philadelphia and Baltimore winter rates are from 1 to 2 ovats higher than summer rates.

8t. Louls clase rates, November, 1908, to East were same as East 8t. Louls.
Exeisrr No. 37.-Range of ocean freights, November, 1908, to Liverpool, as reported November, 1908, by Department of Commerce and Labor (Bureau of Statistich).

Artuale.	Boston.	New York.	Baltimore.	$\begin{gathered} \text { New } \\ \text { Orleans. } \end{gathered}$
Graln, per bushel.	2-21 pence.	14-2 pence.		
Flour, per 100 pounds.......	${ }^{6} 8$ cents.	7 l cents.	8-9 conts.	18-20 cents.
Sott lumber, per 100 pounds.	11 centa.	17 cents.		21-22 cents.
Oll cake, per 100 pounds.....	6 cents.	7 cents.	898 cents.	
Cotton, per 100 pounds.	12 cents.	12-15 conts.	18.20 cents.
Tobecoo, per 100 pounds	13 cents.	15 ceats.	18-20 cents.

Exhibit No. 38.-Range of ocean freights, November, 1908, to Hamburg, as reporited November, 1908, by Departmeni of Commerce and Labor (Bureau of Statistics).

Article.	Boston.	Now York.	Badtimore.	$\underset{\text { Orlown. }}{\substack{\text { Now }}}$
Graln, per bashel.	*30-32 conts.	22-30 propniga.	-12013.a....	34 ponen.
Flour, por lumber, per 100 pounid	${ }^{16-18}$ cents.	16-17 conts.	12-19 conts.	18-20 conts.
Solt lumber, per 100 pounds	19-21 cants.	10-20 conts.	$21-22$ cents.	21-22 cants.
Oll cake, per 100 pounds.	12-13 cents.	11 cents.	12-13 conts.	${ }^{6} 14$ shillinge.
Cotton, per 100 pounds.	${ }^{25} 25$ cents.	${ }^{26}$ \%enatis.	2200nts.	$30-35$ cents. 30-35 cents.

Exhibit No. 39.-Extract from the report of the St. Louis Merchants' Exchange for 1908.

 aVERAGE PUBLISHED RATES OF FREIGHT ON GRAIN IN OENTS.TROM SPC, LOUIS TO LIVERPOOL VIA RIVER TO NIW ORLEANE AND VIA RALLTO NEW YORE.

Year.		To Now Orleans by river.		On wheat to Now York by rail, per 100pounds.	To Llverpuol.		
		On grain In saoks, per 100 pounds.	On wheat in bulk, per bushel.		Vla Now Orleans, on wheat, per bushel.	Via Now York, on wheat, per bushel.	
1887		$18 t$	6	32.	15	24	
			63	$20{ }^{\circ}$	151	22.95	
1889.		17.93	5. 05	28	17	24.97	
		15.60	6. 68	27	14	21.48	
1881.		16.28	${ }^{6.873}$	29	16	23.65	
1893.		17.64	6.65	- 28.60	14.71	21.72	
1894.		17.14	5. 89	24.73	11.69	18.71	
1805.		13:00	5. 95	23, 57	12t	18.33	
1890.		14.54	5. 00	23.00	13.60	10.671	
1897.		10.83	4.88	23.64	12.89	20.33	
1898.		10.00	4.80	22.25	14.24	20.32	
1899.		10.00	4. 50	21.95	12.33	17.88	
1800.		10.00	a 4.25	19.38	14.64	18. 41	
1901.		10.00	a 4.25	19.33	9. 48	14. 03	
1902.		10.00	a 4.20	20.66	8. 63	15.33	
1905.				20.50		16.80	
1906.				20.50		16. 23	
1907.				20.50		15.87	
1908				19.50	...	14.78	
Average rate of treight on whent per bushel, by steamer, from New Orleans to Liverpool during 1907 and 1908.			Average rate of frelght on wheat per bushel, by steamer, from New York to Liverpool during 1907 and 1008.				
Month.	Rates in cents.		Month.		Rates in cents.		
	1008.	1807.			1908.	1907.	
January......................			nuary......			
Fobruary......................	6		rch.........		2	
April...........................	6	4	rll..........		2t. $\quad 2$	
May.............................	6		y.........		24	
June............................	4		ie........		3	
July.,..........................	${ }^{5}$		y.,.......	...		2	
August......................			gust $.1 . .$.		3	
Ootoler..	6		tober....			36	
November.......................			vember.			3	
December.......................	6			,		9 6	

a F゙, o. b. New Orleans.
Exhiart No. 40.-Extract from the report of the St. Louis Merchants' Exchange for 1908.
ALI-RAIL RA'IF: UF FREIGHT, IN CENT'S, FROM ST, LOUIS TO SOUTHERN CITIES DURING 1908.

Articles.	$\left\|\begin{array}{c} \text { Memphis } \\ \text { Tenn. } \end{array}\right\|$	Vloksburg. Miss.	New Orleans, La.
Flour per barrol, C. L. .	22	36	36
Wheat, C. L................	98	18	$a b 13$
Other grain and feed, per 100 pounds, C .	${ }^{9} 7$	a 12	${ }^{\circ} 12$
Meat, packed, per 100 pounds, C. L	$\begin{array}{r}c 18 \\ \hline 018\end{array}$	c c 30 c	$\begin{array}{r}\text { c } \\ \text { c } 30 \\ \hline 0\end{array}$
May, per 100 pounds, C. L......	ad 10	ad 172	a ${ }^{1} 17$

[^45]Eximbit No. 41.

PUBLISHED RATES OF FREIGIIT BY RAIL FROM ST, LOUIS TO NEW YORK DURING 1908.

Date.	Meats, per 100 pounds.	Corn, corn, wheat.	Barley, oats, rye, speltz.	Grain products.	Flour, per barrel.	Com. pressed cotton, per 100 pounds.
January 1 to May 1. May 1 to December 31 January 1 to December 31	" 30	$\begin{gathered} 208 \\ 19 \end{gathered}$	202	203	41 ${ }^{\text {a }}$

a East St. Louls.
(Irain and grain products to Boston, 2 cents higher than New York; to Philadelphia, 2 cents lower than New York; to Batimore, 3 cents lower than New York.
Cotton to Boston, 5 cents higher; to l'hiladelphia 2 cents and Baltimore 3 cents lower than Now York rates.

Meats to Bosion, 3 cents hlgher; to Philadelphia 2 cents and Baltimore 3 cents lower than Now York rates.
OLASS RATES FROM ST. LOUIS,
[From January 1 to December 31, 1008.]

	1.	2.	3.	4.	6.	6.
To New York.	873	76	583	41	35	29
To Boston.	94%	82	636	45	38	31
To Philadelphia	85	74	506	39	33	27
To Baltimore..	845	73	55%	38	32	26

Exhibit No. 42.
PUBLISHED AVERAGE RATE OF FREIGHT BY RAIL ON GRAIN FROM EAST S'f. LOUIS
[Per 100 pounds.]

Exhibit No. 43.
The reports of the Interstate Commerce Commission, 1006-7, give the following average froight rates on railroads paralleling to some extent the Mississippi River system:

Rallroad.	Average revenue (frelght) per ton-mille.	
	1900.	1907.
	Cents.	Cents.
IIlinols Central R, R, line south of Ohlo River	. 688	
Mobile and Oblo R, R., line south of Cadro, Ill 687	853
Cinolnnati, New Orleans and Texas Pacifio R. R., Fithin llmits of Group V-Kentucky, Tennessee, Mississippi, Alabame, Georgla, and Florida.	. 719	. 781
Missourt, Kansad, and Texas R. R.:		
	1.024	1.030 1.160
	1.162 .706	1.160 .733
International and Grent Northern R. R, Toxai and Ioulsiana.	1.040	1.057
(Galveston, Houston and Northern R. R. (1806) changed to Gaiveston, Marrisburg and 8t. Anthony Ry. (1007)).	1.543	
Entirt Unlted states, all rallroads ior ail classes of Ireight, taken as a wholo................	. 740	. 750

Eximir No. 44-Freight raice per ton, by rail, as reported by various parties, December, 1908.

- Distance taken Irom United States Army milleage book.

Exhibit No. 45.-Freight rates per ton by water, as reported by väious parties, December, 1908.

- Distances are channel routes according to United States engineer maps.

- Same rates either direction.
N. B.-The above rates by rail and water have been recelvec from commercial associations or terminal agents and are beliered to be sufficiently correct for purposes of comparisons. A comparison of the last table with the firstshows that from St. Louis to St. Paul the rates are lower by rail for sand and gravel, salt, cotton, sugar and molasses. and naval stores: and lower by water tor lumber, rock, lime, and clay, cament and brick, building stone, oil, manufactured iron, and tobacco. From St, Lonis to Cairo the rates are lower by rail
for rock, lime and clay, cement and brick, oil, other metals, grains and seeds, naval stores, and provisions; and are lower by water for building stone, salt. manufactured iron. flour, for rock, lime and clay, cement and brick, oil, other metals, grains and seeds, naval stores, and provisions; and are lower by water for building stone, salt, manufactured iron. flour, sugar and molasses, and tobscco. From St. Louls to Memphis the rates are lowar by rail on rock lime and ch
tobacco, naval stores, provisions; and lower by water for lumber, other metals, four, and sugar and molasses.

From New Orleans to Baton, Rouge, where the width and depth of channel is sufficient for occean boats, the rates are lower by rall on building stone, grains and seeds, flour, sugar and molasses, and provisions; and lower by water on sand and gravel, rock, lime and clay, and tobacco. From New Orleans to Natcher and Victsburg the rates are lowest by water only on tobacco.
As the rallroads will carry almost all articles of freight from Now Orleans, 396 miles, to Memphis at the same rates as 214 milles to Natchex, shippers, having little to gain by using water transportation from New Orleans to Baton Ronge have nothing to gain to points above Natchex, In the same way, shippers hare little to gain by using water transportation from St. Louis to points below Memphis and nothing to points below Greenville. Consequently packets plying between Memphis and Natchez must depend for are the only boats that can successfully compete with the railroads.

Appendix No. 21.

FIEAD AND OFFICE OPFRATIONE OARRIED ON UNDER TEE DIREOTION OF THE BOARD ON EXAMINATION AND GURVEY OF MISBISAIPPI RIVER, IN CONNECTION WITH THE PREPARATION OF ITS REPORT.
[Prepared by the recorder of the Board.]
In the absence of any complete and recent maps of that district, it was decided by the Board, as being requisite to a proper study of the problem before it, that a topographic and hydrographic survey of the alluvial valley of the Mississippi River be made between St. Luulis, Mo., and Cairo, Ill.; and that surveys be made below Cairo to determine the length of caving banke and the number of bars having less than 14 feet of water over them at any stage.
The office, force, and plant of the Mississippi River Oommission having been placed at the service of the Board by the act of Congress approved March 2,1907, and the Ohief of Engineers having authorized the employment of a part of the clerical and engineering force of the United States engineer office, St: Louis, on the work of the Board and the use of vessels operating under the direction of that office for the distribution of supplies needed by parties engaged on the St. Louis-Cairo survey, work was undertaken with the intent of completing feld-survey operations before the high-water season of 1908, if possiblo.

The survey was so planned and executed as to provide data for determining-
First, the number of bars having less than 14 feet of water over them at all stages of water and the annual cost of dredging them so as to maintain a depth of 14 feet;

- Second, the cost of a system of regulation works and the depthe that it is practicable to obtain by such method of improvement;
Third, the locations of movable dams and their cost so as to obtain 14 feet of water; and

Fourth, the location and cost of a lateral canal or canals similar to the one proposed from Alton to St , Loulis.

Assistant Engincer Wm. M. Penniman was transferred from the United States engineer oflice, St. Souls, Mo., and placed in charge of the field operations and office work of the survey of the stretch of river between St. Louis and Cairo. The supervision of the measurement, in the stretch between the Ohio and Red rivers, the length of caving banks and determination of the number of bars having less than 14 feet of water over them at any stage, was under the immediate direction of Capt. G. R. Lukesh, Corps of Engincers, U. S. Army, recorder of the Board. He also, as secretary of the Mississippi River Commission, had charge of the regular 9 -foot dredging and the experimental 14-foot dredging carried on below Cairo by the Mississippi River Commiseion. These duties aro here mentioned, as the operations, especially the experimental dredging, have been asource of valuable information for the Board's use, and the operations were in part carried on with the lioard's cooperation.

FIEIJD OPERATIONS ABOVE OAIRO.
These operations were under the general direction of the recorder and under the immediate supervision of Assistant Engineer Wm. M. Penniman.

Assistant Engineer Penniman reported for duty August 19, 1007, and immediately formulated a project for the prosecution of the survey of the district between St. Louis and Cairo in accordance with the requirements of the Board.

Requirements of survey.-As the requirements of the act creating the Board called not only for recommendation in regard to the improvemeat of the open river, but also for the consideration of the feasibility of a lateral canal or canals for a part of the route, it was deemed necessary, in the absence of any suitable maps, that this survey cover the entire bottom lands between the high bluffe from St. Louis to Cairo. It was also considered advisable to obtain the controlling elevations of bed rock at certain points in the district that seemed by nature suitable as locations for dams for either a lateral canal system or rivor canalization.

Project.-A project for this survey, based on a preliminary examination of data and existing maps of the district on file in the office of the secretary of the Mississippi River Commission and in the St. Louis United States engineer office, submitted on August 27, 1907, was approved by the Board August 29, and the organization of the necessary field and office parties for the work was at once commenced.
Secondary triangulation points and precise bonch marks of a survey of the river in this district made by the Mississippi River Commission, established in 1880 to 1881, were utilized as a basis for the Board's survey; use was also made of sections of the topography as determined by the Mississippi River Commission. aurvey in 1884-89, where no changea had since occurred.

The survey made by the Board broadly divides, under two general heads, as "river survey" and "valley survey."
The "river survey" embraced, besides the necessary triangulation, survey of shore lines of both banks of the river and of tops of natural banks; of improvements; of timbered and cultivated areas; of islands, sand bars, sloughs, and all secondary channels of the river; a determination of the slope of the water surface, especially in the pools above and below each "crossing;" soundings sufficient to develop all shoals, or channel crossings, at varlous stages of the river during both rising and falling intervals; lines of channel soundings at high and at low stages of the river, and borings to determine the elevation of bed rock at solected points along and across the channel.
The "valley survey" comprised the taking of topography from the river except that unchanged and depicted on published maps to and including the front slope of the bluffe in Illinois and in Missouri; all characteristic features of the topography wire taken; authentic high-water marks, especially those of 1844, 1851, 1858, and 1903, were determined, and borings at selected localities to develop, bed rock if within reasonable distance of the surface.

Methods.--The methods used by all parties were those of the Mississippi River Commission on similar work and governed by its publithed instructions. The main features of these methods are the use of the stadia for topography, with distances in meters and elevations in feet. Each topographer was required to make an accurate aketch of his work in the field, using protractor and scale, the sketches being to the same scale as the detailed maps, but intended merely as a gulde in the final platting.
Three sets of soundings were taken-cross river and channel, at the timo of the aurvey of the banks; and contlinuous lines of channel soundings throughout the stretch, St. Louis-Cairo, at times of high and low water.
The cross-river soundings of the Board's survey were taken on ranges about 1,000 feet apart and were located by intersections, using an instrument on the bank and a range line. The channel soundings were located by a transit on shore and a sextant on the boat. The continuous channel-line soundings were located by double sextant. angles from the steamer.
A continuous line of levels was run generally on only one side of the river and between successive bench marks, connecting where convenient with the topographer's stakes, and determining the water-surface elevations at sounding rances. Temporary "gauges were also established near the base of the work and elevations of their zeros determined. These gauges were read twice dally and their readings recorded.
A base line run pear the bluffs when at a distance from the river was measured with steel tape, checked by stadia readings, and connected with the secondary triangulation stations on the bliffs; stakes were determined about every quarter mile, and permanent points were established from 1 to 2 miles apart by setting iron pipes.
The valley topograp) hy was surveyed by running a series of crows-section lines about one-half mile apart, beginning at the stakes of the "river survey" and joining on the base-line stakes near the bluffs.
A level line was carried over the base-line stakes, giving the topographers a level elevation at each end of their lines; in places where the valley was more than ordinarily wide'another line of levels was run midway between the bluffs and the river and connected with the neighboring topographic stakes.

Field parties.-It was decided to place four survey parties in the field-plant being available for that number-three to be engaged on the "river" and the "valley" surveys, and the fourth to make the test boringy necessary to determine elevations of bed rock.
When the "valley" survey was undertaken it was proposed to use hand cars to aseist the detached parties working near the bluffs. Four such cars were obtained the latter part of March; 1908, through the courtesy of Mr. A. W. Sullivan, general manager of the St. Louis, Iron Mountain and Southern Railway, and were used to advantage by parties Nos. 1 and 2.
Considerable delay was encountered in procuring the necessary instruments and field equipment for the parties, the manufacturers not being able promptly to furnish instruments of the character required for the work, and some delays developed in obtaining the requisite floating plant for quarters.
As the season was becoming late, the work of all parties was confined to the waterway of the river-the main and secondary channels and the islands and bars within the high-water lines-in order to complete that part of the work during the low-water season then existing, and the survey between the bluffs and the river banks was left to be made during the following winter and spring.

Chiefs of party.- For duty as chief of parties Nos. 1, 2, 3; and 4, respecti vely, Junior Fingineer George H. Wolbrecht, and Assistant Engineers Eugene L. Harman and George H. French were temporarily transierred from the force of the secretary's office, Missis. sippi River Commission, and Junior Engineer Philip Florreich, jr., from the United

States engineer office, St. Louis. Meears. Harman, French, and Wolbrecht were in charge of the parties performing survey work proper, and Mr. Florreich was given charge of the boring operations.

The river survey.-The survey of the river, as such, was made by the three parties, taking the Geld about October 1, 1907, in two and one-half monthe of actual field work, and included the topography between high banks. This was completed from the termination of the deep waterway survey between Chicago and St. Louis (head of Arsenal Island) to the mouth of the Ohio River, and 5 miles up the Ohio, to Mound City, Ill.

In addition to the regular hydrographic survey (in which was later included St. Louis Harbor from head of Arsenal Island to the Chain of Rocks) a continuous double line of channel soundings was made from St. Louis to Cairo in December, 1907, during the lowest water of the season, and a single line of chaniel soundings between the same points during the flood of June, 1908. The total river distance covered by the survey is about 200 miles.

The valley survey,-The topographic surrey of the bottom lands, covering about 600 square miles of territory, was completed in four months average time, by the three parties, including some additional levels and topography taken after the completion of the general field work.

Observations for the measurement of diecharge of the tributariee of the Missisippi River between Alton and Cairo were taken in the following streams: The Big Muddy, at Sand Ridge and at Murphysboro; of the Wood River, about 2 miles above the mouth; of the Kaskaskia (Okaw) River, about 4 miles above the mouth; of the Meramec River, at Valley Parc, and of the River Des Peres.

The stage of the water being then unfavorable for work near Cairo, and repairs being required on both steamers assigned to this work, topographical parties Nos. 1 and 2 were withdrawn from the field on completion of work by No. 1 in the upper part of the district, opposite Brickeys, Mo. (mile 46 below Eads Bridge, St. Louis), on April 20, 1908, and by No. 2 near the foot of Liberty Island (mile 85) on May 2, and they were then engaged in the office work necessary to complete the field plats.

Party No. 3 was disbanded about'the middle of December, 1907, the chief of party and a few surveyors working up figld notes in the St. Louis office till May 25, 1908, when; reorganized, it again took the field and completed the work near cairo and Mound City.

Test borings, - Survey party No. 4 (borings) took the field November 8, 1907, and made 117 borings from government floating plant on 13 linee crosesing the river and on a longitudinal line extending from St. Louis to Cairo and lying approximately 3,000 feet from the bluffs nearest the river. Nineteen land borings made under contract completed the transvalley lines.
Seven of the cross sections developed extend entirely acrose the alluvial valley, one across the main glacial channel at the head of the St. Francis basin, one at Grays Point, and one at Commerce, the head and foot of the narrow gorge through which the river pasees; the three others are partial transvalley sections,

FIELD ORGANIZATION AND WORE.

The three topographic survey parties were intended to have practically the same general organization as to the instrument parties comprising each, and the same methods of work in the field; but the number of subparties engaged with each was subject to change to meet the varying requirements of the different sections of the district of river they were operating in, and the immediate needs that could be beat served by change in such general arrangement.

As a result the organization varied as to the number of subparties engaged in the different classes of field work at any one time, but in general it may be said that the average organization for each of the three survey partiee adhered clocely to the following outline:
One assistant engineer (or junior engineer), as chief of party; the necessary number of surveyors (including a junior engineer if his services were available), with the requisite number of recorders, survey men, axmen, and boatmen, to constitute four transit parties, and one level party, and allow, additionally, a surveyor and recorder for work in the field quarters on general office reduction of notes and computations. Each transit party was composed of one instrument man, one recorder and from three to five stadia rodmen; the level party consisted of one observer and two level rodmen. Three of these transit partiee were to be engaged on topographic work exclusively, and the fourth party, to be in charge of the junior engineer, was, in addition to such work, to engage in the tertiary triangulation that might be required. One of the transit parties was also available for the work of counding croes-section and
local channel lines. Boatmen and axmen were assigned to these parties as required to meet the needs of their work.

The following statement of the field operations of the three parties engaged on topographic and hydrographic survey work proper, and of the boring party, are taken from the reports of the several chiefs of party.

Survey party No, 1.-Junior Engineer Geo, H. Wolbrecht reported for duty with the Board September 21, 1907, and was engaged in the organization of the party and in other preparatory work until October 4, when the party entered the field. It completed its field work April 21 1908, and returned to St. Louis, and there completed the field maps and engaged in other office work.
The floating plant of this party consisted, at the beginning, of one large quarter boat, six skiffo, and a fuel barge; the outfit was increased later by the addition of a small steam tender for towing the quarter boat, for sounding, and for transportation of field parties to and from work. This plant was all obtained by loan from the United SLates engineer oftice, St. Louis. The quarter boat, becoming unserviceable, was replaced by a small oftice and survey boat.

On January 1, the steam tender was returned to the fleet, as soundings had been completed and ice was running in the river. February 18, 1908, the steamer Mercury was obtained from the dredge fleet of the Mississippi River Commission. This boat being found incapable of towing the outfit upstream, was returned and the steamer Choctaw from the same fleet replaced it on March 6. This boat, together with the office boat, fuel barge, and skiffe, was continued in use till the end of the fleld season.

The party, consisting at the start of 32 men, was reduced in number January 1, 1008, to about 20, engaged in mapping and the reduction of notes, no field work being contemplated during the severe weather and period of running ice. Mild weather toward the end of January permitted the increase of the party to the full force, and it entered the field again February 1. During February and March, to expedite the work, the party was increased to about 54 men.

The field work of party No. 1 consisted of the topographic and hydrographic survey of the river and valley between and including the bluffs, extending from Guthrie street at St. Louis (4 miles below Eads Bridge) to Fort Gage, Ill. (mile 66). This was afterwards changed to include the "valley survey" as far as Red Rock Landing, Mo. (mile 89), with the exception of the east half of Kaskaskia Island which had been surveyed, but including the "Old River" back of that island, making a total of 72 miles of hydrographic survey and of 277 square miles of "valley survey."

The hydrographic survey was completed to Fort Gage (mile 66) December 1, 1907, and included the survey of the Missouri Valley to that point with all small islands and sloughs.

The "valley survey" of the Illinois Bottoms was immediately begun on completing the "river survey," and during the month of Decemberabout 45 square miles of topography was taken. The party then moved into winter harbor at the United States engineer fleet, Claryville, Mo. (mile 73), and the steamer was laid up. Field work was resumed toward the end of January, 1908, the party remaining in the Claryville Harbor and carrying on work in that vicinity as advantageous. The remainder of the Missouri Valley, including the Bois Brule Bottoms, was completed by detached parties boarding at farmhouses near the work. Progress was retarded by the muddy condition of the ewamp lands, but this part of the survey was completed February 17. On March 6 , the party transferred quarters to the steamer Choclaw, moved to St. Louis, and commenced work on the unfinished part of the "valley survey." Repairs were made to the steamer at the engineer depot, St. Louis, and the detached parties were transported by small tender. On April 20 this field work was completed and the party returned to St. Louis the day following.
In all, the party was in the fiel one hundred and ninety-seven days, of which time work was suspended for twenty days on account of winter and for thirty-four Sundays and holidays, thirteen days were lost on account of rain and snow, leaving an actual total of one hundred and thirty working days in the field. The discharge observations of the River des Peres, Meramec, Wood, Big Muddy, and Kaskaskia rivers were taken by this party.

Survey party No. 2.-Aseistant Engineer Eugene L. Harman was transferred to the service of the Board on September 1, 1907, perfected the organization of his party, and entered the field on October 5, 1907, on the survey steamer Patrol, furnished by the Mississippi River Commission from its West Memphis dredge depot. This party varied-in numbers from 35 to 65 , the total of employees being dependent on both the needs of the field work and the pozsibility of continuing operations during inclement weather from winter quarters.

The survey was begun immediately on arrival of the party at Fort Gage, IIl. (mile 66 below Eads Bridge, St. Louis), the upper point of the stretch of the river and valley survey originally aseigned to this party, which was to extend from the head of Kas-
kaskia Island (mile 65) to Moccasin Springs, Mo. (mile 117). Work on both river and valloy surveys was continued until October 18, when the party was instructed to discontinue the simultaneous survey of both river and valley, and to concentrate efforts solely on the river survey and hydrography. This work was completed to a point near Moccasin Springs on Decomber 3 ; the party then proceeding to Commerce, Mo. (mile 144), whence it continued the "river" survey downstream to connect with similar work of party No. 3, then proceeding upstream from Cairo. The joining of river survey work by these two parties was effected on December 12 , and the steamer Patrol took party No. 3 in tow to the Fay ville flect of the United States engineer oftice; party No. 2 proceeded to St. Louis in order to make a continuous line of low-water channel soundings throughout the entire district from St. Louis to Cairo. This work was accomplished in five days, from December 17 to 21, and the party then returned to the lay ville fleet for winter harbor, running ice being expeeted.
Operating from this point as a base, topography was taken anove Fay ville to a short distance above Thebes, Ill. (mile 140), and also across the neck of land between the Mississippi and the Ohio rivers, from Irayville toward Mound City (Ohio River, 5 miles above cairo). Work in this territory was continued until back water in the Cache River from the Ohlo put a stop to further operations in that locallty.
On the redistribution of the "valley suryoy" to parties Nos. 1 and 2, this party was nesigned the stretch extending from Cora, Ill. (opposite the foot of Liberty Island mile 84) to Gale, III. The survey of the valley was completed in this district, with but eight days' intervening delay on account of ice, on May 2, and the party returned to St. Louis to work up notes and complete the field maps of their territory.

In June, 1908 , during and practically at the crest of the 1908 flood, a continuous line of high-water channel soundings was made from St. Louis to the mouth of the Ohio River by this party. It also made measurements of the yolume of discharge of the Big Muddy River at Sand Ridge, and at Murphysboro, Ill., during their period of active field work.
Survey party No. 3.-Assistant Engineer Geo. H. French entered oa his dutiee as chief of this party on September 1, 1907, and as the assignment of territory gave him the lower part of the St. Loule-Cairo district, the outfit for his party was made ready before that of the two other parties. This party, completely organized, entered the field Soptember 18, 1907, being subsisted on a quarter boat obtained by loan from the United States englneer ofllce, St. Louis, which had beon fitted up at the engineer depot for the use of that party.
The first distribution of survey territory gave for this party the stróch or Tiver and valley extending from Moccasin Springs, Mo. (milo 117 below Eads Bridge, St. Louis), to Cairo, 111. (mile 185), the mouth of the Ohio River, and thence to farther extend up the Ohio River to Mound City, Ill. (Ohio River 5).
The party arrived at Moccasin Springs on September 21 and began feld operations on September 23. Work was started at the head of Vancill Towhead (mile 116) aind topography was taken on the left bank to the Illinois Central Railway tracks, a distance of 24 miles from the river, as a limit. This procedure was continued till October 16, when the entire force was directed to engage in the "river" survey alone. This work was carried to Grays Point, Mo. (mile 137), on November 7, when the party was traneferred to Brewers loint (mile 160) to continue in the same manner of work to Cairo, and thence up the Ohio River to Mound City. On this assignment work was commenced at the lower end of (Greenleai Bend (mile 168) on November 8 and completed from lirewers Point to Mound City on November 23. The outfit was then moved to Hacker Towhead (mile 157) on the 24th, and work was resumed upstream to connect with the work of party No. 2, and that connection was made at Commerce Mo. (mile 144), on December 11. The party then moved to Fayville fleet of the United States engineer offlce, and from that point as a base of operations resumed work at Grays Point, which was continued until connection was established with the work of party No. 2 at Commerce, Mo., on December 18.

The party was disbanded on December 19, and Assistant Engineer French, with two surveyors and two recorders, proceeded to the St. Louis office and engaged in the reduction of notes and the completion of their field maps.
On the 25th of May, 1908, the party was reorganized to complete some unfinished topographical work in the vicinity of Greenleai Bend (mile 168), Bird Point, Mo. (mile 181), and Mound City, Ill.
This latter work of the party was done with the steamer Patrol, and the field work consisted of filling in the gaps omitted in the previoussurvey, and the survey of the entire peninsula from Beechridge (mile 169), including the village of Mounds (mile 173), on the Mississippi, and the town of Mound City (mile5), on the Ohio, to and including the city of Cairo, and a stretch of country west of Bird Poiut (mile 181) and north of the St. Louis, Iron Mountain and Southern Railway to Stevenson's Bayou (mile 178) and 5 miles weat of Bird Point. Also country on the left bank of the Ohio from Cache

Island and the railroad bridge to a point above Wickliffe, Ky. Work was continued till June 26, when high water interfered and the outfit was taken to the Fayville fleot of the United States engineer office, the party disbanded, and the stammer Patrol returned to the Mississippi River Commiseion dredge depot. Assistant lingineer French and 10 surveyors und recorders returned to St. Louis to prepare field maps of the work.

Survey party No. 4.-The boring party, organized in the first part of November, 1907, with Junior Engineer Phillp Florreich, Ir, in charge, a foreman, pilot, steam engineer recorder, and necensary subordinate help, made all borings in the river andsupervised those made on land. The large number of the river borings as well as their nature and the expensive floatling plant required, almost precluded the possibility of having them made by contract labor. The land boringe were made by Jamee Kinney, jr., under contract; his outfit was transported by river by the United States.
The floating plant borrowed from the United States engineer office, St. Louis, consisted of an oflice and survey boat, steam tender, pile driver, fuel barge, wooden flat, and three akiffs. As the work progressed another pile driver and a crew of foreman, recorder, and six men were added on December 16, and later a repair-shop boat. When the line of channêl borings was begun, a surveyor, three inspectors, two recorders, and additional stokers and watchmen were added, the oftce boat and tonder returned, and the steamer Choctaw, of the Misaissippi River Commission, obtained by transfer from survey party No. 2, as the tender was not of sufticient power to move the larger plant and land-boring outfit expeditioualy and economically and quarters were not adequate to accommodate the increased forco.

The river borings wore made from pile drivers by means of a pipe with jet drill attached, operated in a casing formed by a larger pipe. The water from the jot returned through the apace between the pipes, bringing up pleces of the material penetrated, and was discharged at the upper end. The casing was forced down by a drop hammer, while material at the bottom was broken and loosened by the churning of the drill attached to the jet pipe combined with the action of the water jet. The discharged specimens of material were taken for record. When bed rock was struck it was penetrated sufficiently to distinguish it positively from alluvium. Bed-rock penetration varied from three-tenths of a foot to 2 feet.

Location of boring ranges.-Borings were made on various cross-section lines and also on a longitudinal line. The cross-section lines wore located at points of least distance between bluffs on opposite sides of the river, also where floating plant could operate entirely across the river from bluff to bluff. Partial sections were also made where especially favorable circumstances made other borings possible without great additional cost or much loss of time.

Borings on the longitudinal line from St. Louis to Cairo were as nearly as possible 3,000 feet from either the Missouri or the Illinois bluffs, and spaced from 3 to 5 miles apart.
In downstream order from St. Louis, cross-section ranges were as follows: Cliff Cave, Meramec River, Danby Landing, Mudds Landing, Ste. Genevieve Bend, Menard, Liberty Bend, Fountain Bluff, Union Point, Devils Tra Table, Head of St. Francis Basin, Grays Point, and Commerce. Of these the Menard and Liberty Bend crass sections were made with the floating plant and extended across the entire alluvial valley. Oliff Cave, Mudds Landing, Devils Tea Table, and Fountain Bluff ranges were made with both the river and land boring plants. On Ste. Genevieve Bend wection ouly four borings were made, with the river plant alone, but it forms another very fair section extending across the entire valley. The cross section at the head of the St. Francis Basin was developed by borings along the shore in Cape Girardeau Bend and extends from the bluffs at Cape Girardeau to the upstream side of the isolated ridge at Grays Point.
The other eections, at Meramec River, Danby Landing, and Union Point, are partial sections not extending beyond the river banks.

The drivers were moved into position by steamboat and moored to the banks or to piles specially driven, or anchored. For channel borings where the depths wore too great to drive piles, two anchors for head lines and two or more for side lines were used.

In boring, the lead end of the driver was downstream, and a wooden flat was placed immediately below, on which to couple pipe and carry all boring apparatus; when drawing the casing the flat was placed partly under the leads of the driver, thus giving additional buoyancy.

Casing of 4 -inch double extra strong pipe was used and found very satisfactory, affording enough bearing surface at joints to stand driving and possessing sufficient strength and thickness to prevent bending. Sections in use were tirmly joined with double extra strong hydraulic couplings.

It was found by experience that the most satisfactory form of drill was a cross or X bit with five jet holes so designed as to give a maximum cutting edge without reducing the jet stream. Several other types were tried, but none found equal to this drill, and the successful results of the boring operations are largely due to its use. The churning of the drill was done with a line from the end of the jet pipe passing over a pulley in the top of the leads to a winch on the hoisting engine.

Drive shoes on the end of the casing were also tried. They were found of no adyantage, and as they were soon broken and badly worn, their use was discontinued and the casing was driven without protection of the lower end.

The casing was connected to a nipple fitted permanently into drive head. This was found necessary, as from constant use the shoulder of the drive head became battered and worn, spoiling the threads of the casing that entered, which in turn ruined the joints between the following sections, necessitating frequent renewals. By inserting the nipple permanently the coupling on the end of the sleeve replaced the threaded portion of the drive head, with the advantage that when worn it could be replaced with another coupling. In this way wear on the threads of the casing pipe was practically eliminated.

Drive heads were used in two forms, one circular made from 6 -inch round steel, and one with square top of cast steel, and were designed for driving either 4 -inch or 6 -inch casing. Both were found very satisfactory with the exception noted, that of stripping the threads of the casing by continued service, which was overcome by use of a nipple. There were two openings in the heads so that discharge of material could be made on the flat.

A 6 -foot length of 4 -inch ordinary pipe was screwed into the upper end of the drive head, serving as a standpipe to keep discharge water from overflowing, as a guide for the hammers, and as a protection for the jet pipe. A cast-steel plate 12 inches square and 2 inches thick beneath an oak block 12 inches thick was placed immediately over the drive heads to distribute the blow of the hammer and act as a buffer.

For a hammer use was made of two pile followers or guides, with hole to allow vertical movement on the standpipe, and a casting of similar shape, but not dished, which was used below the hammer to prevent wear on the buffer block. The weights composing the hammer (totaling about 1,400 pounds) were fastened with iron cable to which were attached the ends of the bridle line passing over a pair of pulleys in the top of the leads and thence by single line to the hoisting drum. The hammer, drill, and water jct were operated simultaneously, the hammer at about 40 blows per minute, with an average drop of $1 \frac{1}{2}$ feet; the churning was done independently of the driving and required constant attention to prevent penetration of the drill below the casing, which would result in loss of back flow through the casing, permit the entrance of gravel, the clogging of jet, packing by sand, and minor troubles depending on character of material penetrated.

Land borings.-The land boringe were made under contract, using three Keystone well-drilling outfits. Of the borings made 16 were to complete cross sections on which the river borings were already made, 4 being necessary at Cliff Cave, 5 at Mudds Landing, 5 at Devils Tea Table, 2 at Foustain Bluff, and 3, for special examination, were on almost straight line between Fayville (old river town of Santa Fe) and Beechridge, Ill.
The casing used was 6 inches in diameter, both ordinary and extra strong pipe being employed. It was driven with the regular drop weight of about 1,500 pounde. The material was broken down with a churn drill consisting of stem and bit that together weighed about 800 pounds; the casing was bailed with the regular sand pump.
The land-boring party was engaged from May 28 to August 21, a period of almost three months, working one hundred and fifty drill days of eight hours each and making 19 borings. This time does not include that required for movement of contractor's plant from one locality to another by the United States boring party.

Notes and records.-For determining depths of river boringe the leads of the driver were graduated in feet and half feet, the water surface being zero. The top of the casing pipe was used as the index of the depth. The lengthe of pipe sections were recorded when attached, and when put in position the height above water surface as indicated in the leads was noted.
A record of fluctuations in river stage while a river boring was being made was obtained by a temporary gauge near the borings or from readings of a permanent gauge if near the work. Soundings were taken at the drivers for a better determination of the bottorn depth, as the depth shown by the top of the casing when first lowered was generally too great on account of the casing sinking into the bed of the river for several feet. A similar method of determining depths penetrated was followed in the case of land borings, using a graduated rod erected near the boring, having its zero at the ground aurface, the elevation of which was determined.

The record of the borings kept in notebooks was supplemented by a complete and independent record on tags attached to the cans in which the specimens were temporarily kept; subsequently samples were prepared in glass tubes on a scale of onefourth inch to 1 foot for study and comparison of strata.

Character of strata penetrated.-The material forming the river bed consisted almost entirely of glacial drift varying in size from fine silt to coarse gravel and bowlders. For convenience it may be classified into silt, quicksand, fine and coarse building sand, fine and coarse gravel, and bowlders. Besides this glacial drift there were also various clays and soils as Loess clay, which occurred near the bluffs, various colured gumbo, sticky impervious clay (hardpan), and ordinary tillable or humus soil. Logs and particles of lignite were often encountered. Fire clays, slate, shale, and various siliceous formations were encountered overlying the bed rock. These were generally only a few feet in thickness while the thickness of the alluvium proper varied greatly. However, the silica formation, according to records of oil-well boring at Grand Tower, was 250 feet in thickness.

A close study of the sample tubes fails to show stratification or any regularity in the occurrence of the material. In chemical composition the particles of sand and gravel varied slightly, being in almost all cases particles of acid crystalline rocks consisting of quartz granite gneiss, porphyry, and other siliceous rock, quartz predominating. While the arrangement of the material was very irregular the classification of the different varieties according to size and color was very distinct, sands of same size of particles but of different colors being distinctly separated and rarely found mixed and then mostly in the sands near the surface. Thus a green sand will be free from particles of different color, though sands of apparently the same size and density but of different colors will be found in close proximity on the same boring. This would seem to indicate that the material was deposited and transported in frozen masses by glacial action rather than as sediment by flowing water.

The local sedimentary rocks, limestone, and sandstone were seldom found except as bowlders near the bluff shores. Bowlders of quartz, granite, and potsdam aandstone a foot or more in diameter were sometimes also encountered.

Number of borings. - The total number of borings made by United States party (not including experimental ones and those abandoned on account of extreme depth of bed rock or other reasons) was 117, with a total penetration of 12,060 feet, an average depth for each boring of 103.1 feet below the water surface or 91.8 feet below the bottom.
The number of borings made on land by the contractor was 19 , with a total penetration of 2,473 feet to an/average depth of 130 feet below the surface of the ground.
In addition to the regular work jet borings were made with pile driver in the latter part of December, 1908, to investigate the nature of the river bottom in the gorge between Grays Point and Commerce, particularly in the vicinity of the Paul Jones rock, where it was suspected as a result of comparisons of cross sections developed by surveys in different years that bed rock might be found within short distance of low water. The borings disclosed bed rock approaching to about 17 feet below low water over the greater part of the cross section.

field operations below cairo.

[These operations were carried on under the direction of the recorder.]

During 1907 the Mississippi River Commission carried on experimental dredging at three crossings with a view to determining the feasibility of obtaining and maintaining a 14 -foot channel by that means. The Board took cognizance of these operations, and, having access to the reports and records of the commission, has made a study of the results of the experiments. The 14 -foot experimental dredging was resumed by the Mississippi River Commission at the beginning of the low-water season of 1908, and the Board was authorized by the commission to select, in the interests of the Board's wort, the localities for the operations. The Board selected three localities-Corona, Uzells, and Linda-and the dredging was prosecuted at the first two of those points throughout the season and at the third after October 28.
Measurement of the length of caving banks between the mouthe of the Ohio and Red rivers was carried on under the Board's direction during the low-water season of 1907, and the entire stretch was covered between October 9, 1907, and January 31, 1908. This work was done by the Mississippi River Commission gauge inspection and survey parties specially organized to carry on the extra work of measuring the caving banke.
These parties also made soundings of crossings between the mouths of the Ohio and Red rivers to determine which ones had at any time channel depths less than 14 feet.

OFFICE WORK.
General.-The preparation of the final charts of the Board's survey of the stretch of river between St. Louis and Cairo was accomplished by the regular drafting force of the secretary's office, Mississippi River Commission, under the personal direction of Assistant Engineer C. W. Clark. These are detailed topographic naps, drawn in 17 sheets, 44 by 72 inches, on a scale of $1: 10,000$, depicting the various features of topography, hydrography, and bed-rock determinations, and other details as to protection works that have been constructed for the improvement of the river in that district and of such works as are still existing, with tables showing the stages of the river and graphical depiction of the principal data of each gauge shown or referred to.
The drafting of the mape comprised the projection and index charting of the 17 sheets and the transference to them of the topography and hydrography depicted on the field sheets, which were forwarded by the survey parties as completed.
Various survey data pertaining to the sections of the Mississippi River above or below the mouth of the Ohio River, as mentioned later, were also placed on these maps.
These maps were completed early in October, and as they had been prepared with a view to the reproduction on reduced scale, advantage was taken by the St. Louis United States engineer office and Mississippi River Commission of the interval between their completion and the termination of investigations then in hand by the Board to accomplish their reproduction on a geale of $1: 20,000$, the work being done by the, United States Lake Survey, Detroit, Mich.
Mr. Clark personally prepared a small scale general map showing the territory adjacent to the proposed 14 -foot waterway between the Great Lakes and the Gulf of Mexico.
A graphical representation of the discharges of the Mississippi River from Grafton, Ill., to Red River was prepared, and tables of all available discharge data of the same stretch of river were compiled under the direction of Assistant Engineer Kivas Tully. He also prepared a general statement of past projects and of total appropriations for the improvement of the Mississippi River between St. Louis and the Gulf.
A condensed statement of the main physical characteristics of the Mississippi River between St. Louis and the Gulf of Mexico was prepared by the recorder under the direction of the Board, with accompanying diagrams and tables.
A comprehensive profile of the Mississippi River from St. Louis to the mouth of the river was prepared showing high and low water planes, and bed of the river.
A curve of discharge of the Mississippi River at St. Louis was constructed from data obtained from the Mississippi River Commission, 1880-81, and a similar curve from the data obtained by the United States engineers office, St. Louis, in 1900-1904, were prepared for the purpose of comparison.
Ilydrographs were prepared of the principal gauges between St. Louis and Cairo for the fiscal year 1907-8, for use in connection with the maps from the Board's survey; also a comprehensive hydrograph of these same gauges for the periods since they were established up to June 30, 1008.
Hydrographs of these principal gauges were made for the period from 1896 to 1907, inclusive, showing the mean, maximum, and minimum stages for each day of the year.
A sheet of typical cross sections of the Mississippi River in wide, narrow, and medium width reaches with a datum plane, was prepared, and show also high and low water marks; the location of these typical cross sections has been indicated on the original maps.
The bench marks, triangulation stations, high-water marks, and similar data, pertaining to the Board's survey of the St. Louis-Cairo stretch of river, has been tabulated, and the descriptions prepared.
A condensed profile of the stretch of river between St. Louis and Cairo was prepared and shows comparative thalweg of river bed in 1907 and in 1884-89 (Mississippi River Commission survey); planes of floods and low water and the underlying bed rock.
Profiles in three sheets each, prepared to accompany the slack water and the lateral canal projects, and two profiles, a single sheet each, were prepared on blueprints of the condensed profile for the project for complete regulation worke.
Sets of the photolithographic reproductions of the Board's St. Louis-Cairo survey were also prepared to show the proposed works under the first two of these projects.
Cross sections showing bed rock as developed by borings, and also the location and depth of all borings made, have been shown on the detailed charts; a longitudinal profile of bed rock along the approximate channel of the river from St. Louis to Cairo was prepared, showing the depth of the borings and the character of the strata penetrated, also showing planes of floods and low water and the river bed. Gross sections ehowing similar details were also preparcd for the transvalley lines of borings.

Borings made by bridgo companies, and in investigations by the United States engineer office, St. Louis, have been platted, and cross sections at the bridges showing bed-rock profile, clearances above high water, etc., have been placed on the final charts.

Sample tubes for all borings have been made for study of the strata penetrated.
Tables were prepared giving river stages at principal gages between St. Louis and Cairo, from the dates of establishment of the gauges to June 30, 1908.

Reports of the experimental dredging operations of the season of 1907 and 1908 were received and digested. Surveys of the crossings before, during, and after the 14 -foot dredging were studied, and reports on the operation of both seasons were prepared by the recorder (for the first year in his capacity as secretary of the commission, for that body, and in the second year in his capacity as recorder of the Board). The recorder's report of 1908 operations appears in Appendix No. 9 .

The reports and maps of caving banks between the mouths of the Ohio and Red rivers, as recelved from the field were compiled and tabulated. A diagram in 7 sheets in colors has been prepared-showing the length of caving banks and their approximate location, and the rate of caving throughout the stretch. A map covering the entire stretch was prepared in 1 sheet and gives the approximate locations and the lengths of caving banks.

All authoritative réports of soundiags on crossings between mouths of the Ohio and Red rivers were tabulated in cooperation with the Mississippi River Commission for both years, and all maps of bar surveys in the stretch were examined, and from the results a table was prepared for each of the two years, giving the names and locations of all the bars in the stretch where a channel depth of less than 14 feet occurred during the low-water seasons, and giving also the least depth found on each of these bars during each year.

The data as above obtained and the reports on past dredging and bank protection and contraction operations under the Mississippi River Commission and the gauge records of the district were studied and an estimate of cost of the improvement of the river between Cairo and the Red River was prepared under the direction of the Board by the recorder.

Except as noted below, all maps, profiles, tables, and other data used by the Board and enumerated above were prepared under the general supervision of the recorder; those pertaining to the stretch of river above Cairo were prepared under the immediate supervision of Assistant Engineer Wm. M. Penniman. The regular drating force of the Mississippi River Commission, augmented by the computing and drafting force of the Board, performed all computing, mapping, and preparation of hydrographs, profiles, and miscellaneous data.

At the United States engineer office, St. Louis, some work was done under the direction of Assistant Engineer Wm. S. Mitchell (in addition to his preparation of a 14foot dredging project for the disirict between St. Louis and Cairo), and consisted of the preparation of data for the use of the Buard in its investigations; the more important items of this work were the tabulation of a statement of cost of work done under that office for the improvement of the St. Louis to Cairo stretch, with estimates of the cost of work to complete that project; a comparative curve showing the relation between depths on crossings and to river stages for the St. Louis-Cairo district; a measuren ent of the eroded areas and their volumes-in that district for the last three decades; a tabular statement regarding the permanent and perishable works of improvement in the Mississippi River between St. Louis and Cairo, with showing of cost and character, prepared for the use of the Board in its studies. Also the compilation of data ior the preparation of the hydrograph of the St. Louis gauge for the period from 1861 to 1908.

PROJECTS FOR IMPROVEMENT.

Projects have been prepared for the improvement of the Mississippi River below St. Louis to the Gulf of Mexico, to produce and maintain a waterway having a navigable depth of 14 feet; the entire route has not been treated as a unit, but has been considered in two sections-above the mouth of the Ohio River from St. Louis to Cairo and below the mouth of the Ohio from Cairo to permanently deep water.

For the section above Cairo the following projects have been prepared:
For obtaining and maintaining the desired channel by means of hydraulic dredging alone, by Assistant Engineer Wm. S. Mitchell.

For complete regulation of the open river by means of works of permanent improvement, by Assistant Engineer Wm. M. Penniman.

For slack-water navigation within the river itself by heans of a system of movable dams, by Assistant Engineer J. W. Woermann.

For a system of canal or canals, several routes being offered by Assistant Engineer J. W. Woermann.

For the section below Cairo a project has been prepared for improvement-
By means of hydraulic dredging, with contraction and bank-protection works, by Capt. G. R. Lukeah, Corpe of Engineers, U. S. Army, recorder of the Board.

ADMINIBTRATION

All office and field work under the Board, except such as was done by members or by conimittees, was under the general supervision of the recorder, Capt. G. R. Lukeeh, Corpe of Engineers, U. S. Army. He retained personal charge of the field and office work below Cairo and general supervision of work throughout the entire stretch. 'The field and office work in the district between St. Louis and Cairo was under the immediate supervision of Assistant Engineer Wm. M. Penniman.
The disbursement of the funds of the Beard was handled entirely by the secretary of the Mississippi River Commission. (Until November 30, 1908, the recorder of the Board was the secretary of the Mississippi River Commission, and since that date First Lieut. O. H. Knight, Corpe of Engineers, U. S. Army, the secretary of the commission, has been the disbursing officer of the Board.)
One clerk, James N. Patrick, formed the permanent staff of the Board, and was ongaged on Board duties exclusively.
Purchases of instruments, plant, and supplies such as could not be obtained from the Mississippi River Commission or the United States engineer office, St. Louis, were made by the secretary of the Mississippi River Commission. The survey partiea above Cairo were supplied and outfitted principally by the St. Louis engineer office, using the plant of that office, but at the expense of funds in the hands of the disbursing officer of the Board.
Miscellaneous office work, property accounts, correspondence, typewriting, and 00 on, was divided between the offices of the recorder of the Board and the secretary of the Mississippi River Commission.

Appendix No. 22.

A COMPILATION OF DATA IN REGARD TO PERMANENT MARKB OF MIBSIBSIPPI RJVER GURVEY, BT. LOUKS, MO., TO CAIRO, ILL., WITH A BRIEF HISTORY OF TKE PRINCIPAL GAUGES OF THE MISSISSIPPI RIVER BETWEEN ST. LOUIS AND CAIRO AND A RECORD OF EXTREME HIGE-WATER MARKB BETWEEN GRAFTON, ILL., AND COLUMBUS, KY.
[Prepared under the direction of the Board on Examination and Survey of Mississippl River (created by act of Congress March 2, 1907) by Wm. M. Pennliman and J. W. Skelly, assistant engineers, and Geo. H. Wolbrecht and Phillp Florreich, jr., junior engineers.)

The following data, with deecriptions, of permanent marks of United Statee surveys in the alluvial valley of the Mississippi River between St. Louis, Mo., and Cairo, IIl., is designed to embrace all such marks now in existence.
Its scope includes the permanent marks shown on the charts (published in seventeen sheets) of the survey of 1907-8 of the Board on Examination and Survey of Mississippi River, or located within the territory covered by them, and also a few permanent marks of unusual importance or prominence closely adjacent to but not within the limits of those charts.
The compilation includes the secondary and tertiary triangulation stations, the precise level and the stone-line bench marks of the Mississippi River Commission; the tertiary triangulation stations and bench marks of the United States engineer office, St. Louis, Mo., and the tertiary triangulation and base-line stations of the Board on Examination and Survey of Mississippi River.
The latitudes and longitudes of the secondary triangulation system of the Mississippi River Commission, 1880-81, are derived geodetically from the United States engineer astronomical station of 1876 at Cairo, Ill, and all other geographic positions contained herein are controlled by that system of triangulation.
The elevations given are based on the precise levels of the Mississippi River Commission of $1880-81$, and are shown in feet above Memphis datum plane, which is 190.84 feet below the zero of the United States engineer gauge at Memphis, Tenn., 420.84 feet below the St. Louis "City directrix," and approximately 6.84 feet below mean sea or gulf level.
With a few exceptions, the stations marked "U. S. Coast and Geodetic Suřvey" were included in the secondary triangulation of the Mississippi River Commission, and, unless otherwise atated, only the latter determinations are given. For the latest United States Coast and Geodetic Survey values for such stations see their Special Publication No. 4, 1900, "The Tranacontinental Triangulation," as follows: Deacriptions, pagee 77-79: geodetic positions, page 859.

The stations are scheduled in the downstream order of the seventeen charts from St. Loulis to Cairo; the stations pertaining to each separate chart are arranged in descending order by latitudes.

The authority and survey date is indicated for each station; the chart number following title indicates that station is plotted on the chart so referenced; "not plotted " follows the reference for stations within the limits of the charts but not depicted. Stations not within the limits of the maps are so noted.

The latitudes and longitudes are given to seconds and hundredths; the equivalents of the seconds are given in meters to the mearest meter, the positive value first with plus sign, and followed by the minute complement with minus sign.
The expression of azimuths, distances, and elevations has been carried only to such degree as is considered commensurate with the accuracy of the determining survey, or with the value of the reference. Those which occur as whole numbers are given without use of decimal point and zeros.

The descriptions of the permanent marks are the lateot available; they were compiled largely from the field notes and original records, and all published data of the various offices and surveys cited as authorities have been used.

The following symbols are used to designate the class of a permanent mark: $\theta=$ secondary triangulation; $\Delta=$ tertiary triangulation; $\odot=$ permanent bench mark, determined by precise levels; $\square=$ stone-line or other bench mark, determined by ordinary levels; and $\oplus=$ base-line station of the Board on Examination and Survey of Mississippi River.

A brief history, or description, of the principal river gauges of the Mississippi River between St. Louls and the mouth of the Ohio River, and of the Ohio River gauge at Cairo is given, with mention of bench marks conveniently located for the verification of the gauge elevations; and the authorities for the data given are also cited.

A record of extreme high-water marks of the Mississippi River between Grafton, Ill., and Columbus, Ky. completes this appendix. Data were obtained from various sources for this compilation; and for the floods of 1785 and of 1844 the record embraces all authentic marks and references of value that could be found. Below Thompson Landing, Mo., the Ohio River flood of 1883 is the highest reliably recorded, and appropriate notes on that flood have been included under the 1844 record.

PERMANENT MARES OF MISBISBIPPI RIVER GURVET BETWEEN ET. LOUIS, MO., AND CAIRO, ILL.

(c) KENDALL.

Miseouri River Commission, 1887. (Not in limits of Board on Examination and Survey of Mississippi River charts.)

Latitude $38^{\circ} 5039^{\prime} .69$, meters $+1,224,-626$.
Longitude $90^{\circ} 02^{\prime} 40^{\prime} .58$; meters $+979,-468$.
To Sugar Loaf, azimuth $348^{\circ} 39^{\prime} 24^{\prime \prime}$, distance $16,176.1$ meters.
ToA Intake Tower, azimuth $50^{\circ} 32^{\prime}$ (1905).
To \triangle Chain of Rocks, azimuth $52^{\circ} 26^{\circ}$ (1905).
To \triangle Madison Chimney, azimuth $44^{\circ} 51^{\prime}(1905)$.
To \triangle Granite City, azimuth $31^{\circ} 21^{\prime}$ (1905).
Stone post, marked with 6 -inch iron pipe with cap, 6 inches above ground, in Illinois; 75 feet north of the Alton and Edwardsville road; about one-half mile north and one-fourth mile west from the southeast corner of section 36, township 4, range 9 , west, at which corner is the railroad station, Wanda. It is on the highest point of the bluff; in thick brush 30 feet south of the road that leads to house of Simpson brothers, owners of sourrounding land. (The latitude and longitude given above were derived by adjusting the Missouri River Commission values for this station to the Mississippi River Commission triangulation, and the azimuth to Θ Sugar Loaf was like wise adjusted.)

\triangle MISSOURI RIVER.

United Statee engineer office, St. Louis, Mo., 1901. (Not in limits of Board on Examination and Survey of Missiseippi River charts.)

Latitude $38^{\circ} 49^{\prime} 35^{\prime \prime} .64$; meters $+1,099,-751$.
Longitude $90^{\circ} 06^{\prime} 31^{\prime \prime} .53$; meters $+761,-687$.
To \triangle Levee, azimuth $13^{\circ} 26^{\prime} 05^{\prime \prime}$, distance $2,860.7$ meters.
To○P. B. M. 11, azimuth $289^{\circ} 42^{\prime} 52^{\prime \prime}$, distance 399.5 meters.
Iron pipe, flush with surface of revetment opposite mouth of Missouri River. It is 48 feet southwest from blazed elm tree; 42.7 feet weat from another blazed elm tree; 31.7 feet west from a spike about 6 inches above ground in a large elm tree with crotch, near river bank. The 1,500 -foot stake of the United Statee engineer office revetment or bank protection in 1 foot west and 1 foot south of this spike. The station is on edge of revetment and $1,310.8$ feet from P. B. M. 11, Mississippi River Commission.
© P. B. M. 11.
Mississippi River Commission, 1880. (Not in limits of Board on Examination and Survey of Mississippi River charts.)

Latitude $38^{\circ} 49^{\prime} 31^{\prime \prime} .27$; meters $+964,-886$.
Longitude $90^{\circ} 06^{\prime} 15^{\prime \prime} .94$; meters $+385,-1,063$.
Elevation: 420.70.
To \triangle Missouri River, azimuth $109^{\circ} 43^{\prime} 01^{\prime \prime}$, distance 399.5 meters.
Top of copper bolt in stone post in woods; 2 meters north of a honey-locust tree; about 10 meters north of road; and 11 miles below Alton, Ill. Stone is 400 meters back from river bank, opposite the point of Missouri shore, at upper mouth of Missouri River. ' There is a road leading back from the river past the station.' The road leads through the woods and is nearly grown over now.

A LEVEE

United States engineer office, St. Louis, Mo., 1901. (Not in limits of Board, on Examination and Survey of Mississippi River charts.)
Latitude $38^{\circ} 48^{\prime} 05^{\prime \prime} .41$; meters $+167,-1,683$.
Longitude $90^{\circ} 06^{\prime} 59^{\prime \prime} .08$; meters $+1,426,-22$.
To \triangle Missouri River, azimuth $193^{\circ} 25^{\prime} 48^{\prime \prime}$, distance $2,860.7$ meters.
Iron pine, about 6 inches below the surface and on the end of a broken levee in Illinois; near the foot of the "Missouri River" revetment, in 1901. A mound of stone covers and marks the station. Four elm trees on the slopes of the levee are blazed with nail and triangle. Their distances are: To tree northeast from station, 20.80 feet; southeast, 14.64 feet; southwest, 16.85 feet; northwest, 18.18 feet.
\triangle ChOUTEAU ISLAND NO. 2.
United States engineer office, St. Louis, Mo., 1901. (Not in limits of Board on Examination and Survey of Mississippi River charts.)
Latitude $38^{\circ} 46^{\prime} 56^{\prime \prime} .72$; meters $+1,749,-101$.
Longitude $90^{\circ} 09^{\prime} 06^{\prime \prime} .57$; meters $+159,-1,290$.
Iron pipe, 6 inches above ground, 235.6 feet back from \triangle Chouteau Island, in Illinois; 12 feet west from field and 4.96 feet east from spike in blazed willow 8 inches in diameter; 20.7 feet north from spike in blazed willow 7 inches in diameter on same slope; and 32.6 feet south from spike in willow, 6 inches in diameter, blazed 5 feet above the ground.

(1) AMERICAN BOTTOM UPPER BASE.

United States Coast and Geodetic Survey, 1872. (Not in limits of Board on Examination and Survey of Mississippi River charts.)
Latitude $38^{\circ} 3950^{\prime \prime} .16$; meters $+1,547,-303$.
Longitude $90^{\circ} 00^{\prime} 58^{\prime \prime} .61$; meters $+1,417,-34$.
Elevation: 528.44.
To \oplus Insane Asylum, azimuth $73^{\circ} 51^{\prime} 10^{\prime \prime} .81$, distance $23,849.45$ meters; back azimuth, $253^{\circ} 41^{\ell} 19^{\prime \prime} .72$.
To © Clarks Mound, azimuth $26^{\circ} 44^{\prime} 35^{\prime \prime} .69$, distance $10,509.11$ meters; back azimuth $206^{\circ} 42^{\prime} 33^{\prime \prime} .75$.
To@American Bottom, azimuth $24^{\circ} 40^{\prime} 11^{\prime \prime} .88$, distance $7,266.884$ meters; Lower Base, back azimuth $204^{\circ} 38^{\prime} 53^{\prime \prime} .62$.
The station is situated on the west slope of the Illinois bluffs, on the east side of the American bottom in Madison County, Ill., opposite St. Louis; on land belonging to Mr. A. Sumner; about one-fourth mile north of the road from East St. Louis to Collineville, and a short distance east of the road running north from the Collinsville road along the foot of the bluffs. The center is marked by a cross cut on a copper bolt set in the top of a limestone monument 12 by 14 by 40 inches, inscribed in a similar manner as the monument at Lower Base. An earthenware pyramid is buried 4 feet below the surface of the ground directly under the cross on the copper bolt. Two reference posts were set, one in prolongation of the base, and one at right angles to the eastward, each 5 by 5 by 30 inches, and distant 24 feet from the center.
The center of the head of the copper bolt inseited in the stone monument marking the base is B. M. " H_{3} " of the United States Corst and Geodetic Survey.
Elevation derived by adding 6.87 feet to the United States Coast and Geodetic Survey mean sea level value of 1903. (See note under " K_{3} " St. Louis City Directrix; and for latitude, longitude, azimuths, anci lengthe of lines, see "Note" under Lower Base.)

(c) AMERICAN BOTTOM LOWER BASE.

United States Coast and Geodetic Survey, 1872. (Not in limits of Board on Examination and Survey of Mississippi River charts.)
Latitude $38^{\circ} 36^{\prime} 15^{\prime \prime} .98$; meters $+493,-1,357$.
Longitude $90^{\circ} 03^{\prime} 03^{\prime \prime} .96$; meters $+96,-1,356$.
To © Insane Asylum, azimuth $89^{\circ} 53^{\prime} 40^{\prime} .73$, distance $19,875.51$ meters; back azimuth $269^{\circ} 45^{\prime} 08^{\prime \prime} .24$.
This station is situated on the west slope of the Illinois bluffs, on the east side of the American bottom, in St. Clair County, Ill.; opposite St. Louis, on land belonging to Mr. Francis Simoin; and on the west side of the road running north from the Belleville rock road along the foot of the bluffs through the small settlement of French Village. It is about 1 mile from the rock road and one-fourth mile from the village; 4 meters west of the fence at the side of the road; and about 193 meters north of Mr. Daverirol's house. The center is marked by a cross cut on a copper bolt set in the top of a limestone monument 12 by 14 by 40 inches, having the letters U. S. O. S. cut on the side facing the base, 1872 on one side, and BAse on another. An earthenware pyramid is buried 4 feet below the surface of the ground, under the cross on the copper bolt Two reference stones were set, one in prolongation of the base, distant 39.37 feet, and the other at right angles to the eastward, distant 63 feet from the center.
Note.-The values of the latitudes and longitudes given for both ends of base were derived by comparison of the published results of the surveys of the United Statea Coast and Geodetic Survey (Special Publication No. 4, 1900) and of the Mississippi River Commission secondary triangulation, and reduced to the latter system. The lengths and azimuths of lines from both stations are the United States Coast and Geodetic Survey values taken from the same publication.

(大) INSANE ASYLUM.

United States Coast and Geodetic Survey, 1.871, redetermined by Mississippi River Commission, 1880-81. (Not in limits of Board on Examination and Survey of Mississippi River charts.)

Latitude $38^{\circ} 36^{\prime} 13^{\prime \prime} .99$; meters $+431,-1,419$.
Longitude $90^{\circ} 16^{\prime} 45^{\prime \prime} .37$; meters $+1,098,-354$.
To © Clarks Mound, azimuth $278^{\circ} 26^{\prime} 41^{\prime \prime} .11$, distance $18,387.10$ meters.
To © Dryer, azimuth $328^{\circ} 13^{\prime} 50^{\prime \prime} .30$, distance $13,331.28$ meters.
To © Standpipe, azimuth $219^{\circ} 42^{\prime} 23^{\prime \prime} .41$, distance $9,606.16$ meters.
Is about 5 miles southwesterly from the court-house at St. Lovis and about 500 feet south of Arsenal street, at a point about one-half mile westerly from its intersection with Kingshighway, at Brannon avenue and Arsenal street. The gendetic point is the finial of the cupola of the building. Eccentric stations were occupied on the main floor of the cupola.

(大) CLARKS MOUND.

United States Coast and Geodetic Survey, 1872, and Mississippi River Commission, 1880-81. (Not in limits of Board on Examination and Survey of Mississippi River charts.)
Latitude $38^{\circ} 34^{\prime} 45^{\prime \prime} .75$; meters $+1,411,-439$.
Longitude $90^{\circ} 04^{\prime} 13^{\prime \prime} .97$; meters $+338,-1,115$.
To © Standpipe, azimuth $130^{\circ} 04^{\prime} 14^{\prime \prime} .84$, distance $15,717.51$ meters.
To (4) Dryer, azimuth $52^{\circ} 25^{\prime} 32^{\prime \prime} .25$, distance $14,116.73$ meters.
To@ Insane Asylum, azimuth $98^{\circ} 3^{\prime} 4^{\prime} 29^{\prime \prime} .80$, distance $18,387.10$ meters.
To © Sugar Loaf, azimuth $201^{\circ} 51^{\prime} 33^{\prime \prime} .35$, distance $14,606.56$ meters.
A United States Coast and Geodetic Survey station on Clarks Mound (supposed to be of Indian origin) situated on bluffs about three-fourths of a mile south of French Village and Belleville rock road, St Clair County, Ill. The station can best be reached by a road leading off the Belleville rock road to a farmhouse belonging to Mr. Ogle and tenanted in 1872 by Mr. Mitchell. The road spoken of leaves the Belleville road about 1 mile east of French Village. Geodetic point is an earthenware pyramid buried about 4 feet under the surface. Surface mark is a marble post 6 inches square about 10 inches above ground, marked U.S. C. and G. S.
\odot P. B. M. 12.
Mississippi River Commission, 1880 and 1889. (Not in limits of Board on Examination and Survey of Mississippi River charts.)
Latitude $38^{\circ} 46^{\prime \prime} 52^{\prime \prime} .70$; meters $+1,625,-225$.
Longitude $90^{\circ} 10^{\prime} 55^{\prime \prime} .72$; meters $+1,345,-103$.
Elevation: 464.76.

Top of copper bolt in stone post on right bank; in corner of grove; 66 feet west of Columbia Bottom road; 14 miles upstream from Chain of Rocks; on land of B. M. Chambers; and 2,300 feet upstream from bridge on Columbia Bottom road over Watkin's Creek.

A CHOUTEAU BAR.

United States engineer office, St. Louis, Mo., 1901. (Chart No. 1, station not plotted.)

Latitude $38^{\circ} 46^{\prime} 12^{\prime \prime} .52$; meters $+386,-1,464$.
Longitude $90^{\circ} 10^{\prime} 13^{\prime \prime} .34$; meters $+322,-1,127$.
To \triangle Intake Tower, azimuth $24^{\circ} 19^{\prime} 37^{\prime \prime}$, distance $1,421.5$ meters.
To \triangle Chain of Rocks, azimuth $46^{\circ} 40^{\prime} 06^{\prime \prime}$, distance $1,688: 8$ meters.
Iron pipe on foot of high willow bar on Illinois side of river and opposite group of houses above waterworks at Chain of Rocks. Top of pipe is about 6 inches above surface of ground; 105 feet west of willow. tree 6 inches in diameter blazed with triangle. Station is in line with this tree and one and one-half story white frame house opposite the station.

$$
\text { 号 } \frac{57}{3}
$$

Mississippi River Commission, 1889; redetermined by United States engineer office, St. Louis, Mo., 1901. (Ohart No. 1.)

Latitude $38^{\circ} 46^{\prime} 10^{\prime} .51$; meters $+324,-1,526$.
Longitude $90^{\circ} 10^{\circ} 55^{\prime \prime} 71$; meters $+1,345,-104$.
Elevation: Stone, 435.89 ; pipe, 440.98 .
To@57/2; azimuth $278^{\circ} 47^{\prime}$, distance 1,948 meters.
Flat stone and iron pipe on east side of Columbia Bottom road; 7 meters from center of road; one-half mile above Chain of Rocks, Mo.; on land of Ed Dowling; and 94 meters north of southwest corner of his land; 600 meters below bridge, over Watkins Creek, on Columbia Bottom road. There is a vineyard on east side of hill, back of pipe.

$$
\text { (} \frac{57}{2}
$$

Mississippi River Commission, 1889; redetermined by United States engineer office, St. Louis, Mo., 1901. (Chart No. 1.)

Latitude $38^{\circ} 46^{\prime} 00^{\prime} .86$; meters $+27,-1,823$.
Longitude $90^{\circ} 09^{\prime} 36^{\prime \prime} .26$; meters $+875,-573$.
Elevation: Stone, 419.50; pipe, 424.59 .
To 0 57/1, azimuth $278^{\circ} 47^{\circ}$, distance 843 meters.
To@57/3, azimuth $98^{\circ} 47^{\prime}$, distance 1,948 meters.
Flat stone and iron pipe, on Chouteau Island, Illinois; opposite a point one-half mile above Chain of Rocks; on land of F. Kahle; on back side of levee; in cultivated field; 140 meters back of river bank; 160 meters south of a grove between bank and levee; a little below a one-story house that stands 300 meters back of levee; and 910 meters below where north and south levee ends at the river.

$$
\text { 回 } \frac{57}{1}
$$

Missiseippi River Commission, 1889. (Chart No. 1.)
Latitude $38^{\circ} 45^{\prime} 56^{\prime \prime} .43$; meters $+1,740,-110$.
Longitude $90^{\circ} 0901^{\prime \prime} .41$; meters $+34,-1,415$.
Elevation: Stone, 417.14; pipe, 422.23.
To@57/2, azimuth $98^{\circ} 47^{\prime}$, distance 843 meters.
Flat stone and iron pipe, on Chouteau Island, Illinois; near the middle of the island; on east side of north and south township road; in cultivated field of J. W. Siegers; and about 325 meters south of schoolhouse.

\triangle CHAIN OF ROCKS.

- United States engineer office, St. Louis, Mo., 1901. (Chart No. 1, station not plotted.)
Latitude $38^{\circ} 45^{\prime} 34^{\prime \prime} .94 ;$ meters $+1,077,-773$.
Longitude $90^{\circ} 11^{\prime} 04^{\prime \prime} .22$; meters $+102,-1,347$.
Center of the large brick chimney of the St. Louis waterworks at Chain of Rocks, Mo.

A CITY LIMITS No. 161.
City of St. Louis; redetermined by United States engineer office, St. Louis, Mo., 1903. (Chart No. 1.)

Latitude $38^{\circ} 45^{\prime} 31^{\prime \prime} .71$; meters $+978,-872$.
Longitude $90^{\circ} 11^{\prime} 19^{\prime \prime} .04$; meters $+460,-989$.
Elevation: 580.98.
To © Robinson, azimuth $323^{\circ} 26^{\prime}$, distance 35 meters.
Top of stone, marked "161," with hole in top; stone is between 8 and 12 inches square, is in the northern boundary line of the city of St. Louis and is 175 meters west of Columbia Bottom road; on land of Mr. Robinson.

(e) ROBINSON.

Mississippi River Commission, 1880-81. (Chart No. 1.)
Latitude $38^{\circ} 45^{\prime} 30^{\prime} .68$; meters $+946,-904$.
Longitude $90^{\circ} 11^{\prime} 18^{\prime \prime} .10$; meters $+437,-1,012$.
Elevation: 584.37.
To © Soechtig, azimuth $321^{\circ} 49^{\prime} 01^{\prime \prime}$ 23, distance $5,758.84$ meters.
To (®)Standpipe, azimuth $10^{\circ} 17^{\prime} 13^{\prime \prime} .59$, distañee $9,937.31$ meters.
To \triangle Cabaret, azimuth $342^{\circ} 47^{\prime} 58^{\prime \prime}$ distance 2,413.6 meters.
To \triangle Chain, azimuth $319^{\circ} 28^{\prime} 33^{\prime \prime}$, distance 630.3 meters.
To \triangle Granite City, azimuth $338^{\circ} 39^{\prime} 22^{\prime \prime}$, distance 7,198.1 meters.
To \triangle Chain of Rocks, azimuth $248^{\circ} 38^{\prime} 07^{\prime \prime}$, distance 359.9 meters.
Center of hole in stone post 6 inches square, set on top of bluff at Chain of Rocks, Mo.; about 527 feet downstream from northwest corner of north settling basin, measured in the direction of Columbia Bottom road; and 470 feet west of center of road. Station is 25 feet west of crest of bluff; 220 feet northeast of nail driven 3 feet above ground into southwest side of 15 -inch white-oak tree, 12 feet west of fence; and 14 feet from nail in 15 -inch elm tree 13 feet east of fence.

\triangle INTAKE TOWER.

United States engineer office, St. Louis, Mo., 1901. (Chart No. 1, station not plotted.)

Latitude $38^{\circ} 45^{\prime} 30^{\prime \prime} .52$; meters +941, -909 .
Longitude $90^{\circ} 10^{\prime} 37^{\prime \prime} .59$; meters $+908,-541$.
The finial of the intake tower of the St. Louis Waterworks at Chain of Rocks, Mo.

a ciain.

United States engineer office, St. Louis, Mo., 1901. (Chart No. 1, station not plotted.)

Latitude $38^{\circ} 45^{\prime} 15^{\prime \prime} .15$, meters $+467,-1,383$.
Longitude $90^{\circ} 11^{\prime} 01^{\prime \prime} .14$; meters $+28,-1,421$.
To \otimes Robinson, azimuth $139^{\circ} 28^{\prime} 44^{\prime \prime}$, distance 630.3 meters.
Iron pipe painted red, set flush with surface of ground on top of high bank and 2 meters west of edge of concrete revetment at Chain of Rocks, Mo. A small pile of crushed stone and gravel covers and marks the station, which is in front of the third gatehouse from the north and about 5 meters north of drainpipe from same house. Three railroad spikes are driven in the revetment and about 3 feet from its western edge; they are 15.3 feet northeast of station, 8.8 feet east or in front of station, and 14.5 feet southeast of station, respectively.

\triangle CABARET.

United States engineer office, St. Louis, Mo., 1901. (Chart No. 1, station not plotted.)

Latitude $38^{\circ} 44^{\prime} 15^{\prime \prime} .91$; meters $+491,-1,359$.
Longitude $90^{\circ} 10^{\prime} 48^{\prime \prime} .55$; meters $+1,173,-276$.
To ©Standpipe, azimuth $18^{\circ} 25^{\prime} 27^{\prime \prime}$, distance $7,875.4$ meters.
To © Robinson, azimuth $162^{\circ} 48^{\prime} 17^{\prime \prime}$, distance $2,413.6$ meters.
To \triangle Merchants Bridge, azimuth $0^{\circ} 05^{\prime} 49^{\prime \prime}$, distance $6,833.4$ meters.
To \triangle Portland Cement, azimuth $84^{\circ} 05^{\prime} 32^{\prime \prime}$, distance $3,168.9$ meters.
Iron pipe, set flush with surface of ground in northeast corner of embankment of settling basins at Madison and Granite City Waterworks near head of Cabaret Island. Station is 26.1 feet from southwest corner of brick pump house and 52.4 feet from an elm tree standing about 12 feet west of the concrete edge of the basin.

[^46]
A PORTLAND CEMENT.

United States engineer office, St. Louis, Mo., 1901. (Chart No. 1, station not plotted.)
Latitude $38^{\circ} 44^{\prime} 05^{\prime \prime} .31$; meters $+164,-1,686$.
Longitude $90^{\circ} 12^{\prime} 59^{\prime \prime} .05$; meters $+1,426,-23$.
Center of large brick chimney of the St. Louis Portland Cement Company, near St . Cyr avenue in north St. Louis.

- $\frac{50}{4}$

Mississippi River Commission, 1889. (Chart No. 1.)
Latitude $38^{\circ} 44^{\prime} 03^{\prime \prime} .57$; meters $+110,-1,740$.
-Longitude $90^{\circ} 12^{\prime} 52^{\prime \prime} .87$; meters $+1,277,-172$.
Elevation: Stone, 451.31; pipe, 456.40.
To@ $56 / 3$, azimuth $298^{\circ} 00^{\circ}$, distance 89 meters.
Flat stone and iron pipe, on south side of St. Cyr avenue, in north St. Louis; 89 meters west of north corner of Columbia Bottom road and St. Cyr avenue.

- $\frac{50}{3}$

Mississippi River Commission, 1889. (Chart No. 1.)
Latitude $38^{\circ} 44^{\prime} 02^{\prime \prime} .24$; meters $+69,-1,781$.
Longitude $90^{\circ} 12^{\prime} 49^{\prime \prime} .60$; meters $+1,198,-251$.
Elevation: 436.50.
To®56/2, azimuth $298^{\circ} 20$.
To $56 / 4$, azimuth $118^{\circ} 00^{\prime}$, distance 89 meters.
Corner stone, at northwest corner of intersection of St. Cyr avenue and Columbia Bottom road in north St. Louis.

$$
\text { - } \frac{56}{2}
$$

Mississippi River Commission, 1889. (Chart No. 1.)
Latitude $38^{\circ} 43^{\prime} 14^{\prime \prime} .01$; meters $+432,-1,418$.
Longitude $90^{\circ} 10^{\prime} 55^{\prime \prime} .55$; meters $+1,342,-108$.
Elevation: Stone, 421.16 ; pipe, 426.25.
To $\quad 56 / 1$, azimuth $298^{\circ} 15^{\prime}$, distance 1,314 meters.
Flat stone and iron pipe, on Cabaret Island; due south of Madison and Granite City waterworks. It is $1 \frac{1}{4}$ miles below head of island and 690 meters back from the river bank; 150 meters upstream from a two-story yellow house; on east side of field road; on edge of prominent ridge; and 412 meters downstream from an old unoccupied house.

A SAWYER.

United States engineer office, St. Louis, Mo., 1901. (Chart No. 1, station not plotted.)
Latitude $38^{\circ} 43^{\prime} 06^{\prime \prime} .63$; meters $+204,-1,646$.
Longitude $90^{\circ} 13^{\prime} 00^{\prime} .49$; meters $+12,-1,438$.
To \triangle Merchants Bridge, azimuth $325^{\circ} 54^{\prime} 57^{\prime \prime}$, distance $5,670.3$ meters.
To \triangle Bend, azimuth $00^{\circ} 28^{\prime} 53^{\prime \prime}$ distance 891,3 meters.
To \triangle Baden, azimuth $62^{\circ} 58^{\prime} 28^{\prime \prime}$, distance $1,215.9$ meters.
Iron pipe, set flush with surface of high bank in Sawyer Bend, Mo., and covered with mound of earth and broken stone. It is 670 feet downstream from original head of revetment; 12 feet from its western edge; 68 feet from a 600 -foot stake; 35 feet from 700 -foot stake on edge of revetment; and 32 feet from the 700 -foot stake on high bank.

(e) soechtia.

Mississippi River Commission, 1880-81. (Chart No. 1.)
Latitude $38^{\circ} 43^{\prime} 03^{\prime \prime} .85$; meters $+119,-1,731$.
Longitude $90^{\circ} 08^{\prime} 50^{\prime \prime} .74$; meters $+1,226,-224$.
Elevation: 427.29.
To (S)Standpipe, azimuth $45^{\circ} 28^{\prime} 43^{\prime \prime}$, 07 , distance $7,485.29$ meters.
To \odot Robinson, azimuth $141^{\circ} 50^{\prime} 34^{\prime \prime} .45$, distance 5,758.84 meters.
To $56 / 1$, azimuth $80^{\circ} 25^{\prime}$, distance 1,877 meters.
Stone post, in Illinois; about 1 mile back of Cabaret Island and 430 meters northwest from the track of the Chicago and Alton Railroad; at a point opposite two houses;
at south end of a clump of timber; and on north bank of a large gully.

[] $\frac{56}{1}$

Mississippi River Commission, 1889. (Chart No. 1.)
Latitude $38^{\circ} 42^{\prime} 53^{\prime \prime} .58$; meters $+1,652$, -198 .
Longitude $90^{\circ} 1007^{\prime \prime} .33$; meters $+177,-1,273$.
Elevation: Stone 423.09; pipe, 428.18.
To $156 / 2$, azimuth $118^{\circ} 15^{\prime}$, distance 1,314 meters.
Flat stone and iron pipe, on top of levee in Illinois and back of middle of Cabaret Island; 65 meters east of left bank of slough; 175 meters north of northwest corner of orchard at levee. There are houses in the near vicinity on both sides of levee. A road runs along edge of bank of slough and turns east with the levee, 150 meters north from the station.

\triangle BADEN.

United States engineer office, St. Louis, Mo., 1901. (Chart No. 1, station not plotted.)

Latitude $38^{\circ} 42^{\prime} 48^{\prime \prime} .70 ;$ meters $+1,502,-348$.
Longitude $90^{\circ} 13^{\prime} 45^{\prime \prime} .32$; meters $+1,095,-355$.
Center of large brick chimney of St. Louis waterworks at Baden, north St. Louis :

© Р. B. M. 13.

Mississippi River Commission, 1880. (Chart No. 1.)
Latitude $38^{\circ} 42^{\prime} 41^{\prime \prime} .19$; meters $+1,270,-580$.
Longitude $90^{\circ} 13^{\prime} 48^{\prime \prime} .75$; meters $+1,178,-272$.
Elevation: 438.46.
Top of copper bolt in top of stone, in ground in small grove on east side of streetcar tracks in north St. Louis and 6.4 miles upstream from Eads Bridge. It is 110 meters south and 37 meters east of the north terminus of street-car line. it ie opposite a point in Broadway 50 meters below the Seven Mile or "Wedge" house in angle of Broadway and Halls Ferry road. It is 8 meters north, on north line of Baden avenue, and 30 meters east of northeast corner of Broadway (Bellefontaine road) and Baden avenue.

\triangle BEND.

United States engineer office, St. Louis, Mo., 1901. (Chart No. 1, station not plotted.)
Latitude $38^{\circ} 42^{\prime} 37^{\prime \prime} .72$; meters $+1,163,-687$.
Longitude $90^{\circ} 13^{\prime} 00^{\prime \prime} .80$; meters $+19,-1,431$.
To © Standpipe, azimuth $350^{\circ} 56^{\prime} 54^{\prime \prime}$, distance $4,500.3$ meters.
To \triangle Sawyer, azimuth $180^{\circ} 28^{\prime} 52^{\prime \prime}$, distance 891.3 meters.
To \triangle Merchants Bridge, azimuth $320^{\circ} 04^{\prime} 00^{\prime \prime}$, distance $4,962.2$ meters.
To \triangle Baden, azimuth $107^{\circ} 28^{\prime} 59^{\prime \prime}$, distance 1, 127.7 meters.
Iron pipe, set flush with surface of ground in Sawyer Bend, Mo.; at top of high bank; 9.3 feet from western edge of revetment and covered with mound of broken stone. Station is 6.6 feet south of a point, on river bank, which is 200 feet from east rail of east railroad track and in line with telegraph pole and a large cottonwood tree west of railroad. Station is 9.5 feet from edge of revetment on line with same cottonwood. The following references are to stakes used in construction of revetment: 29.9 feet to No. 36 in edge of revetment; 72.2 feet to No. 37 in edge of revetment; 28.8 feet to No. 36 on high bank; and 72.5 feet to No. 37 on high bank.

(4) SUGAR LOAF.

United States Coast and Geodetic Survey, 1872; redetermined, Mississippi River Commission, 1880-81. (Chart No. 1, station not plotted.)
Latitude $38^{\circ} 42^{\prime} 05^{\prime \prime} 33$; meters $+164,-1,686$.
Longitude $90^{\circ} 00^{\prime} 28^{\prime \prime} .91$; meters $+699,-751$.
To © Clarks Mound, azimuth $21^{\circ} 53^{\prime} 53^{\prime \prime} .89$, distance $14,606.56$ meters.
To © Robinson, azimuth $112^{\circ} 02^{\prime} 44^{\prime \prime} .30$, distance $16,911.19$ meters.
To © Standpipe, azimuth $78^{\circ} 54^{\prime} 07^{\prime \prime} .49$, distance $17,801.48$ meters.
United States Coast and Geodetic Survey station, on and a little north of the center of a prominent mound about 50 feet high, situated on bluffs on Mr. Moore's farm, about 2 miles northwest of Collinsville, Ill. The geodetic point was marked by the United States Coast and Geodetic Survey and is point of earthenware pyramid buried about $3 \frac{1}{2}$ feet. Surface mark is a marble post 6 inches square, about 10 inches above ground, marked U.S. C. \& G. S.

A GRANITE CITY.

United Statee engineer office, St. Louis, Mo., 1001. (Chart No. 1, station not plōtted.)
Latitude $38^{\circ} 41^{\prime} 53^{\prime \prime} .25$; meters $+1,642,-208$.
Longitude $90^{\circ} 09^{\prime} 29^{\prime \prime} .69$; meters +718 , 733 .
Center of symmetrical roof and finial of shot tower, in Granite City, Ill. From a Merchants Bridge the worde "shot tower" were distinguishable.

$$
\text { [] } \frac{65}{1}
$$

Missisespipi River Commiseion, 1889. (Chart No. 1.)
Latitude $38^{\circ} 41^{\prime} 34^{\prime \prime} .05$; meters $+1,050,-800$.
Longitude $90^{\circ} 10^{\prime} 35^{\prime \prime} .09$; meters $+848,-602$.
Elevation: Stone, 417.19; pipe, 422.27.
To@55/2, azimuth $63^{\circ} 20^{\prime}$, distance 570 meters.
Flat stone and imn pipe, on eastern bank of Kerr Island; in edge of field about onehalf mile above West Madison, Ill.; 1,400 meters above east-and-west road crossing island and slough. Sycamore tree 2 feet in diameter stands 5 meters south.

(1) $\frac{65}{2}$

Missisesppi River Commission, 1889. (Ohart No. 1.)
Latitude $38^{\circ} 41^{\prime} 25^{\prime \prime} .62$; meters $+790,-1,080$.
Longitude $90^{\circ} 10^{\prime} 56^{\prime \prime} .27$; meters $+1,360,-90$.
Elevation: Stone, 420.84 ; pipe, 425.93.
To Θ Standpipe, azimutb $46^{\circ} 00^{\prime}$.
To ${ }^{5} 55 / 1$, azimuth $243^{\circ} 20^{\prime}$, distance 570 meters.
To@55/3, azimuth $65^{\circ} 10$, distance 1,652 meters.
Flat stone and iron pipe, on Kerr Island, Illinois; 1 mile above the Merchants Bridge; 450 meters back from old main bank of river 720 meters from river at foot of Cabaret lslaind; 13 meters from weat edge of field; in cultivated field west edge of which terminates at top of sharp slope; about 180 meters above "turning row" shown as road on map, and in view of a house that stande about same distance below this "roed."

$$
\text { © } \frac{65}{8}
$$

Mississippi River Commission, 1889. (Chart No. 1.)
Latitude $38^{\circ} 41^{\prime} 03^{\prime \prime} .15$; meters $+97,-1,753$.
Longitude $90^{\circ} 11^{\prime} 58^{\prime \prime} .34$; meters $+1,410,-40$.
Elevation: 421.79.
To@ $55 / 4$, azimuth $57^{\circ} 05^{\prime}$, distance 699 meters.
To $955 / 2$, azimuth $245^{\circ} 10^{\circ}$, distance 1,652 meters.
Corner stone, at southweet corner of Withers avenue and Powder street, north St. Lonis; at northeast corner of powder magazine; 155 meters from river bank and onebali mile above East Grand avenue.

$$
\text { (1) } \frac{65}{4}
$$

Mississippi River Commiseion, 1889. (Chart No. 1.)
Latitude $38^{\circ} 40^{\prime} 51^{\prime \prime} .00$; meters $+1,573,-277$.
Longitude $90^{\circ} 12^{\prime} 22^{\prime \prime} .48 ;$ meters $+543,-907$.
Elevation: 431.97.
To $555 / 3$, azimuth $237^{\circ} 05^{\prime}$, distance 699 meters.
Crose cut on top of catch-basin, at northwest corner of Withers avenue and Wabash Railroad; 850 meters from river bank and one-half mile above East Grand avenue at the St. Louis waterworks.

a merchants bridae.

Onited States engineer office, St. Louis, Mo., 1901. (Chart No. 1, station not plotted.)
Latitude $38^{\circ} 40^{\circ} 34^{\prime \prime} .30 ;$ meters $+1,058,-792$.
Longitude $90^{\circ} 10^{\prime} 49^{\prime} .03$; meters $+1,185,-265$.
Too Standpipe, aximuth $75^{\circ} 33^{\prime} 05^{\prime \prime}$, distance $2,558.4$ meters.
To © Robinson, azimuth $175^{\circ} 36^{\prime} 28^{\prime \prime}$, distance $9,166,0$ meters.
To \triangle Bend, azimuth $140^{\circ} 05^{\prime} 22^{\prime \prime}$, distance 4,962.2 meters.
To S Sawyer, azimuth $145^{\circ} 56^{\prime} 19^{\prime}$, distance $5,670.3$ meters.
To \triangle Biseell, azimuth $84^{\circ} 12^{\prime} 58^{\prime \prime}$, distance 925.1 metars.
To Δ Farmers elevator, azimuth $7^{\circ} 40^{\circ} 28^{\prime \prime}$ distance $2,900,6$ meters.
To \triangle Granite City, arimuth $218^{\circ} 13^{\prime} 25^{\prime \prime}$, distance $3,098.8$ meters.

Crose on top of halt-inch square copper bolt, leaded into the concrete abutment and surrounded by 3 -inch triangle, at the extreme east end of the Merchants Bridge, in 1llinois. Station is 3.76 feet north of center of north rail; 1.26 feet east of west face of concrete; 0.57 feet west of east face; 2.44 feet from northwest corner and 1.20 feet from northeast corner of concrete. A tangent from standpipe to the curve (east of bridge) in north rail of south track, intersects the station.

\triangle BISSELL NO. 2.

United States engineer office, St. Louis, Mo., 1901. (Chart No. 1, station not plotted.)
Latitude $38^{\circ} 40^{\circ} 33^{\prime \prime} .43$, meters $+1,031,-819$.
Longitude $90^{\circ} 11^{\prime} 28^{\prime \prime} .58^{\prime}$ meters $+691,-759$.
To \triangle Bissell, azimuth $331^{6} 3 y^{2} 24^{\prime \prime}$, distance 75.3 meters.
To \triangle Dock No. 2, azimuth $348^{\circ} 46^{\prime} 50^{\prime}$, distance $1,908.5$ meters.
Iron pipe, set a little below the surface of the ground, at Bissell Point, north St. Louis; 39.35 feet from the northeast cornsr and 74.96 feet from the northwest corner of the north main building of the Bissell Point waterworks. The pipe was set to mark approximately the intersection of the old west wharf line and the old (1855) northern boundary line of the city and is 0.06 foot east from the former, and 4.25 feet south from the latter line as determined by the survey of 1901.
\triangle BIBSELL.
United States engineer office, St. Louis, Mo., 1901. (Chart No. 1, station not plotted.)

Latitude $38^{\circ} 40^{\circ} 31^{\prime \prime} .28$; meters $+964,-886$.
Longitude $90^{\circ} 11^{\prime} 27^{\prime \prime} 10$; meters +655 - 796 .
To ©Standpipe, azimuth $70^{\circ} 41^{\prime} 56^{\prime \prime}$ distance $1,649.8$ meters.
To \triangle Merchante Bridge, azimuth $264^{d} 12^{\prime} 34^{\prime \prime}$, distance 925.1 meters.
Iron pipe, 79.13 feet from southeast corner of south building and 77.10 feet from southwest corner of east building of waterworks at Biseell Point, north St. Louis; 4.9 feet to southeast corner of cast-iron base of fire-plug cover; 4.85 feet to northeast corner of same; and 5.5 feet from bolt in anchor post on river side of atation.
\odot P. B. M. 14.
Mississippi River Commission, 1880. (Chart No. 1.)
Latitude $38^{\circ} 40^{\prime} 30^{\prime} .55$; meters $+942,-908$.
Longitude $90^{\circ} 11^{\prime} 56^{\prime \prime} .26$; meters $+1,360,-91$.
Elevation: 433.46.
Small hole in center of copper bolt, leaded horizontally in third course of stones on north side of western engine room of St. Louis waterworks, Bissell Point, and 1.47 meters weet of west coping to main entrance to building. The letters "U.S.P.B.M." are cut near the bolt.

- STANDPIPE.

Mississippi River Commiseion; 1880-1881. (Chart No. 1.)
Latitude $38^{\circ} 40^{\circ} 13^{\prime \prime} .59$; meters $+419,-1,431$.
Longitude $90^{\circ} 12^{\prime} 31^{\prime \prime} .51$; meters $+762,-689$.
To ©Sugar Loaf, azimuth $258^{\circ} 46^{\prime} 35^{\prime \prime} .83$, distance $17,801.48$ meters.
To \odot Robinson, azimuth $190^{\circ} 16^{\prime} 27^{\prime \prime} .68$, distance $9 ; 937.31$ meters.
To \odot Insane Asylum, azimuth $39^{\circ} 40^{\prime} 01^{\prime \prime} .92$, distance $9,606.16$ meters.
To \triangle Bend, aximuth $170^{\circ} .57^{\prime} 12^{\prime \prime}$, distance $4,500.3$ meters.
To \triangle Merchants Bridge, azimuth $255^{\circ} 32^{\prime} 01^{\prime \prime}$, distance 2,558.4 metars.
To A Bissell, azimuth $250^{\circ} 41^{\prime} 16^{\prime \prime}$, distance $1,649.8$ meters.
To Δ Mullanphy Bank, azimuth $330^{\circ} 32^{\prime} 48^{\prime \prime}$, distance $3,968.9$ meters.
To A Portland Cement, azimuth $174^{\circ} 40^{\prime} 50^{\prime \prime}$, distance $7,176.3$ meters.
To A Granite City, azimuth $235^{\circ} 01^{\prime} 17^{\prime \prime}$, distance $5,362.4$ meters.
A dot in small triangle (three-quarters inch) cut in iron floor inside iron railing on top of old standpipe at intersection of Grand avenue and Twentieth street, St. Louis; 2.41 feet northwest of northwest side of the iron post directly southwest of extreme east part of the railiner 2.47 feet southwest of the southwest side of iron post directly northwest of extreme. t part of railing; and 2.57 feet east of east corner of iron bolt at circular edge of iron tlowr. (Coiby'm description, survey of city of St. Louis.)

$$
\text { 回 } \frac{84}{5} \text { (Ritter). }
$$

Mississippi River Commission, 1889. (Chart No. 1.)
Latitude $38^{\circ} 39^{\prime} 51^{\prime \prime} .50$; meters $+1,588,-262$.
Longitude $90^{\circ} 10^{\prime} 39^{\prime \prime} .41$; meters +953 , -498 .
Elevation: 407.31.
To No. 7 (Field), azimuth $44^{\circ} 15^{\prime}$, distance 1,005 meters.
Top of nut, on bolt through plank bolted to pile at southwest corner of the Venice, Ill., elevator; 5 nails are driven above the nut.

\triangle VENICE.

United States engineer office, St. Louis, Mo.,. 1901. (Chart No. 1, station not plotted.)

Latitude $38^{\circ} 39^{\prime} 46^{\prime \prime} .82$; meters $+1,444,-406$
Longitude $90^{\circ} 10^{\prime} 44^{\prime \prime} .09$; meters $+1,066,-385$.
Elevation: 419.71.
Iron pipe, set tlush with surface of paved levee at Ferry Landing, Venice, Ill.; 16 ferst west of porch of frame building (saloon in 1901); 7.5 feet north of south line of the same building; and about 11 feet north of south edge of paving.

\triangle DOCK NO. 2.

United States engineer office, St. Louis, Mo., 1901. (Chart No. 1, station not plotted.)

Latitude $38^{\circ} 39^{\prime} 32^{\prime \prime} .72$; meters $+1,009,-841$.
Longitude $90^{\circ} 11^{\prime} 13^{\prime \prime} .22$; meters $+320,-1,131$.
To \triangle Bissell No. 2, azimuth $168^{\circ} 46^{\prime} 59^{\prime \prime}$, distance $1,908.5$ meters.
The intersection of the north line of Dock street and the northern portion of the old west wharf line; 14 feet east from southeast corner of brick building occupied in 1901 by the Federal Chemical Company of the United States.

© No. 7 (Fleld).

Mississippi River Commission, 1889. (Chart No. 1.)
Latitude $38^{\circ} 39^{\prime} 28^{\prime \prime} .15$; meters $+868,-982$.
Longitude $90^{\circ} 11^{\prime} 08^{\prime \prime} .48$; meters $+205,-1,246$.
Elevation: 407.35.
To 0 54/5 (Ritter), azimuth $224^{\circ} 15^{\prime}$, distance 1,005 meters.
A raised knob, cut on the northwest corner of sewer cap at foot of Branch street, St. Louis.

\triangle FARMERS ELEVATOR.

United States engineer office, St. Louis, Mo., 1901. (Chart No. 1, station not plotted.)
Latitude $38^{\circ} 38^{\prime} 58^{\prime \prime} .19$; meters $+1,794,-56$.
Longitude $90^{\circ} 11^{\prime} 05^{\prime \prime} .54$; meters $+134,-1,317$.
The finial of the dome or clock tower of the elevator near the foot of Clinton street, St. Louis.

$$
\text { - } \frac{54}{2}
$$

Mississippi River Commission, 1889. (Chart No. 1.)
Latitude $38^{\circ} 38^{\prime} 47^{\prime \prime} 32$; meters $+1,459,-391$.
Longitude $90^{\circ} 10^{\prime} 00^{\prime} 16$; meters $+4,-1,447$.
Elevation: Stone, 421.85; pipe, 426.94.
Flat stone and iron pipe, in Illinois; just west of the Chicago and Alton Railroad; and 320 meters north of the northeast corner of settling basins of East St. Louis waterworks.
\triangle HURDLE 11, No. 2.
United States engineer office, St. Louis, Mo., 1901. (Chart No. 1, station not plotted.)
Latitude $38^{\circ} 38^{\prime} 41^{\prime \prime} .84$; meters $+1,290,-560$.
Longitude $90^{\circ} 10^{\prime} 25^{\prime \prime} .38$; meters $+614,-837$.
To \triangle Mound, azimuth $74^{\circ} 49^{\prime} 41^{\prime \prime}$, distance 735.5 meters.
To \triangle East Eads, azimuth $7^{\circ} 24^{\prime} 00^{\prime \prime}$, distance $1,820.6$ meters.
Iron pipe, set near edge of high left bank; 50 feet below \triangle Hurdle 11; 1,200 feet below Hurdle No. 11; and 2,200 feet above old United States engineer \triangle North Base in East St. Louin. A. mound of atone and brickbats covers the pipe.

\triangle VICTORIA ELEVATOR.

United States engineer office, St. Louis, Mo., 1901. (Chart No. 1, station not plotted.)
Latitude $38^{\circ} 38^{\prime} 36^{\prime \prime} .26$; meters $+1,118,-732$.
Longitude $90^{\circ} 11^{\prime}, 00^{\prime \prime} .14$; meters $+3,-1,448$.
The center of the lower part of the flagstaff on top of elevator near foot of Mound street, St. Louis.

\triangle MOUND.

United States engineer office, St. Louis, Mo., 1901. (Chart No. 1, station not plotted.)
Latitude $38^{\circ} 38^{\prime} 35^{\prime \prime} .01$; meters $+1,098,-752$.
Longitude $90^{\circ} 10^{\prime} 54^{\prime \prime} .73 ;$ meters $+1,3 ? 4,-127$.
To \triangle Hurdle 11 No. 2, azimuth $254^{\circ} 49^{\prime} 23^{\prime \prime}$, distance 735.5 meters.
To \triangle Union Elevator, azimuth $317^{\circ} 25^{\prime} 17^{\prime \prime}$,' distance 971.6 meters.
To \triangle East Eads, azimuth $343^{\circ} 34^{\prime} 24^{\prime \prime}$, distance $1,681.6$ meters.
To \triangle West Eads, azimuth $00^{\circ} 36^{\prime} 05^{\prime \prime}$ ', distance 1,546.7 meters.
Iron pipe, sel flush with surface and covered with mound of stone and earth, at foot of Mound street, St. Louis; 15.7 feet east of east rail of railroad siding nearest river; 14.8 feet, measured perallel to track, north from 8 -inch iron drain pipe aboutt 7 feet lower than station; 61.9 feet (right angle distance) south from a point in the north line of Mound street prolonged, which point is 197.45 feet east from the northwest corner of Mound street and wharf.

$$
\cdots \frac{64}{3}
$$

Mississippi River Commission, 1889. (Chart No. 1.)
Latitude $38^{\circ} 38^{\prime} 35^{\prime \prime} .67$; meters $+1,100,-750$.
Longitude $90^{\circ} 10^{\prime} 57^{\prime \prime} .13$; meters $+1,382,-69$.
Elevation: 427.60.
Cross, with letters "U. S." cut on the corner of stone foundation of a brick building at the southeast corner of Mound street and wharf, St. Louis.

$$
\text { [1] } \frac{54}{4}
$$

Mississippi River Commission, 1889. (Chart No. 1.)
Latitude $38^{\circ} 38^{\prime} 35^{\prime \prime} .35$; meters $+1,090,-760$.
Longitude $90^{\circ} 11^{\prime} 00^{\prime \prime} .29$; meters $+7,-1,444$.
Elevation: 442.19.
Cross, with figures and letters " $54 / 4 \mathrm{U}$. S." cut on stone wall which surrounds the northern gasometer of the Laclede Gas Works, southeast corner of Mound and Main streets, St. Louis.

\triangle MULLANPEY BANK.

City of St. Loutis; redetermined, United States engineer office, St. Louis, Mo., 1901. (Chart No. 1, station not plotted.)

Latitude $38^{\circ} 38^{\prime} 21^{\prime \prime} .50$; meters $+663,-1,187$.
Lngitude $90^{\circ} 11^{\prime} 10^{\prime \prime} .82$; meters $+262,-1,189$.
To © Standpipe, azimuth $150^{\circ} 33^{\prime} 38^{\prime \prime}$, distance $3,968.9$ meters.
To Δ Union Elevator, azimuth $285^{\circ} 00^{\prime} 22^{\prime \prime}$, distance $1,083.5$ meters.
Copper rivet, in highest part of gravel roof surrounded by an iron railing at northeast corner of the old Mullanphy Bank, a three-story mansard roof brick building, at southwest corner of Cass avenue and Broadway, St. Louis; about 7 feet south of Cass avenue and 10 feet west of Broadway; 5.34 feet from north post of iron railing; 4.68 feet from east pcst; 4.66 feet from south post; and 5.22 feet from west post. (Colby's description, Survey of City of St. Louis.) In 1901 a flagpole stood about 1 foot north of the station.

\triangle norte base.

United States engineer office, St. Louis, Mo., 1889; redetermined, 1901. (Chart No. 1, station not plotted.)
Latitude $38^{\circ} 38 \quad 20^{\prime} .97$; meters $+646,-1,204$.
l.ongitude $90^{\circ} 10^{\prime} 23^{\prime \prime} .54$; meters $+569,-882$.

To \triangle Snuth Base, azimuth $9^{\circ} 03^{\prime} 22^{\prime \prime}$, distance $1,182.1$ meters. (Calculated by the inverse solution from the coordinates.)

The northeast corner of the end of the west curb line of Front street, East St. Lonis, Ill.; diagonally across the street and southwest from the Toledo, St. Louls and Western Railroad freight depot; and just south of a switch track to the freight yards. It is probable that the curb line has been extended since 1889; the inverse solution shows the length of the line north base-south base to be $3,878.2$ feet instead of $3,800.84$ feet, as given in the original survey of 1889.

\triangle SMI'TH.

United States engineer office, St. Louis, Mo., 1901. (Chart No. 1, station not plotted.)
Latitude $38^{\circ} 38^{\prime} 20^{\prime \prime}, 86$; meters $+643,-1,207$.
Longitude $90^{\circ} 10^{\prime} 53^{\prime \prime} .76$; meters $+1,300, \cdots 151$.
To \triangle Union Elevator, azimuth $292^{\circ} 21^{\prime} 28^{\prime \prime \prime}$, distance 885.5 meters.
To \triangle Smith No. 2, azimuth $45^{\circ} 56^{\prime} 50^{\prime \prime}$, distance 22.7 meters.
The southeast corner of the brick building at the northwest corner of Smith street and wharf, St. Louis; 5.75 feet south from the north line of Smith street and 58.5 feet east from a mark, correct for old west wharf line, on south face of same building.

\triangle SMITLI No. 2.

United States engineer office, St. Louis, Mo., 1901. (Chart No. 1, station not plotted.)

Latitude $38^{\circ} 38^{\prime} 20^{\prime \prime} .35$; meters $+627,-1,223$.
Longitude $90^{\circ} 10^{\prime} 54^{\prime \prime} .44 ;$ meters $+1,317,-134$.
To \triangle Smith, azimuth $225^{\circ} 56^{\prime} 50^{\prime \prime}$, distance 22.7 meters. *
To \triangle Ashley, azimuth $356^{\circ} 07^{\prime} 58^{\prime \prime}$, distance 227.0 meters.
To \triangle Biddle, azimuth $356^{\circ} 02^{\prime} 27^{\prime \prime}$, distance 422.8 meters.
City stone, marking the southwest corner of Smith street and wharf, St. Louis.

\triangle LACLEDE POWER COMPANY.

United States engineer office, St. Louis, Mo., 1901. (Chart No. 1, station not plotted.)

Latitude $38^{\circ} 38^{\prime} 17^{\prime \prime} .27$; meters $+532,-1,318$.
Longitude $90^{\circ} 10^{\prime} 54^{\prime \prime} .83$; meters $+1,326,-125$.
The lightning rod, on south side of the large brick chimnoy of the Iaclede Power Company near the foot of Dickson street, St. Louis.

A ASHLEY.
United States engineer office, St. Louis, Mo., 1901. (Chart No. 1, station not plotted.)
Latitude $38^{\circ} 38^{\prime} 13^{\prime \prime} .01$; meters $+401,-1,449$.
Longitude $90^{\circ} 10^{\circ} 53^{\prime \prime} .80 ;$ meters $+1,301,-150$.
To \triangle Union Elevator, azimuth $271^{\circ} 40^{\circ} 15^{\prime \prime}$, distance 635.3 meters.
The southeast corner of the Laclede Power Company's brick building, near the foot of Ashley atreet, St. Louis; 59.1 feet (right angle distance) north from a point in the north line of Ashley street prolonged, which point is 138.9 feet east from the northwest corner of Ashley and Lewis streets.

\triangle UNION ELEVATOR.

United States engineer office, St. Louis, Mo., 1901. (Chart No. 1, station not plotted.)
Latitude $38^{\circ} 38^{\prime} 12^{\prime \prime} .40$; meters $+382,-1,468$.
Longitude $90^{\circ} 10^{\prime} 27^{\prime \prime} .55$; meters $+666,-785$.
Elevation: 411.10.
To A Mullanphy Bank, azimuth $105^{\circ} 00^{\prime} 49^{\prime \prime}$, distance $1,083.5$ meters.
To \triangle Biddle, azimuth $74^{\circ} 07^{\prime} 01^{\prime \prime}$, distance 645.8 meters.
To \triangle East Eads, azimuth $11^{\circ} 27^{\prime} 39^{\prime \prime}$; distance 915.7 meters'
Center of $1 \frac{1}{2}$ inch square head iron bolt, driven in the paved levee south of the Union Elevator in East St. Louis, Ill; in line with Mullanphy Baak flagstaff and north edge of large brick chimney north of Laclede Power House; at southeast corner of flat stone 2 feet 6 inches long (north to south) and 11 inches wide; 71 feet from coutheast corner of river house, in line with and $31 /$ feet from a ring-bolt $39 \frac{1}{2}$ feet
from the river house; 5 feet east of prolongation of line through east face of sill of first carrier bent from river house and 90 feet from three nails driven in east face of same gill; 58 feet from west rail of railroad siding nearest river; and 178.5 feet from west curb of Front street.

\triangle BIDDLE.

United States ongineer office, St. Louis, Mo., 1901. (Chart No. 1, station not plotted.)
Latitude $38^{\circ} 38^{\prime} 06^{\prime \prime}$. 67 ; meters $+206,-1,644$.
Longitude $90^{\circ} 10^{\prime} 53^{\prime \prime} .23$; meters $+1,288,-163$.
To \triangle East Eads, azimuth $328^{\circ} 38^{\prime} 18^{\prime \prime}$ distance 844.0 meters.
To \triangle West Eads, azimuth $4^{\circ} 35^{\prime} 19^{\prime \prime}$, distance 656.4 meters.
To \triangle Union Elevator, azimuth $254^{\circ} 06^{\prime} 45^{\prime \prime}$, distance 645.8 meters.
Iron pipe, set below granite paving which was replaced and a cross cut in the paving block over the pipe; 91.41 feet east from corner and on line with north side of brick building at southwest corner of Biddle streot and whari, St. Louis; 0.04 foot south of south line of Biddle street and 91 feet east from southwest corner of Biddle street and wharf.

\triangle MORGAN.

United States engineer office, St. Louis, Mo., 1901. (Chart No. 1, station not plotted.)

Latitude $38^{\circ} 37^{\prime} 50^{\prime \prime} 10$; meters $+1,545,-305$.
Longitude $90^{\circ} 10^{\circ} 55^{\prime \prime} 75$; metera $+1,348,-103$.
To \triangle Biddle, azimuth $186^{\circ} 48^{\prime} 27^{\prime \prime}$, distance 514.7 meters.
To \triangle East Eads, azimuth $292^{\circ} 43^{\prime} 54^{\prime \prime}$, distance 542.4 meters.
Center of one-half inch hole and cross cut in the anchor stone for ring bolt, outside the railroad track at the foot of Morgan street, St. Louis; 10.6 feet (right angle distance) north from a point in the north line of Morgan street prolonged, which point is 78.3 feet east from the northwest corner of Morgan street and wharf; 49.69 feet from center one of three notches 6 inches above iron base on inner (southeast) edge of northeast angle tron in northeast pillar of viaduct at foot of Morgan street; and 67.68 feet from center one of three notches 1 inch above iron base on northeast corner of the southeast angle iron in the southeast pillar of viaduct.

$$
\text { © P. B. M. } 15
$$

Mississippi River Commission, 1880. (Chart No. 1.)
Latitude $38^{\circ} 37^{\prime} 45^{\prime \prime} .53$; meters $+1,404,-446$.
Longitude $90^{\circ} 10^{\circ} 57^{\prime \prime} .74$; meters $+1,396,-55$.
Elevation: 423.53.
Small hole in copper bolt, leaded horizontally in the west pier of arch No. 4, on east side of pier of Eads Bridge at St. Louis; 6.14 meters south of north end of pier and 0.14 meters above top course of granite. The letters "U. S." are cut in the granite below the bench mark.

A West eads.

United Statee engineer office, St. Louis, Mo., 1901. (Chart No. 1, station not plotted.)
Latitude $38^{\circ} 37^{\prime} 45^{\prime \prime} .45$; meters $+1,401,-449$.
Longitude $90^{\circ} 10^{\circ} 55^{\prime \prime} 40$; meters $+1,340,-111$.
To \triangle Market, azimuth $18^{\circ} 23^{\prime} 00^{\prime}$, distance 627.2 meters.
To \triangle Esast Eads, azimuth $277^{\circ} 41^{\prime} 12^{\prime \prime}$, distance 496.2 meters.
To \triangle Pittsburg, azimuth $0^{\circ} 07^{\prime} 21^{\prime \prime}$, distance 1,777.3 meters.
To \triangle Biddle, azimuth $184^{\circ} 35^{\prime} 18^{\prime \prime}$, distance 656.4 meters.
To \triangle Laclede Power Company, azimuth $180^{\circ} 48^{\prime} 42^{\prime \prime}$, distance 981.3 meters.
Croes on top of one-half inch square copper bolt, leaded into the masonry on top of the north end of weet shore pier of the Eads Bridge at St. Louis, Mo.; 3.14 feet south of base or collar around north or center post (4) inches in diameter) of iron railing and 0.43 foot west of center line of pier or seam in masonry. Two l-inch iron posts in the railing are: Weat 4.22 feet; east 4.86 feet. Station is 496.21 meters frcm \triangle East Eads (base line measurement).

\triangle EAST EADS.

United States engineer office, St. Louis, Mo., 1901:- (Chart No. 1, station not plotted.)
Latitude $38^{\circ} 37^{\prime} 43^{\prime \prime} .30$; meters $+1,335,-515$.
Longitude $90^{\circ} 10^{\prime} 35^{\prime \prime} .07$; meters +848 , -603.
To \triangle West Eads, azimuth $97^{\circ} 41^{\prime} 25^{\prime \prime}$, distance 496.2 meters.
To Δ Biddle, azimuth $148^{\circ} 38^{\prime} 29^{\prime \prime}$, distance 844 molers.
To Δ Uñion Elevator, azimuth $191^{\circ} 27^{\prime} 34^{\prime \prime}$, distance 015.7 meters.
To \triangle Pittsburg, azimuth $16^{\circ} 09^{\prime} 24^{\prime \prime}$, distance $1,781,2$ meters.
To \triangle Laclede Power Company, azimuth $155^{\circ} 29^{\prime}$, distance 1, 151.4 meters.
To \triangle Court-house, azimuth $73^{\circ} 42^{\prime} 17^{\prime \prime}$, distance $1,193.2$ meters.
Cross on top of one-half inch square copper bolt, leaded into the masonry on the north end of east shore pier of the Eads Bridge, at East St. Louis, 'III.; 3.04 feot mouth of base or collar around north or center post ($4 \frac{1}{2}$ inches in diameter) of iron railing and 0.16 foot east of center line of pier or seam in masoury. Two 1 -inch iron posts in the railing are: East 4.40 feet; west 4.68 feet.
\triangle SOUTH BASE.
United States engineor office, St. Louis, Mo., 1889; redetermined, 1001. (Chart No. 1, station not plotted.)
Latitude $38^{\circ} 37^{\prime} 43^{\prime \prime}$. 11 ; meters $+1,329,-521$.
Longitude $90^{\circ} 10^{\prime} 31^{\prime \prime} .23$; meters +755 , - 696 .
To \triangle North Base, azimuth $189^{\circ} 03^{\prime} 18^{\prime \prime}$, distance $1,182.1$ meters. (Calculated by inverse solution from the coordinates.)
A nail in joint between curbstones in west curb of Front street, East St. Louis, Ill.; north and 25 feet from iron viaduct pier or column of Eads Bridge and according to survey of $1889,3,800.84$ feet from \triangle North Base.
© K 3. (City Directrix.)
United States Coast and Geodetic Survey, 1882, and Mississippi River Commission, 1880 and 1889. (Chart No. 1, station not plotted.)
Latitude $38^{\circ} 37^{\prime} 25^{\prime \prime} .62$; meters $+790,-1,060$.
Longitude $90^{\circ} 11^{\prime} 05^{\prime \prime} .13$; meters $+124,-1,228$.
Elevation: 420.84.
Known at St. Louis as the "City Directrix." It has been in use for many years, and was originally the top surface of the pedestal of a monument which stood on Front street (now wharf) near Market street. The monument shaft was destroyed at the time of the great fire in that locality, but the pedestal remained. It is now level with the curbstone, and forms a part thereof. A " T " mark has since been cut to indicate the point used for a bench mark.
Note.-Elevation above mean sea or gulf level, 126.1776 netere (probable error ± 32 millimeters) or 413.97 feet (United States Coast and Gcodetic Survey, Report 1903). Elevation above Cairo datum plane, 132.2742 meters equals 433.97 feet (Sississippi River Commission precise levels, 1880 , or 420.84 feet Memphis datum plane. Correction to reduce United States Coast and Geodetic Survey mean sea level values, vicinity of St. Louis, to Memphis datum plane is therefore +6.87 feet.
This station was destroyed in 1890, but owing to its historic value the former description and the elevations are given.

$\odot \mathbf{I}_{1}$

United States Coast and Geodetic Survey, 1882, and Mississippi River Commission, 1889. (Chart No. 1, station not plotted.)

Latitude $38^{\circ} 37^{\prime} \cdot 43^{\prime \prime} 13$; meters $+1,330,-520$.
Longitude $90^{\circ} 10^{\prime} 31^{\prime \prime} .13$; meters $+753,-698$.
Elevation: 420.84.
A mark on a large bronze plate inserted in the south face of the eastern land pier of the Eade Bridge at East St. Louis, Ill.
The plate bears the inscription:
U. S. Coast and Geodetic

Survey Bench Mark, 1882.
Elevation derived by adding 6.87 feet to the United Statea Coast and Geodetic Survey mean sea level value of 1903. (See note under " $\mathrm{K}_{\mathbf{3}}$," St. Louis City Directrix.)

© Jis

United States Coast and Geodetic Survey, 1882, and Mississippi River Commission, 1889. (Chart ivo. 1 , station not plotted.)

Latitude $38^{\circ} 37^{\prime} 44^{\prime \prime} .98$; meters $+1,387,-463$.
Longitude $90^{\circ} 10^{\circ} 5 \overline{5}^{\prime \prime} .85$; meters $+1,351,--100$.
Elevation: 420.85 .
A large bronze plate (similar to that described under " I_{3} ") inserted in the western land pier of the Eads Bridge at St. Louis, Mo. Bench marks " I_{3} " and " J_{3} " were placed as nearly as possible on the same level as the St. Louis City Directrix described under " K_{3}."

Elevation derived by adding 6.87 feet to the United States Coast and Geodetic Survey mean sea level value of 1903 . (See note under " $\mathrm{K}_{\mathbf{3}}$," St. Louis City Directrix.)

\triangle LOCUST.

United States engineer office, St. Louis, Mo., 1901. (Chart No. 1, station not plotted.)
Latitude $38^{\circ} 37^{\prime} 37^{\prime \prime} .15$; meters $+1,146,-704$.
Longitude $90^{\circ} 10^{\prime} 59^{\prime \prime} .17$; meters $+1,431,-20$.
To \triangle Morgan, azimuth $191^{\circ} 42^{\prime} 04^{\prime \prime}$, distance 407.6 meters.
T'o \triangle East Eads, a\%imuth $251^{\circ} 599^{\prime} 10^{\prime}$, distance 613 meters.
Center of one-half inch hole drilled in anchor stone for ring bolt, at the foot of Locust street, St. Louis, Mo.; 1.12 feet south from cross cut on top of eyebolt leaded in same stone; 83.34 feet from brick corner at northwest corner of Locust street and wharf; 57.06 feet to middle one of three notches cut in southeast corner upright angle iron at northeast corner pillar to elevated railroad; 50.66 feet to middle one of three notches cut in northeast corner upright angle iron at aouthwest corner pillar to elevated railroad; 80.35 feet from a mark in top edge of base stone and 1.52 feet south from northeast corner of building at the southwest corner of Locust street and whari; 6.8 feet (right-angle distance) south from a point in the center line of Locust street, which point is 78.4 feet east from the intersection of said center line and the south prolongation of the east line of city block No. 12.

A COURT-HOUSE.

United States Coast and Geodetic Survey, 1871; redetermined by United States engineer office, Si. Louis, Mo., 1901. (Chart No. 1.)

Latitude $38^{\circ} 37^{\prime} 32^{\prime \prime} .44 ;$ meters $+1,000,-850$.
Longitude $90^{\circ} 11^{\prime} 22^{\prime \prime} .42$; meters $+542,-910$.
Finial of dome or center of flagstaff of court-house, in block bounded by Broadway, Fourth, Market, and Chestnut streets, St. Louis, Mo.

A MARKET.

United States engineer office, St. Louis, Mo., 1901. (Chart No. 1, station not plotted.)

Latitude $38^{\circ} 37^{\prime} 26^{\prime \prime} 115$; meters $+806,-1,044$.
Longitude $90^{\circ} 11^{\prime} 03^{\prime \prime} .58$; meters $+87,-1,365$.
To \triangle Ea.st Eads, azimuth $232^{\circ} 30^{\prime} 55^{\prime \prime}$,'distance 869 meters.
To \triangle Pittsburg, azimuth $350^{\circ} 40^{\prime} 45^{\prime \prime}$, distance $1,197.9$ meters.
To \triangle West Eads, azimuth $198^{\circ} 22^{\prime \prime} 55^{\prime \prime}$, distance 627.2 meters.
To \triangle Spruce, aizimuth $19^{\circ} 17^{\prime} 49^{\prime \prime}$, distance 368.4 meters.
Center of one-half inch hole and croes cut in granite paving block, outside the railroad tracks on St. Louis wharf at the foot of Market street; $5 \overline{5} .33$ feet south of the southwest corner "corner stone" of the harbor office; 63.88 feet from the southeast corner (as seen from station) of brickwork of same building; angle from \triangle West Eads to this last corner $31^{\circ} 38^{\prime} 30^{\prime \prime} ; 24.25$ feet to cross on eyebolt in anchor rock southeast at angle of $159^{\circ} 06^{\prime}$ from "corner stone;" 13.0 feet (right-angle distauce) north irom a point in the south line of Market street prolonged, which point is 85.2 feet east from the southwest corner of Market street and the wharf.

\triangle gPRUCE.

United States engineer office, St. Louis, Mo., 1901. (Chart No. 1, station not plotted.)

Latitude $38^{\circ} 37^{\prime} 14^{\prime \prime} .87$; meters $+459,-1,391$.
Longitude $90^{\circ} 11^{\prime} 08^{\prime \prime} .61$; meters $+208,-1,243$.

The center of the arc light suspended (1901) from the east side of the elevated railroad at the foot and near the center of Spruce street, St. Louis, Mo. It is 40.8 feet from the brickwork at the northwest corner and 42.7 feet from the brickwork at the southwest corner of Spruce street and wharf; also 17.57 feet from northeast corner southeast angle iron, middle notch of three, 18 inches above base stone in southeast pillar; and 19.04 feet from southeast corner, northeast angle iron; middle notch of three, 20 inches above base stone in northeast pillar of the elevated railroad. It is 0.4 foot north from a point in the center line of Spruce street prolonged, which point is 38.9 feet east from intersection of said center line and the west line of wharf.

a chouteau.

United States engineer office, St. Louis, Mo., 1901. (Chart No. 1, station not plotted.)

Latitude $38^{\circ} 36^{\prime} 55^{\prime \prime} .86$; meters $+1,722,-128$
Longitude $90^{\circ} 11^{\prime} 15^{\prime \prime} .57$; meters $+377,-1,075$.
To \triangle Market, azimuth $197^{\circ} 15^{\prime} 18^{\prime \prime}$, distance 978.2 meters.
To \triangle Pittsburg, azimuth $297^{\circ} 06^{\prime} 47^{\prime \prime}$, distance 544 meters.
Center of one-half inch hole in top of paving stone, 3.32 feet east from east rail of west railroad track on the St. Louis wharf near foot of Chouteau avenue; 66.55 feet, on slope, northeast from northeast corner of top course of foundation masonry of Central "B" elevator; 91.74 feet, on slope, southeast from northeast corner of brickwork (at top of eighth course of brick) of north engine house of elevator; 83.45 feet north from a notch cut in center of north edge of base plate of north iron pillar in west bent supporting the carrier to elevator river house; and 41.43 feet east from cross cut in east face of west curb of wharf 30 feet north from north end of elevator.

a ohouteau no. 2

United States ergineer office, St. Louis, Mo., 1901. (Ohart No. 1, station not plotted.)

Latitude $38^{\circ} 36^{\prime} 52^{\prime \prime} .73$; meters $+1,626,-224$.
Longitude $90^{\circ} 11^{\prime} 18^{\prime \prime} .03$; meters $+436,-1,016$.
Cruse on curb, near southwest corner of Ohouteau avenue and wharf, St. Louis, Mo.; 19.33 feet east from the west line of the wharf; 371.77 feet from \triangle Chouteau (calculated); 129.2 feet from southwest corner of brick engine house of elevator; 65.99 feet from Moulton's mark for old west wharf line, on foundation of elevator; 63.52 feet from another mark, 6.1 feet east from Moulton's; and 72.43 feet from cross on curb at northeast corner of Chouteau avenue and the wharf.

\triangle pittsburg.

United States engineer office, St. Louis, Mo., 1901. (Chart No. 1, station not plotted.)

Latitude $38^{\circ} 36^{\prime} 47^{\prime \prime} .82$; meters $+1,474,-376$.
Longitude $90^{\circ} 10^{\prime} 55^{\prime \prime} .56$; meters $+1,344,-108$.
To \triangle Chouteau, azimuth $117^{\circ} 07^{\prime} 00^{\prime}$, distance 544 meters.
To \triangle Market, azimuth $170^{\circ} 40^{\circ} 50^{\prime}$, distance $1,197.9$ meters.
To 4 East Eads, azimuth $196^{\circ} 09^{\prime} 12^{\prime \prime}$, distance 1,781:2 meters.
To \triangle West Eads, azimuth $180^{\circ} 07^{\prime} 21^{\prime \prime}$, distance $1,777.3$ meters.
To Δ Lesperance, azimuth $43^{\circ} 56^{\prime}{ }^{\prime} 9^{\prime}$, distance $1,451.1$ meters.
To \triangle Spruce, azimuth $159^{\circ} 16^{\prime} 20^{\prime \prime}$, distance 892.2 meters.
To \triangle SS. Peter and Paul, azimuth $70^{\circ} 18^{\prime} 28^{\prime \prime}$, distance 2,000.9 meters.
To Δ Court House, azimuth $154^{\circ} 43^{\prime} 23^{\prime \prime}$, distance $1,521.7$ meters.
Centor of one-half inch hole and croes cut in the highest part of the northwest corner of masonry of Pittsburg dike in Illinois; 2 $\frac{1}{\text { feet from the northwest corner and } 1.25}$ feet east of weat face of stone; 12.55 feet from old plane table station of 1899-hole in boards surrounded by triangle of nails; station is in a stone about 4 feet long which lies on top of three other stones in the masonry.

A VALLEY ELEVATOR.

United Statee engineer office, St. Louis, Mo., 1901. (Chart No. 2, station .not plotted.)

Latitude $38^{\circ} 36^{\prime} 26^{\prime \prime} .80$; meters $+826,-1,024$.
Longitude $90^{\circ} 10^{\prime} 58^{\prime \prime} .12$; meters $+1,358,-94$.
Center of large brick chimney of the Mcheynolds " O " elevator, south of East St. Louin and Pittaburg dike in Illinois.

- SAINTS PETER AND PAUL.

Onited States engineer office, St. Louis, Mo., 1901. (Chart No. 2, station not plotted.)
Latitude $38^{\circ} 36^{\prime} 25^{\prime \prime} .94$; meters $+800,-1,050$.
Longitude $90^{\circ} 12^{\prime} 13^{\prime \prime} .41$; meters $+325,-1,127$.
The center of the one remaining spire of the church at the northeast corner of Allen qvenue and Eighth street, St. Louis, Mo.

A LESPERANCE No. 2.

United States engineer office, St. Louis, Mo., 1901. (Chart No. 2, station not plotted.)
Latitude $38^{\circ} 36^{\prime} 14^{\prime \prime} .53$; meters $+448,-1,402$.
Longitude $90^{\circ} 11^{\prime} 38^{\prime \prime} .72$; meters ${ }^{-}+937,-515$.
To \triangle Lesperance, azimuth $296^{\circ} 12^{\prime} 44^{\prime \prime}$, distance 41.8 meters.
Crose on city stone, marking the northwest corner of Lesperance street and wharf, St. Louis, Mo.

用 $\frac{68}{3}$

Missiesippi River Commission, 1889. (Chart No. 2.)
Latitude $38^{\circ} 36^{\prime} 14^{\prime \prime} .01$; meters $+432,-1,418$.
Longitude $90^{\circ} 11^{\prime} 39^{\prime \prime} .38$; meters $+953,-499$.
Elevation: 424.23.
Groes cut in curbstone, south side of Lesperance street, St. Louis, Mo.; in railroad yards near wharf. It is marked " $53 / 3 \mathrm{U}$. S.," and is 95 meters from shore line at foot of railroad incline.
\triangle LESPERANCE.
United Statea engineer office, St. Louis, Mo., 1901. (Chart No. 2, station not plotted.)
Latitude $38^{\circ} 36^{\prime} 13^{\prime \prime} .93 ;$ meters $+430,-1,420$.
Longitude $90^{\circ} 11^{\prime} 37^{\prime \prime} .18$; meters $+900,-552$.
To \triangle Pittsburg, azimuth $223^{\circ} 56^{\prime} 23^{\prime \prime}$, distance $1,451.1$ meters.
To \triangle Lesperance No. 2, azimuth $116^{\circ} 12^{\prime} 45^{\prime \prime}$, distance 41.8 meters.
To \triangle Valley Elevator, azimuth $248^{\circ} 13^{\prime} 41^{\prime \prime}$, distance $1,069.7$ meters.
Center of one-hali inch round hole in anchor stone, to which three iron rings are attached by an eyebolt; 4 inches weat of the eyebolt and about 7 feet east of east rail of eastern railroad siding. 'It is on the St. Louis wharf, 3.9 feet south from the north line of Lesperance street prolonged; and 137.1 feet from city stone, Δ Lesperance No. 2.

\triangle VICTOR.

United States engineer office, St. Louia, Mo., 1901. (Chart No. 2, station not plotted.)

Latitude $38^{\circ} 35^{\prime} 50^{\prime \prime} .22$; meters $+1,548,-302$.
Longitude $90^{\circ} 11^{\prime} 55^{\prime \prime} .21$; meters $+1,336,-116$.
To \triangle Ferry, azimuth $352^{\circ} 49^{\prime} 34^{\prime \prime}$, distance $1,008.1$ meters.
To Δ St: George, azimuth $35^{\circ} 54^{\prime} 33^{\prime \prime}$, distance 181.7 meters.
Center of one-half inch hole and cross cut in large anchor stone (with two ring bolts) at top of wharf and about 3 feet south from south curb line (prolonged) of Victor street, St. Louis, Mo.; about 36 feet east from east railroad track; 1.1 feet south from north edge of anchor stone; 1.5 feet west from east edge of same; 0.6 foot east from north eyebolt; 8.7 feet (right-angle distance) north from a point in the south line of Victor street prolonged, which point is 106.2 feet east from the southwest corner of Victor street and the wharf.

$$
\square \frac{6 \pi}{1}
$$

Missiseippi River Commission, 1889. (Chart No. 2.)
Latitude $38^{\circ} 35^{\prime} 49^{\prime \prime} .91$; meters $+1,539,-311$.
Iongitude $90^{\circ} 10^{\prime} 41^{\prime \prime} .65$; meters $+1,008,-444$.
Elevation: Stone 419.01; pipe, 424:09.
Flat stone and iron pipe, in Illinois; about 2 meters east of the center of track of Conlogue Railroad; 1 mile south of Mobile and Ohio Railroad crossing.

\triangle BRICK CHIMNEY.

United States engineer office, St. Louis, Mo., 1901. (Chart No. 2, station not plotted.)

Latitude $38^{\circ} 35^{\prime} 48^{\prime \prime} .59$; meters $+1,498,-352$.
Longitude $90^{\circ} 12^{\prime} 45^{\prime \prime} .11$; meters $+1,092,-360$.
The center of the north main brick chimney of the Anheuser-Busch Brewery, west of Broadway (Ninth and Pestalozzi streets), South St. Louis, Mo. It is 90 feet north of south main chimney, which is 2 feet higher.

\triangle ET. GEORGE.

Onited States engineer office, St. Louis, Mo., 1901. (Chart No. 2, station not plotted.)
Latitude $38^{\circ} 35^{\prime} 45^{\prime \prime} .45$; meters $+1,401,-449$.
Longitude $90^{\circ} 11^{\prime} 59^{\prime \prime} .61$; meters $+1,442,-9$.
To \triangle Victor, azimuth $215^{\circ} 54^{\prime} 30^{\prime \prime}$, distance 181.7 meters.
To \triangle Ferry, azimuth $344^{\circ} 45^{\prime} 28^{\prime \prime}$, distance 884,2 meters.
Center of crosscut in 1 -inch square head of iron bolt, driven in ground 1 inch below surface in wharf near foot of St. George street, St. Louis, Mo., 75 feet (right angle distance) north from a point in the north line (prolonged) of St. George street, which point is 95 feet east from the northwest corner of St. George street and the wharf, and 7 feet east of east railroad siding. Three reference points are center notches in three sets of three notches each, cut on east flange of east rail, angles read from Δ Ferry: South reference point $89^{\circ} 44^{\prime}-10.94$ feet; middle reference point $139^{\circ} 50^{\prime}-6.96$ feet, and this point is in line with southeast corner of Rowing Club, brick building with square cupola, north of St. George street; north reference point $188^{\circ} 09^{\prime}-10.40$ feet, and this point is in line with southeast of red sheet-iron building. Station is nearly in line with southern side of Rowing Club; 95.18 feet from southeast corner, and 97.92 feet from northeast corner of same; and 100.08 feet from northeast corner of saloon building at northwest corner of St. George street and whärf.

\triangle LIGHTNING ROD.

United States engineer office, St. Louis, Mo., 1901. (Chart No. 2, station not plotted.)
Latitude $38^{\circ} 35^{\prime} 44^{\prime \prime} .77$; meters $+1,381,-469$.
Longitude $90^{\circ} 12^{\prime} 03^{\prime \prime} .28$; meters $+79,-1,373$.
Lightning rod on square brick chimney at foot of St. George street, St. Louis, Mo.; station located by plane table survey of the United States engineer office, St. Louis, Mo., in 1889.

\triangle RED CHIMNEY.

United States engineer office, St. Louis, Mo., 1901. (Chart No. 2, station not plotted.)
Latitude $38^{\circ} 35^{\prime} 38^{\prime \prime} .60$; meters $+1,190-660$.
Longitude $90^{\circ} 12^{\prime} 26^{\prime \prime} .86$; meters $+650,-802$.
The north side of the ladder attached to the high red iron stack of the Anheuser- . Busch Brewery, north of Arsenal street and east of Broadway, South St. Louis, Mo.

\triangle ADDITION.

United States engineer office, St. Louis, Mo., 1901. (Chart No. 2, station not plotted.)
Latitude $38^{\circ} 35^{\prime} 38^{\prime \prime} .59$; meters $+1,190,-660$.
Longitude $90^{\circ} 12^{\prime} 05^{\prime \prime} .07$; meters $+123,-1,329$.
To \triangle Ferry, azimuth $330^{\circ} 23^{\prime} 07^{\prime \prime}$, distance 737.9 meters.
To \triangle Western Rowing Club, azimuth $59^{\circ} 37^{\prime} 35^{\prime \prime}$, distance 154.3 meters.
To \triangle Lightning Rod, azimiith $192^{\circ} 50^{\prime} 40^{\prime \prime}$, distance 195.7 meters.
To \triangle Well House, azimuth $45^{\circ} 23^{\prime} 44^{\prime \prime}$, distance 432.2 meters.
Iron pipe set 6 inches below the surface on the high bank in a lumber yard near the south line of the St. George addition, between Louisa and Lynch streets, St. Louis, Mo. A point in the east rail of the east siding of railroad is 114 feet west of the station, and the angle from the flagstaff of the old Western Rowing Club to this point is $82^{\circ} 02^{\prime}$. This same point is 460.1 feet nofth from city stone at northeast corner of Rowing Club and the triangulation station is 460 feet from said city stone. The station is 3 feet south of the north line of an old frame blacksmith shop and 36.6
feet east from same building; also 123.7 feet (right-anglo distance) north from a point in the south boundary line (prolonged) of the St . George addition, which point is 419 feet east from the intersection of said south boundrary line and the east line of First street.

A WESTERN ROWING CLUB.

United States engineer office, St. Louis, Mo., 1901. (Chart No. 2, station not plotted.).

Latitude $38^{\circ} 35^{\prime} 36^{\prime \prime} .05$; meters $+1,112,-738$.
Longitude $90^{\circ} 12^{\prime} 10^{\prime \prime} .58$; meters $+256,-1,196$.
The flag pole on the old Western Rowing Club building at the foot of Lynch street, St. Louis, Mo.

\triangle DORCAS NO. 2.

United States engineer office, St. Louis, Mo., 1901. (Chart No. 2, station not plotted.)

Latitude $38^{\circ} 35^{\prime} 32^{\prime \prime} .92$; meters $+1,015-835$.
Longitude $90^{\circ} 12^{\prime} 13^{\prime \prime} .66$; meters $+331, \rightarrow 1,121$.
Cross on city stone, in the east line of city block No. 773, St. Louis, Mo.; 39.87 feet (right-angle distance) north from a point in the center line of Dorcas street, which point is 2,315.6 feet (average record distance) from the intersection of said center line and the east line of Broadway.
\triangle WELL HOUSE.
United States engineer office, St. Louis, Mo., 1901. (Chart No. 2, station not plotted.)
Latitude $38^{\circ} 35^{\prime} 28^{\prime \prime} .74$; meters $+886,-964$.
Longitude $90^{\circ} 12^{\prime} 17^{\prime \prime} .79$; meters $+431,-1,022$.
Conical roof of pumping station of Anheuser-Busch Brewery; north of and near foot of Arsenal street, St. Louis, Mo.

\triangle ARSENAL.

United States engineer office, St. Louis, Mo., 1901. (Chart No. 2, station not plotted.)

Latitude $38^{\circ} 35^{\prime} 28^{\prime \prime} .61$; meters $+882,-968$.
Longitude $90^{\circ} 12^{\prime} 23^{\prime \prime} .87$; meters $+578,-874$.
To \triangle Ferry, azimuth $292^{\circ} 09^{\prime} 29^{\prime \prime}$, distance 885 meters.
Center of one-half inch hole and cross, cut on top and in the center of the stone masonry pillar marking the northeast corner of the old United States arsenal tract; east of St. Louis, Iron Mountain and Southern Railway tracks, at foot of Arsenal street, St. Louis, Mo. It is 857.2 feet east from the east line of Second street (a mark on north face of arsenal wall). Azimuth to center of pillar, northwest corner of tract $139^{\circ} 53^{\prime} 30^{\prime \prime}$.
\triangle GATE.
United States engineer office, St. Louis, Mo., 1889; redetermined in 1901. (Chart No. 2, station not plotted.)
Latitude $38^{\circ} 35^{\prime} 24^{\prime \prime} .32$; meters $+750,-1,100$.
Longitude $90^{\circ} 12^{\prime} 28^{\prime \prime} .65$; metera $+693,-759$.
To \triangle Ferry, azimuth $282^{\circ} 10^{\prime} 02^{\prime \prime}$, distance 956:7 meters.
.Center of 1 -inch hole, drilled in center of stone coping above the arch of the gate or sally port in the east or river wall of the old Arsenal tract and in the present United States engineer depot grounds at the foot of Arsenal street, St. Louis, Mo. The old name of this triangulation station was "U. S. Engineer Depot."

A HOME BREWERY.

City of St. Louis, redetermined by United States engineer office, St. Louis, Mo., 1901. (Chart No. 2, station not plotted.)

Latitude $38^{\circ} 35^{\prime} 19^{\prime \prime} .16$; meters $+591,-1,259$.
Longitude $90^{\circ} 13^{\prime} 16^{\prime \prime} .81$; meters $+407,-1,045$.
To \triangle Ferry, azimuth $271^{\circ} 09^{\prime} 00^{\prime}$, distance 2,101.4 meters.
A copper rivet, in gravel roof, near the iortheast corner of Home Brewery Building; 9 feet west of west side of Salina street and 110 feet south of south side of Miami street. It is 7.59 feet south of fire wall; 7.88 feet west of fire wall; 10.88 feet from intersection of two fire walls; and 15.95 feet north of Scuttle (Colby's description, survey of city of St. Louis, Mo.). Station was not occupied in 1901.

A FERRY.

United Statee engineer office, St. Louis, Mo., 1901. (Chart No. 2, station not plotted.)

Latitude $38^{\circ} 35^{\prime} 17^{\prime \prime} .78$; metere $+548,-1,302$.
Longitude $90^{\circ} 11^{\prime} 50^{\prime \prime} .01$; meters $+1,210,-242$.
To \triangle Home Brewery, azimuth $91^{\circ} 09^{\prime}$ '54 $4^{\prime \prime}$, distance 2, 101.4 meters.
To \triangle Addition, azimuth $150^{\circ} 23^{\prime} 16^{\prime \prime}$, distance 737.9 meters.
To \triangle Zepp, azimuth $86^{\circ} 13^{\prime} 49^{\prime \prime}$, distance $1,315.9$ meters.
To \triangle Brick Chimney, azimuth $125^{\circ} 28^{\prime} 35^{\prime \prime}$, distance $1,637.4$ meters.
To Δ Red Chimney, azimuth $125^{\circ} 44^{\prime} 51^{\prime \prime}$, distance $1,098.9$ meters.
To \triangle Western Rowing Club, azimuth $138^{\circ} 32^{\prime} 43^{\prime \prime}$, distance 751.9 meters.
To \triangle Well House, azimuth $116^{\circ} 41^{\prime} 29^{\prime \prime}$, distance 752.6 meters.
Iron pipe on high bank, Illinois shore, at the Sidney street (St. Louis, Mo.) ferry landing. It is about 8 feet south of center line of old Rock Road from ferry landing to Cahokia, Ill.; 44.8 feet north of nearest pile south of rock road; and 77.5 leet south of nearest pile north of rock road. Pile north of station is burnt to a sharp top.

A ZEPP.

United States engineer office, St. Louis, Mo., 1901. (Chart No. 2, station not plotted.)
Latitude $38^{\circ} 35^{\prime} 14^{\prime \prime} .97$; meters $+462,-1,388$.
Longitude $90^{\circ} 12^{\prime} 44^{\prime \prime} .26$; meters $+1,071,-381$.
To \triangle Keokuk, azimuth $56^{\circ} 27^{\prime} 02^{\prime \prime}$, distance 860.9 meters.
To \triangle Ferry, azimuth $266^{\circ} 13^{\prime} 15^{\prime \prime}$, distance $1,315.9$ meters.
To \triangle Red Chimney, azimuth $210^{\circ} 01^{\prime} 30^{\prime \prime}$, distance 841.5 meters.
Iron pipe, set flush with surface of dump outside the railroad tracks at the foot of Zepp street, St. Louis, Mo.; 47.43 feet east from southeast corner of shanty boat on high bank; 46.09 feet east from northeast corner of same boat; 30.43 feet south from southeast corner of latrine; 7 feet (right angle distance) south from a point in the center line of Zepp street, prolonged, which point is 326.5 feet east from intersection of eaid center line with the east line of Barracks avenue. Station covered in 1908.

A KEOKUK.

United States engineer office, St. Louis, Mo., 1901. (Chart No. 2, station not plotted.)
Latitude $38^{\circ} 34^{\prime} 59^{\prime \prime} .54$; meters $+1,836,-14$.
Longitude $90^{\circ} 13^{\prime} 13^{\prime \prime} .90 ;$ meters $+336,-1,116$.
To \triangle Meramec, azimuth $37^{\circ} 44^{\prime} 12^{\prime \prime}$, distance 724 meters.
To \triangle Zepp, azimuth $226^{\circ} 26^{\prime} 4^{\prime \prime}$, distance 860.9 meters.
Iron pipe, near front edge of Missouri bluffs; 52.1 feet south (right-angle distance)
from a point in the eastern prolongation of the south line of Keokuk street (west of
Marine avenue), St. Louis; and this point is 117.3 feet east from the intersection of said south line with the east line of Kosciusko street; station is in the southern prolongation of the line Zepp-Well House. References (angles referenced from \triangle Meramec): Arrow mark on fence southwest of station, $37^{\circ} 56^{\prime}-25.65$ feet; southeast corner of latrine west of station, $95^{\circ} 29^{\prime}-19.88$ feet; arrow mark on fence north of station, 170° $26^{\prime}-10.91$ feet.
© P.B. M. 16.
Mississippi River Commission, 1880-81. (Ohart No. 2.)
Latitude $38^{\circ} 34^{\prime} 49^{\prime \prime} .14$; meters $+1,515,-335$.
Longitude $90^{\circ} 13^{\prime} 42^{\prime \prime} .96$; meters $+1,040,-412$.
Elevation: 509.66.
Top of copper bolt, leaded vertically in east end of doorstep of second door from northeast corner of brick saloon adjoining Riverside Park, at junction of Piedmont avenue and Broadway, St. Louis, Mo.; 11 inches from front face and 4 inches weat of buttress adjoining doorstep. (Station is plotted on chart 01^{\prime} too far west.

A gacred heart convent.

United Statee Coast and Geodetic Survey, 1871; redetermined by United Statea engineer office, St. Louis, Mo., 1901. (Chart No. 2.)
Latitude $38^{\circ} 34^{\prime} 43^{\prime \prime} .94$; meters $+1,355,-495$.
Longitude $90^{\circ} 14^{\prime} 12^{\prime \prime} .65$; meters $+306,-1,146$.
Centor of crose on Sacred Heart Convent, Meramec atreet and Nebraska avenue, St. Louis, Mo.

United Stater engineer office, St. Louis, Mo., 1901. (Chart No. 2.)
Latitude $38^{\circ} 34^{\prime} 43^{\prime \prime} .48$; meters $+1,341,-509$.
Longitude $90^{\circ} 13^{\prime} 35^{\prime \prime} .54 ;$ meters $+860,-$-593.
Elevation: 455.67.
To \triangle Tucker, azimuth $33^{\circ} 39^{\prime} 01^{\prime \prime}$, distance $1,285.2$ meters.
Center of a one-half inch copper bolt, leaded in rock ledge at the foot of Meramec street, St. Louis, Mo.; west of the railroad on a flat ehelf north of retaining wall and 23 feet northwardly from a sycamore tree below the wall. A nail is driven into the tree near the elevation of the station. Letters "U. S." are cut in vertical face of ledge just west of station; the " U " is 2.2 feet distant; and the north edge of an old drillhole is 3.72 feet southwest. A cross on next shelf, about 3 inches higher, is 2.53 feet northweat. A city stone, on the east line of Marine avenue 230.5 feet from the center line of Meramec street, is 309.45 feet, $240^{\circ} 58^{\prime}$ from the station. Also the station is 23 feet (right-angle distance) north from a point in the center line of Meramec street and this point is 158.2 feet west from intersection of said center line and the east line of Marine avenue.

$$
\triangle \text { FLAG } 5.0 \text { - } \square^{\frac{52}{4}}
$$

Missisesippi River Commission, 1889. (Chart No. 2.)
Latitude $38^{\circ} 34^{\prime} 29^{\prime \prime} .45$; meters $+908,-942$.
Longitude $90^{\circ} 13^{\prime} 53^{\prime \prime} .46$; meters $+1,294,-158$.
Elevation: 536.38.
Stone post, with top broken off; on top of bluff, in south St. Louis, Mo.; 400 meters from and nearly south of Workhouse; 66 meters from the railroad below the bluff. Bench mark is southeast corner of the stone which is cut to a knob.

\triangle ARSENAL ISLAND NC. 2.

United States engineer office, St. Louis, Mo., 1901. (Chart No. 2, station not plotted.)

Latitude $38^{\circ} 34^{\prime} 22^{\prime \prime} .38$; meters $+690,-1,160$.
Longitude $90^{\circ} 13^{\prime} 18^{\prime \prime} .48$; meters +447, $-1,005$.
Iron pipe, on left bank of river; on Arsenal Island; on the line Revetment-Arsenal Island, between the stations and 41.51 feet from the latter; 5.83 feet inshore from center nail in 10 -inch blazed willow on edge of river bank.

\triangle NEOSHO.

United States engineer office, St. Louis, Mo., 1901. (Chart No. 2, station not plotted.)
Latitude $38^{\circ} 34^{\prime} 19^{\prime \prime} .83$; meters $+611,-1,239$.
Longitude $90^{\circ} 14^{\prime} 00^{\prime} .44^{\prime}$ meters $+11,-1,442$.
Iron pipe, on edge of bluff in south St. Louis, Mo.; 39.9 feet (right-angle distance) south from a point in the eastern prolongation of the north line of Neosho atreet (60 feet wide) and this point is 730 feet east from intersection of said north line with the west line of Oregon avenue. A city stone is 90 feet (right-angle distance) north from a point in said north line of Neosho street and this latter point is 59.3 feet west from the point first deacribed.

\triangle SUMMER HOUSE.

United States engineer office, St. Louis, Mo., 1901. (Chart No. 2, station not plotted.)
Latitude $38^{\circ} 34^{\prime} 13^{\prime \prime} .39$; meters $+413,-1,437$.
Longitude $90^{\circ} 14^{\prime} 02^{\prime \prime} .49$; meters $+60,-1,393$.
The flagpole on summer house at Tucker railroad station near the foot of Itaska street, St. Louis.

\triangle TOCKER

United States engineer office, St. Louis, Mo., 1901. (Chart No. 2.)
Latitude $38^{\circ} 34^{\prime} 08^{\prime \prime} .79$; meters $+271,-1,579$.
Longitude $90^{\circ} 14^{\prime} 04^{\prime \prime} .96$; meters $+120,-1,333$.
Elevation: 428.71 .
To \triangle Meramer No. 2, azimuth $213^{\circ} 38^{\prime} 43^{\prime \prime}$, distance $1,285.2$ meters.
To \triangle Dover, azimuth $32^{\circ} 32^{\prime} 45^{\prime \prime}$, distance $1,147.6$ meters.
ToASummer House, azimuth $202^{\circ} 52^{\prime} 25^{\prime \prime}$, distance 153.9 meters

$$
\text { H. Doc. } 50,61-1-26^{*}
$$

Iron pipe, eet flush with embankment on east side of railroad near Tucker station and about halfway between Maeder and Neosho streets, St. Louis, Mo. A mound of broken stone covers and marks the station. It is 16.4 feet east of east rail of east track; 30.3 feet east of east rail of west track; 43.85 feet from a cross on a bowlder which is about 12 feet north, and west of west track; 77 feet south from a 16 -inch sewer pipe projecting through the embankm ; 126.75 feet north from center one of four nails and triangle blazed on yard lim sost; 99.80 feet, actual, to a cross cut on ledge (elevation about 10 feet) west of., and under tool house above road leading to quarry; 82.65 feet, actual, to a ct. at on ledge (elevation about 12 feet) west of track, and near north limit of quarr, inn $^{\text {n }}$ The length of the line TuckerDover, by base-line measurement, is $3,765.16$ fer .

(a) $\frac{89}{2}$

Mississippi River Commission, 1889, (Chart No. 2.)
Latitude $38^{\circ} 34^{\prime} 08^{\prime \prime} .54$; meters $+263,-1,587$.
Longitude $90^{\circ} 13^{\prime} 18^{\prime \prime} .01$; meters $+436,-1,017$.
Elevation: Stone, 407.15; pipe, 412.25 .
To■52/1, azimuth $307^{\circ} 00^{\prime}$, distance 1,059 meters.
To \triangle Flag $5=0.02 / 4$, azimuth $127^{\circ} 05^{\prime}$.
Flat stone and iron pipe, on left bank of river; on Arsenal Island, 050 meters below its head, and 263 meters back from river bank; opposite Herf and Frerich's chemical works; among cotton.wood trees and willows. (Covered up by deposit; not found in 1908.)

A MAEDER.

United States engineer office, St. Louis, Mo., 1901. (Chart No. 2, station not plotted.)
Latitude $38^{\circ} 33^{\prime} 59^{\prime \prime} .26$; meters $+1,827,-23$.
Longitude $90^{\circ} 14^{\prime} 13^{\prime \prime} .75$; meters $+333,-1,120$.
To \triangle Shoulder No. 2, azimuth $297^{\circ} 16^{\prime} 40^{\prime \prime}$, distance 668.6 meters.
Center of one-half inch hole and cross, cut on top and about 5 feet from edge of bare prominent ledge near the north line of Maeder street, St. Louis, Mo.; and west of the St. Louis, Iron Mountain and Southern Railway. It is 66.4 feet (right-angle distance) north from a point in the eastern prolongation of the center line of Maeder street, and this point is 399 feet east from mntersection of said center line with the east line of Broadway.

A SCULLIN.

United States engineer office, St. Louis, Mo., 1901. (Chart No. 2.)
Latitude $38^{\circ} 33^{\prime} 51^{\prime \prime} .88$; meters $+1,600,-250$.
Longitude $90^{\circ} 14^{\prime} 21^{\prime \prime} .24$; meters $+514,-939$.
Center of conical roof and weather vane on Mr.Scullin's house on the bluffs in mouth St. Louis, Mo. (5200 South Broadway.)

\triangle SUMMER HOUSE NO. 2

United States engineer office, St. Louis, Mo.; redetermined, 1901. (Chart No. 2, station not plotted.)

Latitude $38^{\circ} 33^{\prime} 49^{\prime \prime} .23$; meters $+1,518,-332$.
Longitude $90^{\circ} 14^{\prime} 21^{\prime \prime} .60$; meters +523 , -930 .
The finial and lightning rod of the summer house belonging to the old Chouteau residence, now the "Altenheim," in south St. Louis, Mo. (Old point of the United States engineer office survey of 1889 .)

A BHOULDER NO. 2

United States engineer office, St. Louis, Mo., 1901. (Chart No. 2, station not plotted.)
Latitude $38^{\circ} 33^{\prime} 49^{\prime \prime} 32$; meters $+1,521,-329$.
Longitude $90^{\circ} 13^{\prime} 49^{\prime \prime} .21$; meters $+1,191,-262$.
To \triangle Maeder, azimuth $117^{\circ} 16^{\prime} 55^{\prime \prime}$, distance 688.6 meters.
Iron pipe, 14 inches above surface of ground; on Arsenal Island (left bank of river); in prolongation of line Maeder-Shoulder, and 62.32 feet from the latter station; 2 feet southwest of spike at foot of 1 -foot cottonwood tree; and top of pipe is 3.77 feet from head of another spike in triangular blaze on same tree and about 4 feet above ground.

$$
\text { [古 } \frac{52}{1}
$$

Mississippi River Commission, 1889. (Chart No. 2.)
Latitude $38^{\circ} 33^{\prime} 47^{\prime \prime} .75$; meters $+1,472,-378$.
Longitude $90^{\circ} 12^{\prime} 42^{\prime \prime} .86 ;$ meters $+1,038,-415$.
Elevation: Stone, 409.61 ; pipe, 414.69.
To@ $52 / 2$, azimuth $127^{\circ} 00^{\prime}$, distance 1,059 meters.
Flat stone and iron pipe, on land of Ilenry Morton; about 1 mile southwest of the town of Cahokia, Ill., and 1 mile northwest of the village of Prairie du Pont; behind Arsenal Island and 196 meters from left bank of chute; in grove of small trees; 20 feet above road leading back from house; and almost directly back of old hurdle across chute; 200 meters west of Mobile and Ohio Railroad where it crosses road; 4 meters west of blazed elm tree 1 foot in diameter. (The elevation given on chart was found to be incorrect.)

\triangle EILER.

United States engineer office, St. Louis, Mo., 1901. (Chart No. 2, station not plotted.)

Latitude $3 i 3^{\circ} 33^{\prime} 47^{\prime \prime} .23$; meters $+1,456,-394$.
Longitude $90^{\circ} 14^{\prime} 24^{\prime \prime} .19$; meters +586 , -867 .
To Δ Scullin, azimuth $206^{\circ} 30^{\prime} 49^{\prime \prime}$, distance 300.2 meters.
A temporary station, 28.8 feet west of brick wall near edge of bluff in "Altenheim" (old Chouteau) yard, in south St. Louis, Mo.; 26.7 feet (right-angle distance) north from a point in the south line of Eiler street prolonged, and this point is 274.2 feet east from intersection of said south line with the east side of Broadway.

\triangle DOVER.

United States engineer office, St. Louis, Mo., 1901. (Chart No. 2.)
Latitude $38^{\circ} 33^{\prime} 37^{\prime \prime} .41$; meters $+1,154,-696$.
Longitude $90^{\circ} 14^{\prime} 30^{\prime \prime} .46 ;$ meters $+737,-716$.
Elevation: 429.89 .
To \triangle Tucker, azimuth $212^{\circ} 32^{\prime} 29^{\prime \prime}$, distance $1,147.6$ meters.
To \triangle Kansas, azimuth $32^{\circ} 20^{\prime} 33^{\prime \prime}$, distance 696.5 melers.
Iron pipe, set about 6 inches below surface, in cinders and stone embankment on the east side of the railway and ahout 300 feet north of Dover street, St. Louis, Mo. Three reference crosses are cut in the solid rock on the west side of the track. Distance from south cross, 67.88 feet; from middle cross, 28.68 feet; and from north cross, 44.07 feet. Distance between south and middle crosses, 61.2 feet; between middle and north crosses, 34.3 feet. Station is 275.3 feet (right-angle distance) north from a point in the eastern prolongation of the north line of Dover street, and this point is 301.6 feet east from the northeast corner of Dover street and Broadway.

\triangle KANSAS.

United States engineer office, St. Louis, Mo., 1901. (Chart No. 2, station not plotted.)

Latitude $38^{\circ} 33^{\prime} 18^{\prime \prime} .33$; meters $+565,-1,285$.
Longitude $90^{\circ} 14^{\prime} 45^{\prime \prime} .85$; meters $+1,110,-343$.
To \triangle Kraus, azimūth $43^{\circ} 25^{\prime} 47^{\prime \prime}$, distance 478.6 meters.
To 4 Incline, azimuth $344^{\circ} 37^{\prime} 30^{\prime}$, distance 870.3 meters.
To \triangle Dover, azimuth $212^{\circ} 20^{\circ} 09^{\prime \prime}$, distance 696.5 meters.
To \triangle Steins, azimuth $26^{\circ} 11^{\prime} 43^{\prime \prime}$, distance $1,341.5$ meters.
Large iron driftbolt, driven into prominent point of slag dump at the foot of Kansas street, St. Louis, Mo.; 113.8 feet from the northeast corner of a barn and 117 feet from the southeast corner of same; 27.4 feet north of center of small sewer; 123.1 feet (rightangle distance) north from a point in the south line of Kansas street prolonged and this point is 694.8 feet east from the intersection of said south line with the east line of Broadway. (Covered in 1908.)

\triangle KRAUS.

United States engineer office, St. Louis, Mo., 1901. (Chart No. 2.)
Latitude $38^{\circ} 33^{\prime} 07^{\prime \prime} .06$; meters $+218,-1,632$.
Longitude $90^{\circ} 14^{\prime} 59^{\prime \prime} .43$; meters $+1,439,-14$.
Elevation: 416.61.
To Δ Incline, azimuth $311^{\circ} 17^{\prime} 24^{\prime \prime}$, distance 745 meters.
To 4 Kanssas, azimuth $223^{\circ} 25^{\prime} 39^{\prime \prime}$, distance 478.5 meters.

Iron pipe, near the edge of the high bank at the foot of Kraus street, St. Louis, Mo.; 10.82 feet east by north to a bolt in the base of lamp-post at south side of street; 60 feet from northeast corner of frame building south of street; 40 feet from southeast corner of frame building on north side of street. Station is 11.2 feet (right-angle distance) north from a point in the south line of Kraus atreet, and this point is 642.3 feet east from the southeast corner of Kraus street and Broadway.

\triangle INCLINE.

United States engineer office, St. Louis, Mo., 1901. (Chart No. 2, station not plotted.)

Latitude $38^{\circ} 32^{\prime} 51^{\prime \prime} .11$; meters $+1,576,-274$.
Longitude $90^{\circ} 14^{\prime} 36^{\prime \prime} .32$; meters $+879,-574$.
To \triangle Steins, azimuth $66^{\circ} 06^{\prime} 24^{\prime \prime}$, distance 900.1 meters.
To \triangle Kansas, azimuth $164^{\circ} 37^{\prime} 36^{\prime \prime}$, distance 870.3 meters.
To \triangle Waterloo, azimuth $33^{\circ} 14^{\prime} 08^{\prime \prime}$, distance $1,403.5$ meters.
To \triangle Kraus, azimuth $131^{\circ} 17^{\prime} 39^{\prime \prime}$, distance 745 meters.
Iron pipe, set flush with surface of ground, with mound of stone 1 foot high piled around it; in the stone embankment of the high-water railroad incline in Illinois and opposite Kraus street, St. Louis, Mo.; 6.92 feet west of inside edge of west rail and 4 feet from the edge of the embankment. There are five 9 -pile clumps on the east side of the track, and the station is about equidistant from the northernmost two, which are surrounded by mounds of riprap 4 feet high.

The southernmost middle pile of the north clump and the northernnost middle pile of the next clump south are blazed with triangles, about 7 feet above the ground which are painted white with a spike in the center and the actual distance between these spikes is 52.73 feet. At a point in this same line, 30.37 feet from spike in north clump, or 22.36 feet from spike in south clump, the cross on the Sisters of St. Joseph Convent is seen in range with the station, which is 41.82 feet from this same point. The station is 51.05 feet, actual, from spike in north clump and 48.72 feet from spike in next clump south. (Covered in 1908.)

A BTEINS.

United States engineer office, St. Louis, Mo., 1901. (Chart No. 2.)
Latitude $38^{\circ} 32^{\prime} 39^{\prime \prime} .29$; meters $+1,211,-639$.
Longitude $90^{\circ} 15^{\prime} 10^{\prime} .30$; meters $+249,-1,204$.
Elevation: 421.88.
To \triangle Jupiter, azimuth $26^{\circ} 08^{\prime} 52^{\prime \prime}$, distance 589.4 meters.
To \triangle Waterloo, azimuth $356^{\circ} 11^{\prime} 49^{\prime \prime}$, distance 811.1 meters.

- To \triangle Incline, azimuth $246^{\circ} 06^{\prime} 03^{\prime \prime}$, distance 900.1 meters.

Copper bolt, leaded into the masonry of the ruins of the elevator at the foot of Steins street, south St. Louis, Mo.; 57.4 feet to the southeast corner and 59.4 feet to southwest corner of ruins; 5.38 feet northeast and 8.3 feet northwest, respectively, to bolte in masonry; and 52.8 feet from east rail of railroad track; 68.1 feet (right-angle distance) north from a point in the north line of Steins street, and this point is $1,869.7$ feet east from the northeast corner of Steins street and Broadway and 831.4 feet from the intersection of said north line of Steins street and the center line of Reilly avenue.

\triangle CARONDELET SCHOOL.

United States engineer office, St. Louis, Mo., 1901. (Chart No. 2, station not plotted.)
Latitude $38^{\circ} 32^{\prime} 38^{\prime \prime} .64$; meters $+1,191,-659$.
Longitude $90^{\circ} 15^{\prime} 56^{\prime \prime} .66$; meters $+1,372,-81$.
To © Insane Asylum, azimuth $169^{\circ} 56^{\prime} 19^{\prime \prime}$, distance $6,744.3$ meters.
To \triangle Sacred Heart, azimuth $213^{\circ} 05^{\prime} 17^{\prime \prime}$, distance $4,611.7$ meters.
To \triangle Notre Dame, azimuth $13^{\circ} 03^{\prime} 19^{\prime \prime}$, distance 2,33\%.2 meters.
A copper rivet, in intersection of the northeast and west slopes of the roof of the Carondelet School at Davis street and Minnesota avenue, south St. Louis, Mo.; 34.76 feet from the northwest corner of the tin roof; 34.78 feet from the northeast corner; 36.66 feet from the southeast corner; and 36.80 feet from the southwest corner (Colby's description, survey of cily of St. Louis). The cester part of the roof, vertex of the four slopes, has been cut away for a ventilator which is about 12 feet square, 6 feet high, and covered with a flat tin roof. A nail in this tin roof and approximately over the intarsection of the ariginal roof elopes marks the station used in 1901.

The following measurements were taken when the angles were observed:
To \triangle Des Peres (destroyed) $00^{\circ} 00^{\prime}$.
To the north west corner of tin roof, 35.76 feet, $187^{\circ} 25^{\prime}$.
To the northeast corner of tin roof, 35.56 feet, $274^{\circ} 24^{\circ}$.
To the southeast corner of tin roof, 35.57 feet, $7^{\circ} 33^{\prime}$.
To the southwest corner of tin roof, 35.96 feet, $94^{\circ} 37^{\prime}$.
$\oplus 3$ W.
Board on Examination and Survey of Mississippi River, 1908. (Chart No. 2.)
Latitude $38^{\circ} 32^{\prime} 37^{\prime \prime} .20$; meters $+1,147,-703$.
Longitude $90^{\circ} 10^{\prime} 25^{\prime \prime} .72$; meters +623 , -830 .
Elevation: 421.92 .
To \triangle Tank, U. S. Magazine, azimuth $71^{\circ} 23^{\prime}$.
To spire of church, azimuth $89^{\circ} 17^{\prime}$.
To gable of house, azimuth $88^{\circ} 45^{\prime}$.
To gable of stone crusher, azimuth $273^{\circ} 10^{\prime}$.
Iron pipe, set in ground and projecting about 10 inches above the surface; in Illinois bottom land opposite Stolle quarries, about 5 miles below East St. Louis, Ill.; and about one-fourth mile west from stone residence of quarry superintendent; on small levee 6.5 feet south of center of track of Illinois Central (Belleville and East Carondelet) Railroad; 50 meters west of road crossing; 16 meters from northwest corner of orchard; and 352 meters east of house on south side of tracks.
\oplus stolle.
Boardo on Examination and Survey of Mississippi River, 1908. (Chart No. 2.)
Latitude $38^{\circ} 32^{\prime} 26^{\prime \prime} .27$; meters $+810,-1,040$.
Longitude $90^{\circ} 10^{\prime} 07^{\prime \prime} .04$; meters +171, $-1,283$.
To © Insane Asylum, azimuth $126^{\circ} 06^{\prime}$.
To \triangle Tank, U.S. Magazine, azimuth $74^{\circ} 04^{\prime}$.
To \triangle Notre Dame, azimuth $78^{\circ} 10^{\prime}$.
To Δ Scullin, azimuth $113^{\circ} 14^{\prime}$.
To \triangle Sacred Heart, azimuth $125^{\circ} 31^{\prime}$.
To \triangle Saints Peter and Paul, azimuth $157^{\circ} 31^{\prime}$.
Hole in cap of 3 -inch iron pipe, 5 inches below surface of ground, on Illingis bluffs and about 5 miles below East St. Louis, III.; on highest mound back of stone residence of superintendent of Stolle quarries, and about 50 meters downstream from same; 16 meters back from edge of bluff and about 5 meters southwest of top of mound. References: 36 -inch oak stump, $280^{\circ} 20^{\prime}-35$ meters; burnt snag, $61^{\circ} 45^{\prime}-$ 57 meters; northeast corner of stone residence, $179^{\circ} 1.5^{\prime}-292$ meters; two 18 -inch black oak trees, 1 foot apart, and at upper edge of scaltered timber, triangle blazed on east one, $71^{\circ} 55^{\prime}-83$ meters.

\triangle JUPITER.

United States engineer office, St. Louis, Mo., 1901 and 1903. (Chart No. 2.)
Latitude $38^{\circ} 32^{\prime} 22^{\prime \prime} 13$; meters $+682,-1,168$ (1901).
Longitude $90^{\circ} 15^{\prime} 21^{\prime \prime} .02$; meters +509 , -944 (1901).
Latitude $38^{\circ} 32^{\prime} 22^{\prime \prime} .13$; meters $+682,-1,168$ (1903)
Longitude $90^{\circ} 15^{\prime} 21^{\prime \prime} .07$; meters $+510,-943$ (1903).
To \triangle Waterloo, azimuth $311^{\circ} 47^{\prime} 39^{\prime \prime \prime}$, distance 420.5 meters (1901).
To \triangle Waterloo, azimuth $311^{\circ} 48^{\prime} 31^{\prime \prime \prime}$, distance 420.6 meters (1903).
To \triangle Vulcan, azimuth $33^{\circ} 47^{\prime} 08^{\prime \prime}$, distance 740.2 meters (1901).
To \triangle Vulcan, azimuth $33^{\circ} 48^{\prime} 02^{\prime \prime}$, distance 740.4 meters (1903).
To Δ Steins, azimuth $206^{\circ} 08^{\prime} 46^{\prime \prime}$, distance 589.4 meters (1901).
Cross on square head of 1 -inch iron bolt, driven into the slag dump flush with surface, near the old Jupiter Furnace and north from the foot of Davis street, St. Louis, Mo. A mound of stone covers and marks the etation which is on prominent point and 12 feet from edge of the dump; 28.6 feet upstream from a snubbing post in which 3 nails forming a triangle are driven; 176.5 feet from northeast corner of main furnace building and 130 feet downstream from outer end of a plank bridge over a ditch; 286.9 feet (right angle distance) north from a point in the north line of Davis atreet, and this point is $1,323.9$ feet east from the intersection of said north line and, the east line of Reilly avenue, 447.7 feet east from a "mark correct for Davis street" in the west face of the southwest corner of an old brick house east of the St. Louis, Iron Mountain and Southern Railway, and 219 feet from a mark on foundation of old furnace 2.2 feet south of the north line of Javis street.

A Waterloo.

United States engineer office, St. Louis, Mo., 1901 and 1903. (Chart No. 2.)
Latitude $38^{\circ} 32^{\prime} 13^{\prime \prime} .04$; meters $+402,-1,448$ (1901).
Longitude $90^{\circ} 15^{\prime} 08^{\prime \prime} .08$; meters $+196,-1,257$ (1901).
Latitude $38^{\circ} 32^{\prime} 13^{\prime \prime} .04$; meters +402 , $-1,448$ (1903).
Longitude $90^{\circ} 15^{\prime} 08^{\prime \prime} .13$; meters $+197,-1,256$ (1903).
Elevation: 404.84.
To \triangle Steins, azimuth $176^{\circ} 11^{\prime} 50^{\prime \prime}$ distance 811.1 meters.
To A Incline, azimuth $213^{\circ} 13^{\prime} 48^{\prime \prime}$, distance $1,403.5$ meters.
To \triangle Jupiter, azimuth $131^{\circ} 47^{\prime} 47^{\prime \prime}$, distance 420.5 meters.
To \triangle Jupiter, azimuth $131^{\circ} 48^{\prime} 40^{\prime}$, distance 420.6 meters (1903).
Nail hole surrounded by triangle of three nails, on west main longitudinal stringer of the railroad incline in Illinois, south of the Waterloo road, and opposite Davis street, St. Louis, Mo. Station is close to and below the west rail and over the third cross sill from the revetment. Three notches are cut on the rail flange just above the point. Two triangles with ax notches and two triangles of tacks are on the ties nearest north and south.
\triangle CITY LIMITS NO. 2.
United States engineer office, St. Louis, Mo., 1901. (Chart No. 2, station not plotted.)
Latitude $38^{\circ} 32^{\prime} 02^{\prime \prime} .54$; meters $+78,-1,772$.
Longitude $90^{\circ} 15^{\prime} 48^{\prime \prime} .06$; meters $+1,164,-289$.
Stone post, marking the southern boundary line of the city of St. Louis, Mo.; about 200 feet south from center of River des Peres; on the east side of the St. Louis, Iron Mountain and Southern Railway; and 521.4 feet from Δ City Limits No. 1.

\triangle VULCAN.

United States engineer office, St. Louis, Mo., 1901 and 1903. (Chart No. 2, station not plotted.)

Latitude $38^{\circ} 32^{\prime} 02^{\prime \prime} .18$; meters $+67,-1,783$ (1901).
Longitude $90^{\circ} 15^{\prime} 38^{\prime \prime} .02$; meters $+921,-532$ (1901).
Latitude $38^{\circ} 32^{\prime} 02^{\prime \prime} .18$; meters $+67,-1,783$ (1903).
Longitude $90^{\circ} 15^{\prime} 38^{\prime \prime} .08$; meters +922 , -531 (1903).
To \triangle Jupiter, azimuth $213^{\circ} 46^{\prime} 57^{\prime \prime}$, distance 740.2 meters.
To \triangle Jupiter, azimuth $213^{\circ} 47^{\prime} 51^{\prime \prime}$, distance 740.4 meters (1903).
To \triangle Opposite Vulcan, azimuth $289^{\circ} 20^{\prime} 54^{\prime \prime}$, distance 573.6 meters (1903).
To \triangle Du Pont, azimuth $338^{\circ} 07^{\prime} 47^{\prime \prime}$, distance 867.5 meters (1903).
Iron pipe, set flush with surface of ground and covered with mound of earth and stone on prominent point about 100 feet north of the River des Peres and near the foot of Lorenz street, St. Louis, Mo.; 149.2 feet from old \triangle Vulcan Chimney (destroyed); 401.9 feet from \triangle City Limits No. 1; and 76.6 feet (right angle distance) south from a point in the center line of Lorenz street prolonged, and this point is $1,290.1$ feet east from the intersection of said center line with the east line of Polk street.

\triangle CITY LIMI'TS NO. 1.

United States engineer office, St. Louis, Mo., 1901. (Chart No. 2, station not plotted.)
Latitude $38^{\circ} 32^{\prime} 00^{\prime} .07$; neters $+2,-1,848$.
Longitude $90^{\circ} 15^{\prime} 42^{\prime \prime} .30^{\prime}$; meters $+1,024,-429$.
Stone post, marking the southern boundary line of the city of St. Louis, Mo.; about 200 feet south from center of River des Peres; 140 feet west from high bank of Mississippi River; and. 402 feet from \triangle Vulcan.

$$
\square \frac{51}{3}
$$

Mississippi River Commission, 1389. (Chart No. 2.)
Latitude $38^{\circ} 31^{\prime} 57^{\prime \prime} .57$; meters $+1,775,-75$.
Longitude $90^{\circ} 15^{\prime} 58^{\prime \prime} .53 ;$ meters $+1,418,-36$.
Elevation: Stone, 417.82 ; pipe, 422.91 .
To $51 / 2$, azimuth $293^{\circ} 20^{\circ}$.
Flat stone and iron pipe, 170 meters south of River des Peres, at'nearest point; 40 meters west of St. Louis, Iron Mountain and Southern Railway tracks; in east edge of open timber; beside path and near fence along the right of way. (Not found in 1908.)

A OPPOSITE VULCAN.
United States engineer office, St. Louis, Mo., 1903. (Chart No. 2, station not plotted.)
Latitude $38^{\circ} 31^{\prime} 56^{\prime \prime} .01$; meters $+1,727,-123$.
Longitude $90^{\circ} 15^{\prime} 15^{\prime \prime} .73$; meters $+381,-1,073$.
To \triangle Du Pont, azimuth $19^{\circ} 31^{\prime} 22^{\prime \prime}$, distance 652.6 meters.
To \triangle Vulcan, azimuth $109^{\circ} 21^{\prime} 08^{\prime \prime}$, distance 573.6 meters.
Iron pipe, on left bank, 10 inches above surface of ground; 25 feet from top of bank in line with south end of railroad bridge over River des Peres and flagstaff of Mount St. Rose Hospital; and 20 feet southeast of 12 -inch blazed c̣ottonwood tree.

\oplus W.

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 2.)
Latitude $38^{\circ} 31^{\prime} 38^{\prime \prime} .63$; meters $+1,191,-659$.
Longitude $90^{\circ} 12^{\prime} 26^{\prime \prime} .92$; meters $+652,-801$.
Elevation: 419.53.
To \triangle Notre Dame, azimuth $85^{\circ} 44^{\prime}$.
To \triangle Sacred Heart, azimuth $155^{\circ} 52^{\prime}$.
To water tank, Bixby, Ill., azimuth $20^{\circ} 30^{\circ}$.
To church spire, azimuth $154^{\circ} 20^{\prime}$.
Two-inch iron pipe, about 1 foot above surface of ground in Illinois bottorm land; 600 meters above roundhouse at Dupo, Ill.; $1 \neq$ miles below the junction of Illinois Central (Belleville and East Carondelet) Railroad and St. Louis, Iron Mountain and Southern Railway (Illinois division); 11.3 feet east of center of northbound track; 234 meters below Seileman's house; 83 meters above telegraph pole; 5/15 and 190 meters below pole $5 / 10$.

$$
\text { ■ } \frac{51}{7}
$$

Mississippi River Commission, 1889. (Chart No. 2.)
Latitude $38^{\circ} 31^{\prime} 37^{\prime \prime} .52$; meters $+1,157,-693$.
Longitude $90^{\circ} 14^{\prime} 59^{\prime \prime} .35 ;$ meters $+1,437,-16$.
Elevation: Stone, 412.12; pipe, 417.20.
To $-51 / 1$, azimuth $292^{\circ} 45^{\prime}$, distance 708 meters.
To $051 / 3$, azimuth $113^{\circ} 20^{\prime}$.
Flat stone and iron pipe, on little knoll, distant about 60 meters west from Prairie du Pont Creek; in timber and about $1 \frac{1}{2}$ miles below East Carondelet, III. It is just south of the St. Louis, Iron Mountain and Southern Railway (Illinois division, river branch).

\triangle DU PONT.

United States engineer office, St. Louis, Mo., 1903. (Chart No. 2, station not plotted.)

Latitude $38^{\circ} 31^{\prime} 36^{\prime \prime} .07$; meters $+1,112,-738$.
Longitude $90^{\circ} 15^{\prime} 24^{\prime \prime} .74$; meters $+599,-854$.
To \triangle Meyer, azimuth $12^{\circ} 25^{\prime} 07^{\prime \prime}$, distance $1,154.6$ meters.
To \triangle I vory, azimuth $50^{\circ} 08^{\prime} 38^{\prime \prime}$ ' distance $1,386.9$ meters.
To \triangle Vulcan, azimuth $158^{\circ} 07^{\prime} 55^{\prime \prime}$, distance 867.5 meters.
To \triangle Opposite Vulcan, azimuth $199^{\circ} 31^{\prime} 17^{\prime \prime}$, distance 652.6 meters.
Iron pipe, on left bank, 10 inches above surface of ground; about 300 feet north of mouth of Prairie du Pont Creek; 20.5 feet northeast of 6 -inch blazed willow tree and 700 feet south of railroad incline.

$$
\square \frac{61}{1}
$$

Mississippi River Commission, 1889. (Chart No. 2.)
Latitude $38^{\circ} 31^{\prime} 28^{\prime \prime} .61$; meters $+882,-968$.
Longitude $90^{\circ} 14^{\prime} 32^{\prime \prime} .32$; meters $+783,-671$.
Elevation: Stone, 408.52 ; pipe, 413.61.
To ($51 / 2$, azimuth $112^{\circ} 45^{\prime}$, distance 708 meters.
Flat stone and iron pipe, about $1 \neq$ miles below East Carondelet, Ill.; under elm tree blazed and marked "U. S. B. M. No. 51;" 194 meters east of the Mobile and Ohio Railroad; 100 meters west of the St. Louis and Columbia Rock road; in cultivated field.

A NOTRE DAME.

United States engineer office, St. Louis, Mo., 1901. (Chart No. 2.)
Latitude $38^{\circ} 31^{\prime} 24^{\prime \prime} .96$; meters $+770,-1,080$.
Longitude $90^{\circ} 16^{\prime} 18^{\prime \prime} .41$; meters $+446,-1,008$.
Center of the tower and criss, on Notre Dame Convent, south of River des Peres.

A D 4.

United States engineer office, St. Louis, Mo.; redetermined, 1903. (Chart No. 2, station not plotted.)

Latitude $38^{\circ} 31^{\prime} 00^{\prime \prime} .07$; meters $+2,-1,848$.
Longitude $90^{\circ} 16^{\prime} 14^{\prime \prime} .90$; meters $+301,-1,093$.
To \triangle Meyer, azimuth $271^{\circ} 01^{\prime} 27^{\prime \prime}$, distance 967.2 meters.
Hole in rock, near edge of Missouri bluffs; immediately west of railroad; 650 feet below old stone gatepost of United States powder depot; 320 feet east of brick house; and 885 feet (measured along track) north of sign post "Barracks one mile."

A MEYER.

United States engineer office, St. Louis, Mo., 1903. (Chart No. 2, station not plotted.)
Latitude $38^{\circ} 30^{\prime} 59^{\prime \prime} .50$; meters $+1,835,-15$.
Longitude $90^{\circ} 15^{\prime} 34^{\prime \prime} .99$; meters $+848,-606$.
To Δ I vory, azimuth $100^{\circ} 18^{\prime} 21^{\prime \prime}$, distance 850.6 meters.
To \triangle Jefferson Barracks, azimuth $57^{\circ} 30^{\prime} 21^{\prime \prime}$, distance 1, 272.4 meters.
To \triangle D 4, azimuth $91^{\circ} 02^{\prime} 52^{\prime \prime}$, distance 967.2 meters.
To \triangle Du Pont, azimuth $192^{\circ} 25^{\prime} 00^{\prime \prime}$, distance $1,154.0$ meters.
To \triangle Tank, U. S. Magazine, azimuth $87^{\circ} 50^{\prime} 50^{\prime \prime}$, distance $1,523.3$ meters.
Iron pipe, in Illinois; 10 inches above surface of ground; 6 feet from top of bank; on land of Meyer Land Company; and on line with \triangle Flagstaff and center of railroad station at Jefferson Barracks, Mo.

\triangle TANK, U. B. MAGAZINE.

United States engineer office, St. Louis, Mo., 1903. (Chart No. 2, station not plotted.)
Latitude $38^{\circ} 30^{\prime} 57^{\prime \prime} .64$; meters $+1,777,-73$.
Longitude $90^{\circ} 16^{\prime} 37^{\prime \prime} .82$; meters $+916,-548$.
Center of conical roof of water tank on grounds of United States powder depot, Jefferson Barracks, Mo.

A Flag 7.

Mississippi River Commission, 1880-1881. (Chart No. 2.)
Latitude $38^{\circ} 30^{\prime} 38^{\prime \prime} .77$; meters $+1,195,-655$.
Longitude $90^{\circ} 15^{\prime} 16^{\prime \prime} .85$; meters $+408,-1,045$.
Elevation: Stone, 414.28.
To T Twin Hollow (MRC), azimuth $27^{\circ} 19^{\prime} 50^{\prime}$, distance $7,406.9$ meters.
To © Dryer, azimuth $281^{\circ} 34^{\prime} 54^{\prime \prime}$, distance 4,975 meters.
To $\square 5$ (Field), azimuth $62^{\circ} 55^{\prime}$, distance 2,119 meters.
Stone post, on left bank and opposite the United States powder depot; just west of north and south road; and south of east and west road; on land of John Eugea and 175 meters north of his house; John Eugea's orchard is east of and across the road from stone. A pipe was placed over the stone in 1901. (Elevation, 441.87, given on chart is incorrect.)

A Jefferson batiracks.

United States engineer office, St. Louis, Mo., 1903. (Chart No. 2, station not plotted.)
Latitude $38^{\circ} 30^{\prime} 37^{\prime \prime} .32$; meters $+1,151,-699$.
Longitude $90^{\circ} 16^{\prime} 19^{\prime \prime} .28$; meters $+467,-987$.
To \triangle G 4, azimuth $10^{\circ} 09^{\prime} 15^{\prime \prime}$, distance $1,733.6$ meters.
To \triangle Opposite G 4, azimuth $348^{\circ} 32^{\prime} 18^{\prime \prime}$, distance $1,713.7$ meters.
To \triangle I vory, azimuth $195^{\circ} 33^{\prime} 12^{\prime \prime}$, distance $9,575.5$ meters.
Hole in rock ledge, in Missouri; on east or river side of St. Louis, Iron Mountain and Southern Railway tracks and nearly opposite the officers' quarters at Jefferson
Barracks, Mo.

- FLAOSTAFE.

United States engineer office, St. Louis, Mo., 1903. (Chart No. 2, station not plotted.)
Latitude $38^{\circ} 30^{\circ} 11^{\prime \prime} .59$; meters $+357,-1,493$.
Longitude $90^{\circ} 16^{\prime} 37^{\prime \prime} .26$; meters $+903,-551$.
To \triangle Opposite G 4 , azimuth $318^{\circ} 46^{\prime} 41^{\prime \prime}$, distance $1,177.9$ meters. Flagstaff at Jefferson Barracks, Mo.
\oplus sw.
Board on Examination and Survey of Mississippi River, 1908. (Chart No. 2.)
Latitude $38^{\circ} 30^{\prime} 11^{\prime \prime} .11$; meters $+343,-1,50^{\prime}$.
Longitude $90^{\circ} 13^{\prime} 08^{\prime \prime} .42$; meters $+204,-1,250$.
Elevation:-418.75.
To \triangle 'Tank, U. S. Magazine, azimuth $106^{\circ} 01^{\prime}$.
To \triangle Notre Dame, azimuth $111^{\circ} 20^{\prime}$.
To cross on church spire, azimuth $128^{\circ} 41^{\prime}$.
To smokestack, Dupo (middle), azimuth $198^{\circ} 10^{\circ}$.
To finial of water tank, Bixby, azimuth' $20^{\circ} 41^{\prime}$.
Cross in end of railroad rail, I inch above surface of ground in Illinois bottom land; three-quarters of a mile above Bixby; 137 meters below telegraph pole $7 / 5 ; 127$ metera above telegraph pole $7 / 10$; and $5 \frac{1}{2}$ meters above switch stand.

Rail is set vertically in St. Louls, Iron Mountain and Southern Railway (Illinois Division) right of way, about 8 inches east of center of track,

DRYER.

United Statem Coast and Geodetic Survey, 1871, and Mississippi River Commission, 1880-81. (Chart No. 2.)

Latitude $38^{\circ} 30^{\circ} 06^{\prime \prime} .33$; meters $+195,-1,655$.
Longitude $90^{\circ} 11^{\prime} 55^{\prime \prime} .71$; meters $+1,350,-104$.
Elevation: 682.2.
To^A Insane Asylum, azimuth $148^{\circ} 16^{\prime} 50^{\prime \prime} .83$, distance $13,331.28$ meters.
To © Clarks Mound, azimuth $232^{\circ} 20^{\circ} 44^{\prime \prime} 56$, distance $14,116.73$ meters.
To ${ }^{\circ}$ Twin Hollow (MRC), azimuth $56^{\circ} 02^{\prime} 04^{\prime \prime} .10$, distance $9,980.80$ meters.
To \triangle Flag 7, azimuth $101^{\circ} 36^{\prime} 59^{\prime \prime}$, distance 4,975.0 meters.
An earthenware pyramid, marked "U.S.C.S." placed 3 feet below the surface of the ground, on Illinois bluffs; 2 miles below Falling Spring; $1 \frac{1}{2}$ miles southeast of Dupo, Ill.; and near the lower end of Bluff Lake. It is on the south side of a large ravine; about one-quarter mile from the perpendicular face of bluff; and almost on line with the wagon road that croeses the lower end of Bluff Lake and enters Dupo on the south. Marble surface marking stone has been destroyed.

A $G 4$

United Statea engineer office, St. Louiv, Mo., 1903. (Chart No. 2, atation not plotted.)
Latitude $38^{\circ} 29^{\prime} 43^{\prime \prime} .32$; meters $+1,336,-514$.
Longitude $90^{\circ} 16^{\prime} 39^{\prime \prime} .18$; meters $+940,-505$.
To \triangle Jefferson Barracks, azimuth $196^{\circ} 09^{\prime} 02^{\prime \prime}$, distance $1,733.6$ meters.
To \triangle Davis, azimuth $10^{\circ} 59^{\prime} 08^{\prime \prime}$, distance 939.3 meters.
To \triangle Opposite G 4, azimuth $270^{\circ} 59^{\prime} 51^{\prime \prime}$, distance 823 meters.
To \triangle Wilson, azimuth $330^{\circ} 44^{\prime} 14^{\prime \prime}$, distance $1,540.6$ meters.
Hole in rock ledge, on first bluff below Jefferson Barracks, Mo.

\triangle OPPOSITE G 1

United States engineer office, St. Louis, Mo., 1903. (Chart No. 2, station not plotted:)

Latitude $38^{\circ} 29^{\prime} 42^{\prime \prime} .86$; meters $+1,322,-528$.
Longitude $90^{\circ} 16^{\prime} 05^{\prime \prime} .23$; meters $+127,-1,327$.
To \triangle Davis, azimuth $47^{\circ} 49^{\prime} 36^{\prime \prime}$, distance $1,351.9$ meters.
To \triangle Flagstaff, azimuth $138^{\circ} 47^{\prime} 01^{\prime \prime}$, distance $1,177.9$ meters.
To Δ Jefferson Barracks, azimuth $168^{\circ} 32^{\prime} 27^{\prime \prime \prime}$, distance $1,713.7$ meters.
Iron pipe, in Illinois; opposite United States gauge at Jefierson Barracks, Mo.; and on point haliway between oid hurdles Nos. 31 and 32.

$$
\text { [} \frac{50}{4}
$$

Misaissippi River Commission, 1889. (Chart No.2.)
Latitude $38^{\circ} 29^{\prime} 33^{\prime \prime} .79$; meters $+1,042,-808$.
Longitude $90^{\circ} 16^{\prime} 41^{\prime \prime} .67$; meters $+1,010,-444$.
Elevation: 431.41.
To@50/3, distance 48 meters.
Cross cut on vertical face of natural rock, about 20 feet west of the railroad track and 1,300 meters below new railroad depot at Jefferson Barracks, Mo.

$$
\text { 回 } \frac{60}{3}
$$

Mississippi River Commission, 1889. (Chart No. 2.)
Latitude $38^{\circ} 29^{\prime} 33^{\prime \prime} .40$; meters $+1,030,-820$.
Longitude $90^{\circ} 16^{\prime} 39^{\prime \prime} .61$; meters +960 ; -494 .
Elevation: 392.27.
Ton50/4, distance 48 meters.
Cross cut horizontally on smooth rock ledge near the water's edge and 1,300 meters below the new railroad depot at Jefferson Barracks, Mo.

$$
\square \frac{80}{1}
$$

Mississippi River Commission, 1889. (Chart No. 2.)
Latitude $38^{\circ} 29^{\prime} 16^{\prime \prime} .86$; meters $+520,-1,330$.
Longitude $90^{\circ} 14^{\prime} 36^{\prime \prime} .56 ;$ meters $+886,-568$.
Elevation: Stone, 407.65; pipe, 412.76.
Flat stone and iron pipe, on east bank of Fish Lake, Ill.; at fence in front of barn on H. Wecker's place; 120 meters below where road along bank of Fish Lake crosses the Mobile and Ohio Railroad.

A DAVIS.

United States engineer office, St. Iouis, Mo., 1903. (Chart No. 2, station not plotted.)

Latitude $38^{\circ} 29^{\prime} 13^{\prime \prime} .42$; meters $+414,-1,436$.
Longitude $90^{\circ} 16^{\prime} 46^{\prime \prime} .57$; meters $+1,129,-325$.
To \triangle Bussen, azimuth $13^{\circ} 39^{\prime} 37^{\prime \prime}$, distance $1,468.1$ meters.
To \triangle Wilson, azimuth $294^{\circ} 21^{\prime} 15^{\prime \prime}$, distance $1,023.1$ meters.
Hole surrounded by triangle in rock ledge in Missouri; on land of Davis (old Forder place, above first bluff above Quarantine); $4 \frac{1}{2}$ feet back from edge of bluff; 70 feet below signpost "Barracks one mile;" and between two quarries.

\triangle CULVERT.

United States engineer office, St. Louis, Mo., 1903. (Chart No. 2.)
Latitude $38^{\circ} 29^{\prime} 03^{\prime \prime} .55$; meters $+109,-1,741$.
Longitude $90^{\circ} 16^{\prime} 50^{\prime} .38$; meters $+1,221,-233$.
To \triangle Carroll, azimuth $335^{\circ} 34^{\prime} 50^{\prime}$, distance $1,634.0$ meters.
To \triangle Wilson, azimuth $276^{\circ} 33^{\prime} 13^{\prime \prime}$, distance 1,031.2 meters.
Hole in 1.8 by 2 foot stone, 1 foot south of center line on east side of stone arch culvert of St. Louis, Iron Mountain and Southern Railway, above Quarantine, Mo. Top of stone is 6 inches below top of rail.

A WILSON.

United States engineer office, St. Louis, Mo., 1903. (Chart No. 2, station not plotted.)

Latitude $38^{\circ} 28^{\prime} 59^{\prime \prime} .73$; meters $+1,842,-8$.
Longitude $90^{\circ} 16^{\prime} 08^{\prime \prime} 11$; meters $+197,-1,258$.
To \triangle Carroll, azimuth $14^{\circ} 17^{\prime} 39^{\prime \prime}$, distance $1,413.8$ meters.
To \triangle Bussen, azimuth $51^{\circ} 51^{\prime} 09^{\prime \prime}$, distance $1,626.2$ meters.
To \triangle Davis, azimuth $114^{\circ} 21^{\prime} 39^{\prime \prime}$, distance 1,023 , 1 meters.
To \triangle Culvert, azimuth $96^{\circ} 33^{\prime} 40^{\prime \prime}$, diatance $1,031.2$ meters.
Iron pipe in Illinois opposite culvert of St. Louis, Iron Mountain and Southern Railway just above Quarantine, Mo.; and on the upper high bank of the upper one of two aloughs that go in just above Carroll Island.

$\oplus 6 \mathrm{~W}$

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 2.)
Latitude $38^{\circ} 28^{\prime} 40^{\prime \prime} .30$; meters $+1,243,-607$.
Longitude $90^{\circ} 13^{\prime} 50^{\prime \prime} .91$; meters $+1,234,-221$.
Elevation: 417.97.
To \triangle Tank, U. S. Mayazine, azimuth $136^{\circ} 24^{\prime}$.
To \triangle Notre Dame, azimuth $144^{\circ} 51^{\prime}$.
To finial of water tank, Bixby, azimuth $199^{\circ} 56^{\prime}$.
Two-inch iron pipe, about 1 foot above surface of ground in Illinois bottom land; 1 mile below Bixby, Ill.; 490 meters above junction of Mobile and Ohio Railroad and St. Louis, Iron Mountain and Southern Railway (Illinois Division); 18.1 feet east of center of track of latter road; 84 meters above whistle post; and 41 meters below semaphore.

\triangle BUSSEN.

United States engineer office, St. Louis, Mo., 1903. (Chart No. 2, station not plotted.)
Latitude $38^{\circ} 28^{\prime} 27^{\prime \prime} .15$; meters $+837,-1,013$.
Longitude $90^{\circ} 17^{\prime} 00^{\prime} .87$; meters $+21,-1,434$.
To \triangle Ripling, '03, azimuth $339^{\circ} 39^{\prime} 22^{\prime \prime}$, distance 1, 910.1 meters.
To \triangle Carroll, azimuth $291^{\circ} 27^{\prime} 16^{\prime \prime}$ distance 999.1 meters.
'To \triangle Wilson, azimuth $231^{\circ} 50^{\prime} 37^{\prime \prime}$, distance 1,626.2 meters.
Hole in rock, on first bluff below Quarantine, Mo.; 7 feet back from edge of bluff; 125 feet below center of large sinkhole. Estahlished and used as plane-table station by United States engineer office, St. Louis, Mo., 1899. Description, 1907: Fifteen telegraph poles below quarry and opposite first telegraph pole above concrete culvert; witness trees blazed with triangles are as follows: Dead post oak 18 inches in diameter, south 60° west, 25 feet; 10 -inch blackjack, north 40° wes', 9 feet; 6 -inch tree, north 15° west, 28 feet; station is in east end of fracture in rock.

A CARROLL.'

United States engineer office, St. Louis, Mo., 1903. (Chart No. 2, station not plotted.)

Latitude $38^{\circ} 28^{\prime} 15^{\prime \prime} .30$; meters $+472,-1,378$.
Longitude $90^{\circ} 16^{\prime} 22^{\prime \prime} .51$; meters $+546,-909$.
To \triangle Bussen, azimuth $111^{\circ} 27^{\prime} 40^{\prime \prime}$, distance 999.1 meters.
To \triangle Ripling, ' 03 , azimuth $10^{\circ} 34^{\prime} 10^{\prime \prime}$, distance $1,450.1$ meters.
To \triangle Mott ' 99 , azimuth $51^{\circ} 56^{\prime} 44^{\prime \prime}$, distance $1,661.0$ meters.
To \triangle Culvert, azimuth $155^{\circ} 35^{\prime} 07^{\prime \prime}$, distance $1,634.0$ meters.
Iron pipe, on high bank of Carroll Island, 75 feet from shore (left bank of river) and about one-half way between the middle hurdles. (Covered in 1908.)

A MOTT '99.

United States engineer office, St. Louis, Mo., 1899; redetermined, 1903. (Chart No. 3.)
Latitude $38^{\circ} 27^{\prime} 42^{\prime \prime} .09$; meters $+1,298,-552$.
Longitude $90^{\circ} 17^{\prime} 16^{\prime \prime} .46$; meters $+399,-1,056$.
To * Twin Hollow (MRC), azimuth $23^{\circ} 49^{\prime} 00^{\prime \prime}$, distance $1,238.3$ meters.
To \triangle Ripling ' 03 , azimuth $291^{\circ} 04^{\prime} 13^{\prime \prime}$, distance $1,116.7$ meters.
Hole surrounded by triangle in rock; 3 feet from edge of first bluff above Cliff Cave Hollow, Mo.; 60 feet below signpost "Bousan one mile"; and opposite a sign "For sale" painted on bluff.

A RIPLING ${ }^{0}$.

United States engineer office, St. Louis, Mo., 1903. (Chart No. 3.)
Latitude $38^{\circ} 27^{\prime} 29^{\prime} .16$; meters $+899,-951$.
Longitude $90^{\circ} 16^{\prime} 33^{\prime \prime} .23$; meters $+806, \ldots 649$.
To Θ Twin Hollow (MRC), azimuth $64^{\circ} 38^{\prime} 00^{\prime}$, distance $1,713.6$ meters.
Iron pipe, 4 inches above surface of ground; in edge of field back of lower end of small willows; 575 meters below slough at the foot of Carroll Island; 30 meters above fringe of large timber on left main bank and nearly opposite Cliff Cave, Mo. Station was set on the line Twin Hol.ow (MRC) Ripling (temporary) and 22.57 ieet back of latter.

* HICKMAN.

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 3, atation not plotted.)

Latitude $38^{\circ} 27^{\prime} 26^{\prime \prime} .74$; meters $+825,-1,025$.
Longitude $90^{\circ} 16^{\prime} 28^{\prime \prime} .32$; meters +687 , -868 .
To \triangle Ripling ' 03 , azimuth $108^{\circ} 44^{\prime}$, distance 231.4 meters.
To chimney, azimuth $46^{\circ} 04^{\prime} 30^{\prime \prime}$.
Crose cut in top of 6 -inch by 10 -inch irregular stone, 6 inches above surface of ground in field, in Illinois and opposite Cliff Cave, Mo.; 5 meters east of wagon road; 18 meters above walnut tree $2 \frac{1}{2}$ feet in diameter; 240 meters from river bank; 140 meters below forked sycamore tree 3 feet in diameter; 198 meters below two-story frame house on Ripling's land; and about three-eighths of a mile above brick house of John Delmar.

(c) TWIN HOLLOW.

Missisoippi River Commission, 1880-81, (Chart No. 3.)
Latitude $38^{\circ} 27^{\prime} 05^{\prime \prime} .35$; meters +165 , $-1,685$.
Longitude $90^{\circ} 17^{\prime} 37^{\prime \prime} .08$; meters +899 , - 556 .
To © Dryer, azimuth $235^{\circ} 58^{\prime} 31^{\prime \prime}$. 70 , distance $9,980.80$ meters.
To \triangle Warner, azimuth $24^{\circ} 38^{\prime} 48^{\prime \prime}$, distance $2,659.4$ meters.
To \triangle Pulltight'03, azimuth $309^{\circ} 53^{\prime} 52^{\prime \prime}$, distance $1,296.8$ meters.
To \triangle Mott ' 99 , azimuth $203^{\circ} 48^{\prime} 48^{\prime}$ ', distance $1,238.3$ meters.
Stone post, on point of bluff 500 feet above the upper Twin Hollow; 30 feet back from edge of bluff; and five-eighths of a mile below Cliff Cave, Mo.

A TWIN HOLLOWG. (Engineers.)

United States engineer office, St. Louis, Mo., 1887; redetermined 1903. (Chart No. 3, station not plotted.)

Latitude $38^{\circ} 27^{\prime} 05^{\prime \prime} .24$; meters $+162,-1,688$.
Longitude $90^{\circ} 17^{\prime} 36^{\prime \prime} .86$; meters. $+894,-561$.
To © Twin Hollow (MRC), azimuth $121^{\circ} 57^{\prime} 35^{\prime \prime}$, distance 6.44 meters.
Hole surrounded by triangle, in rock near edge of Missouri bluffs and 21.12 feet southeast of $(\underset{C}{ }$ Twin Hollow (MRC), which is a stone post on point of bluff 500 feet above the upper Twin Hollow and 30 feet back from edge of bluff.

$\oplus 7$ W.

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 3.)
Latitude $38^{\circ} 26^{\prime} 52^{\prime \prime} .77$; meters $+1,627,-223$.
Longitude $90^{\circ} 14^{\prime} 38^{\prime \prime} .41$; meters $+931,-524$.
Elevation: 426.16.
To \triangle Tank, U. S. Magazine, azimuth $159^{\circ} 01^{\prime}$.
To \triangle Notre Dame, azimuth $163^{\circ} 52^{\prime}$.
To Columbia church spire, azimuth $280^{\circ} 39^{\prime}$.
To Columbia church spire (No. 2), azimuth $279^{\circ} 47^{\prime}$.
Two-inch iron pipe, about 1 foot above surface of ground in Illinois bottom land; 3 miles below Bixby, Ill.; on levee; 74t meters east of center of track of St. Louis, Iron Mountain and Southern Railway (Illinois Division); at lower end of trestle No. 11 over drainage ditch; 114 meters above telegraph pole $11 / 10$; and 176 meters below pole 11/5.

A GEBHARDT.
United State engineer office, St. Louis, Mo., 1903. (Chart No. 3, atation not plotted.)

Latitude $38^{\circ} 26^{\prime} 43^{\prime \prime} .83$; meters $+1,351,-499$.
Longitude $90^{\circ} 17^{\prime} 49^{\prime \prime} .65$; meters $+1,204,-251$.
Cedar post, on edge of Missouri bluffs; 400 feet above sign post "Cliff Cave one mile;" 100 feet north of small orchard and 6 feet weat of large dead cedar tree.

A PULLTIGHT '03.

United States engineer office, St. Louis, Mo., 1903. (Chart No. 3.)
Latitude $38^{\circ} 26^{\prime} 38^{\prime \prime} .37$; meters $+1,183,-667$.
Longitude $90^{\circ} 16^{\prime} 56^{\prime \prime} .06$; meters $+1,360,-95$.
Elevation: 411.30.
To \otimes Twin Hollow (MRC), azimuth $129^{n} 54^{\prime} 18^{\prime \prime}$, distance $1,296.8$ metars.

Iron pipe, 10 inches above surface of ground in Illinois; on high bank; 500 feet above outlet of Fish Lake; 48 feet from top of high bank; and 43 feet west of a blazed cottonwood tree 2 feet in diameter. Station was set on line Twin Hollow. Pulltight (temporary) and 90.79 feet back of the latter station.

A BEYERS ${ }^{03}$.

United States engineer office, St. Louis, Mo., 1903. (Chart No. 3.)
Latitude $38^{\circ} 26^{\prime} 22^{\prime \prime} .90$; meters $+706,-1,144$.
Longitude $90^{\circ} 18^{\prime} 02^{\prime \prime} .27$; meters $+55,-1,400$
Hole surrounded by triangle in rock, near edge of bluff; 1,200 feet below mile post 14 (St. Louis, Iron Mountain and Southern Railway), and $1 \frac{y}{8}$ miles above Whitehouse, Mo.

\triangle GAAB.

United States engineer office, St. Louis, Mo., 1903. (Chart No. 3, station not plotted.)

Latitude $38^{\circ} 25^{\prime} 56^{\prime \prime}$. 13 ; meters $+1,731,-119$.
Longitude $90^{\circ} 18^{\prime} 17^{\prime \prime} .67$; meters $+429,-1,027$.
Hole surrounded by triangle in rock, near edge of perpendicular bluff in Missouri; 1,200 feet above milepost 15 of the St. Louis, Iron Mountain and Southern Railway; in front of small orchard at head of timber and in front of long, low house with chimney in center, occupied by Frank Gaab. To reach station, go up path below A Schierhoff and follow road along crest of bluff.

A WARNER.

United States engineer office, St. Louis, Mo., 1903. (Chart No. 3, station not plotted.)

Latitude $38^{\circ} 25^{\prime} 46^{\prime \prime} .95$; meters $+1,448,-402$.
Longitude $90^{\circ} 18^{\prime} 22^{\prime \prime} .80$; meters $+553,-903$.
To Θ Twin Hollow (MRC), azimuth $204^{\circ} 38^{\prime} 20^{\prime \prime}$, distance 2,659.4 meters.
Hole surrounded by triangle in rock, on projecting point of Missouri bluffs; on land of Warner; 30 feet below milepost $15 ; 15$ feet southeast of 14 -inch blazed poatoak, and 20 feet south of two 4-inch boxelders.

(1) W.

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 3).
Latitude $38^{\circ} 25^{\prime} 23^{\prime \prime} .83$; meters $+735,-1,115$.
Longitude $90^{\circ} 15^{\prime} 26^{\prime \prime} .83$; meters $+651,-805$.
Elevation: 413.00 .
To upper gable of house, azimuth $166^{\circ} 23^{\prime}$.
To gable of brick house, azimuth $267^{\circ} 00^{\prime}$.
To gable of house, azimuth $285^{\circ} 27^{\prime}$.
To gable of house, azimuth $284^{\circ} 58^{\prime}$.
Two-inch iron pipe, about 1 foot above surface of ground in Illinois bottom land; 4 miles below Bixby, Ill.; 78 meters west of St. Louis, Iron Mountain and Southern Railway (Illinois Division) track. Pipe is on waste bank; 8 meters below middle of ditch, below trestle No. 15; 124 meters to telegraph pole $13 / 15,335^{\circ} 10 ; 200$ meters to pole 13, $226^{\circ} 35^{\prime}$; pecan tree 3 feet in diameter, $280^{\circ} 15^{\prime}-38$ meters; pecan tree 30 inches in diameter, $298^{\circ} 50^{\circ}-57$ meters; pecan tree 24 inches in diameter, $6^{\circ} 30^{\circ}-56$ meters.

A BCHIERHOFF.

United States engineer office, St. Louis, Mo., 1903. (Chart No. 3, otation not plotted.)

Latitude $38^{\circ} 25^{\prime} 19^{\prime \prime} .71$; meters $+608,-1,242$.
Longitude $90^{\circ} 18^{\prime} 41^{\prime \prime} .50$; meters $+1,007,-449$.
To ©Salt Bluff, azimuth $356^{\circ} 00^{\circ} 04^{\prime \prime}$, distance $12,489.1$ meters.
Hole surrounded by triangle in emooth ledge rock, in quarry and on top of Missouri bluffs; about 2,400 feet above large rock culvert at Whitehouse railroad station; about 600 feet below small vineyard on bluff near house of Herman Schierhoff. Station established and located by plane-table survey of United States engineer office, St. Louis, Mo., in 1899, is best reached by path going up hillside just below projecting point on which atation is located.

A WHITEHOUSE '03.

United States engineer office, St. Louis, Mo., 1903. (Chart No. 3.)
Latitude $38^{\circ} 24^{\prime} 49^{\prime \prime} .01$; meters $+1,511,-339$.
Longitude $90^{\circ} 19^{\prime} 11^{\prime \prime} .12$; meters $+270,-1,186$.
Iron pipe, 6 inches above surface of ground on slope of hill below Whitehouse station, Mo. It is 35 feet west of center of main track of St. Louis, Iron Mountain and Southern Railway; 20 feet east of 8 -inch sassafras tree; 180 feet south of switchblock opposite face of quarry; 300 feet below lower end of Whitehouse siding; and 100 feet upstream from boiler house on hillside.

Mississippi River Commission, 1880-81. (Chart No. 3.)
Latitude $38^{\circ} 24^{\prime} 23^{\prime \prime} .78$; meters $+733,-1,117$.
Longitude $90^{\circ} 19^{\prime} 36^{\prime \prime} .79$; meters $+893,-563$.
Elevation: 564.
To © Salt Bluff, azimuth $348^{\circ} 20^{\prime} 36^{\prime \prime} .86$, distance $10,959.89$ meters.
To © Sulphur Springs, āzimuth $26^{\circ} 00^{\prime} 20^{\prime \prime} .93$, distánce $9,697.15$ meters.
To $948 / 2$, azimuth $312^{\circ} 06^{\prime}$, distance 1,500 meters.
Stone post, on Missouri bluff; 65 meters back from St. Louis, Iron Mountain and Southern Railway; and $1 \ddagger$ miles above the mouth of the Meramec River. Stone was reset in old position in 1903, and therefore given elevation is only approximate.

(a) $\frac{48}{3}$

Mississippi River Commission, 1889. (Chart No. 3.)
Latitude $38^{\circ} 24^{\prime} 22^{\prime \prime} .31$; meters $+688,-1,162$.
Longitude $90^{\circ} 19^{\prime} 34^{\prime \prime} .74$; meters $+843,-613$.
Elevation: 422.34 .
To $048 / 2$, azimuth $312^{\circ} 06^{\prime}$, distance 1,432 meters.
Stone post, in Missouri; just east of the St. Lonis, Iron Mountain and Southern Railway track; seven-eights of a mile below Whitehouse station. Stone stands 68 meters directly in front of \rightarrow Meramec.

\triangle FINES BLUFF.

United States engineer office, St. Louis, Mo., 1887; redetermined, 1900-1903. (Chart No. 3.)
Latitude $38^{\circ} 24^{\prime} 07^{\prime \prime} .72$; meters $+238,-1,612$.
Longitude $90^{\circ} 19^{\prime} 55^{\prime \prime} .82$; meters $+1,354,-101$.
To © Salt Bluff, azimuth $345^{\circ} 20^{\prime} 56^{\prime \prime}$, distance $10,582.5$ meters.
To © Sulphur Springs, azimuth $24^{\circ} 45^{\prime} 03^{\prime \prime}$, distance $9,051.7$ meters.
To \triangle Simpson 23, azimuth $40^{\circ} 17,13^{\prime \prime}$ distance $3,945.5$ meters.
To \triangle Chesley ' 03 , azimuth $34^{\circ} 09^{\prime} 01^{\prime \prime}$, distance $2,451.6$ meters.
Hole surrounded by triangle in rock, on lower end of Fines Bluff, Mo., and immediately above a quarry.

$\oplus \boldsymbol{W}$.

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 3.)
Latitude $38^{\circ} 23^{\prime} 49^{\prime \prime} .39$; meters $+1,523,-327$.
Longitude $90^{\circ} 16^{\prime} 07^{\prime \prime} .57$; meters $+184,-1,272$.
Elevation: 414.19.
To cupola of barn, azimuth $334^{\circ} 14^{\prime}$.
To gable of red barn, azimuth $150^{\circ} 50^{\circ}$.
To gable of barn, Missouri bluffs, azimuth $147^{\circ} 16^{\prime}$:
To gable of barn, Illinois, azimuth $147^{\circ} 04^{\prime}$.
Two-inch iron pipe, about 1 foot above surface of ground in Illinois bottom land; 192 meters above Warnock depot door; 16 meters below telegraph pole 15; 102 meters above upper end of trestle No. 19; 3.5 meters east of center of track of St. Louis, Iron Mountain and Southern Railway (Illinois Division).

A PLAG 9.

Mississippi River Commission, 1880-81. (Chart No. 3, station not plotted.)
Latitude $38^{\circ} 23^{\prime} 45^{\prime \prime} .27$; meters $+1,396,-454$.
Longitude $90^{\circ} 19^{\prime} 05^{\prime \prime} .72$; meters $+139,-1,317$.
To © Twin Hollow (MRO), azimuth $199^{\circ} 12^{\prime} 31^{\prime \prime}$, distance 6,533.2 meters.
To © Meramec, azimuth $147^{\circ} 35^{\prime} 25^{\prime \prime}$, distance $1,406.9$ meters.
To (A)Salt Bluff, azimuth $351^{\circ} 18^{\prime} 35^{\prime \prime}$, distance 9,657 meters,
Stone post, a little below foot of Widow Beards Island; 14 miles above Smith Landing, Ill.; 40 feet from willows and in cultivated field; 7 feet 10 inches southeast of $2 \frac{1}{2}$ foot sycamore tree.

$$
\square \frac{48}{1}
$$

Mississippi River Commission, 1889. (Chart No. 3.)
Latitude $38^{\circ} 23^{\prime} 30^{\prime} .81$; meters +950 , -900 .
Longitude $90^{\circ} 18^{\prime} 21^{\prime \prime} .75$; meters $+528,-928$.
Elevation: 409.76.
Stone post, in Illinois; 690 meters south of prominent angle in levee and about 3 miles northeast of Merrimac Point; on land of Louis Schroeder, at the southwest corner of his barn, which stands a short distance west of his house. An orchard is just east of the house.

() P. B. M. 21.

Mississippi River Commission, 1880. (Chart No. 3.)
Latitude $38^{\circ} 23^{\prime} 17^{\prime \prime} .14$; meters $+528,-1,322$.
Longitude $90^{\circ} 21^{\prime} 27^{\prime \prime} .32$; meters $+663,-793$.
Elevation: 413.54.
Top of coppor bolt, leaded vertically in top stone directly over keystone of arch on inorth side of culvert at "Island View;" 600 meters below Wickes Station, Mo., on St. Louis, Iron Mountain and Southern Railway. The letters "U. S. P. B. M." are cut near the bolt. (Latitude and longitude given above were scaled from chart.)

\triangle CHEALEY ${ }^{\prime} 03$.

United States engineer office, St. Louis, Mo., 1903. (Chart No. 3.)
Latitude $38^{\circ} 23^{\prime} 02^{\prime \prime} .34$; meters $+72,-1,778$.
Longitude $90^{\circ} 20^{\prime} 53^{\prime \prime} .14$; meters $+1,290,-166$.
To \triangle Fines Bluff, azimuth $214^{\circ} 08^{\prime} 25^{\prime \prime}$, distance $2,451.6$ meters.
Iron pipe, 1 foot above surface of ground in cleared field, near lone building on Chesley Island. Station is 65 feet from top of high bank, and a short distance above lower end of revetment.

\triangle BIMPBON 23.

United States engineer office, St. Louis, Mo., 1878; redetermined, 1900. (Chart No. 3.)

Latitude $38^{\circ} 22^{\prime} 30^{\prime \prime} .10$; meters $+928,-922$.
Longitude $90^{\circ} 21^{\prime} 40^{\prime} .92$; meters $+993,-464$.
To © Salt Bluff, azimuth $324^{\circ} 06^{\prime} 24^{\prime \prime}$, distance 8,921 meters.
Hole drilled in top of "Chimney Rock," a prominent formation in Missouri bluffe about three-quarters of a mile above Kimmswick railroad station.

$\oplus 10 \mathrm{~W}$.

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 3.)
Latitude $38^{\circ} 22^{\prime} 18^{\prime \prime} .61$; meters $+574,-1,276$.
Longitude $90^{\circ} 16^{\prime} 50^{\prime} .43$; meters $+1,224,-233$.
Elevation: 413.75.
To cupola of barn, azimuth $238^{\circ} 00^{\circ}$.
To gable of house, Missouri bluffs, azimuth $137^{\circ} 40^{\circ}$.
To gable of barn ventilator, azimuth $154^{\circ} 32^{\prime}$.
To top gable of elevator, azimuth $18^{\circ} 34^{\prime}$.
Two-inch iron pipe, about 1 foot above surface of ground, in Illinois bottom land; three-quarters of a mile above Fountain, Ill.; 2.5 meters west of center of track of St. Iouis, Iron Mountain and Southern Railway (Illinois Division); 63 meters above upper end of trestle No. 23; 128 meters above sign "Warnock one mile;" 13 meters west of telegraph pole $16 / 25$; and 4 meters below private road crossing.

$$
\text { [0] } \frac{47}{8}
$$

Missiseippi River Commission, 1889. (Chart No. 3.)
Latitude $38^{\circ} 22^{\prime} 10^{\prime} .70$; meters +330 , $-1,520$.
Longitude $90^{\circ} 21^{\prime} 41^{\prime \prime} .89$; meters $+1,017,-440$.
Elevation: 438.12.
To $947 / 2$, azimuth $281^{\circ} 22^{\prime}$, distance 2,016 meters.
Stone post, on knoll, about three-eighths of a mile north of Kimmswick, Mo., railroad station; 50 feet west of St. Louis, Iron Mountain and Southern Railway track; inside of fence of Montesano Springs Park and 170 meters southeast of dancing pavilion. (Found in 1908-disturbed.)

$$
\text { [血 } \frac{47}{2}
$$

Mississippi River Commission, 1889. (Chart No. 3.)
Latitude $38^{\circ} 21^{\prime} 57^{\prime \prime} .73$; meters $+1,780,-70$.
Longitude $90^{\circ} 20^{\prime} 20^{\prime} .51$; meters $+498,-959$.
Elevation: 407.99.
To $\square 47 / 1$, azimuth $284^{\circ} 22^{\prime}$, distance 1,047 meters.
To ín $47 / 3$, azimuth $101^{\circ} 22^{\prime}$, distance 2,013 meters.
Stono post, on back slope of levee, in Illinois; opposite Kimmswick, Mo.; 215 meters back from left bank on land of the State Savings Bank; 650 meters south of where road leading west from village of Merrimac crosses levee; and 400 meters nouth of angle in levee.

$$
\text { (17 } \frac{47}{1}
$$

Mississippi River Commission, 1889. (Chart No. 3.)
Latitude $38^{\circ} 21^{\prime} 49^{\prime \prime} .23$; meters $+1,518,-332$.
Longitude $90^{\circ} 19^{\prime} 38^{\prime \prime} .71$; meters +940 , -517 .
Elevation: 402.09.
To (47/2, azimuth $104^{\circ} 22^{\prime}$, distance 1,047 meters.
Flat stone, beneath the surface of ground in center of road in Illinois; and 5 feet north of a notch cut in a 3 -foot elm trge (the first large tree west of Esquire Wylie's house, on south side of road); 1,050 meters back of levee on land of State Savinge Bank, opposite Kimmswick, Mo. It is $122^{\circ} 45^{\prime}-360$ meters from right anglo in road, which angle is 200 meters west of above house.

Pipe has been moved and reset 3 meters southwest of stone.

© P. B. M. 22

Mississippi River Commission, 1880. (Chart No. 3.)
Latitude $38^{\circ} 21^{\prime} 48^{\prime \prime} .81$; meters $+1,505,-345$.
Longitude $90^{\circ} 21^{\prime} 43^{\prime \prime} .86$; meters $+1,065,-392$.
Elevation: 415.65.
Top of copper bolt, leaded vertically in south abutment to south approach to railroad bridge on St. Louis, Iron Mountain and Southern Railway at Kimmawick, Mo., and on east side of track.

a FLAG 10

Missisoippi River Commiseion, 1880-81. (Chart No. 3.)
Latitude $38^{\circ} 21^{\prime} 43^{\prime \prime} .31$; meters $+1,335,-515$.
Longitude $90^{\circ} 21^{\prime} 35^{\prime \prime} .21$; meters +855 , -602 .
Elevation: 411.86 (1907, 412.17).
To © Meramec, azimuth' $210^{\circ} 08^{\prime} 46^{\prime \prime}$, distance $5,722.2$ meters.
To ©Sulphur Springs, azimuth $20^{\circ} 03^{\prime} 29^{\prime \prime}$, distance 4,011.1 meters.
Stone post on Waters Point, Mo.; 250 meters below the mouth of Rock Creek, at Kimmswick, Mo. Benchmark is higheat point on stone.

\triangle SIMPSON 26

United States engineer office, St. Louis, Mo., 1878; redetarmined, 1900. (Chart No. 3.)

Latitude $38^{\circ} 21^{\prime} 38^{\prime \prime} .56$; meters $+1,189,-661$.
Longitude $90^{\circ} 21^{\prime} 35^{\prime} .17$; meters +854 , -603 .
Elevation: 414.34 (by duplicate levela from P. B. M. 22, 1907, 414.65).
Toosalt Bluff, azimuth $317^{\circ} 55^{\prime} 23^{\prime \prime}$, distance $7,596.1$ meters.

To*Sulphur Springs, azimuth $20^{\circ} 48^{\prime} 36^{\prime \prime}$, distance $3,874.7$ meters.
Cross on top of vertical piece of railroad rail, in Widow Waters's yard on Waters Point, Mo.; 30 feet from top of high bank and near gate leading to adjoining place which has summer house in front.

$\oplus 11 \mathrm{~W}$.

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 3.)
Latitude $38^{\circ} 20^{\prime} 42^{\prime \prime} .53$; meters $+1,311,-539$.
Longitude $90^{\circ} 17^{\prime} 35^{\prime \prime} .11$; meters $+853,-604$.
Elevation: 412.15.
To gable of elevator, azimuth $200^{\circ} 28^{\prime}$.
To gable of house, azimuth $204^{\circ} 24^{\prime}$.
To gable of house, azimuth $145^{\circ} 17^{\prime}$.
To gable of barn, azimuth $114^{\circ} 28^{\prime}$.
' Wwo-inch iron pipe, about 1 foot above the surface of ground in Illinois bottom land; 14 miles below fountain, III.; 3.2 meters east of center of track of St. Louis, Iron Mountain and Southern Railway (Illinois Division); 128 meters below sign "Fountain one mile;" 80 meters above private road crossing; opposite and 6 meters distant from telegraph pole 18/25.

A SIMPSON 27.

United States engineer office, St. Louis, Mo., 1878; redetermined, 1900. (Chart No. 3.)

Latitude $38^{\circ} 20^{\prime} 39^{\prime \prime} .64$; meters $+1,222,-628$.
Longitude $90^{\circ} 22^{\prime} 13^{\prime \prime} .36$; meters $+324,-1,133$.
Elevation: 424.10.
To © Salt Bluff, azimuth $302^{\circ} 24^{\prime} 33^{\prime \prime}$, distance $7,128.7$ meters.
Hole drilled in rock ledge, on prominent point at Flemings, ho.; between railroad track and river; in front of place formerly occupied by Cartain Fleming and sometimes known as "Sunnyaide;" just below the 22 -mile post and about 1 f miles below Kimmswick, Mo. Blazed tree 24 feet back from and below, and another 14 feet back from and above the station.

$$
\square \frac{40}{3}
$$

Mississippi River Commission, 1889. (Chart No. 3.)
Latitude $38^{\circ} 19^{\prime} 43^{\prime \prime} .94$; meters $+1,355,-495$.
Longitude $90^{\circ} 22^{\prime} 31^{\prime \prime} .37$; meters +762 , -695 .
Elevation: Stone, 434.55; pipe, 439.65.
To $46 / 2$, azimuth $281^{\circ} 50$, distance 1,785 meters.
Flat stone and iron pipe, just west of railroad track; one-half mile below Sulphur Springs, Mo., and 85 meters north of © Sulphur Springs. (Pipe found bent over in 1908.) -

- SULPHUR SPRINGS.

Mississippi River Commission, 1880-81. (Chart No. 3.)
Latitude $38^{\circ} 19^{\prime} 41^{\prime \prime} .09$; meters $+1,267,-583$
Longitude $90^{\circ} 22^{\prime} 31^{\prime \prime} .84$; meters +773 , -684 .
Elevation: 534.75.
To © Salt Bluff, azimuth $287^{\circ} 18^{\prime} 23^{\prime \prime} .78$, distance $6,773.94$ meters.
To Herculanenm, azimuth $357^{\circ} 33^{\prime} 33^{\prime \prime} .93$, distance $8,164.13$ meters.
To * Meramec, azimuth $205^{\circ} 58^{\prime} 32^{\prime \prime} .28$, distance $9,697.15$ meters.
To \triangle Simpson 25 , azimuth $200^{\circ} 48^{\prime} 01^{\prime \prime}$, distance $3,874.7$ meters.
To \triangle Simpson 27 , azimuth $193^{\circ} 57^{\prime} 26^{\prime \prime}$, distance 1,860.2 meters.
To \triangle Bushberg ' 88 , azimuth $00^{\circ} 11^{\prime} 53^{\prime}$ ', distance $2,276.4$ meters.
Stone post, on top of bluff; about one-half mile below the town of Sulphur Springs, Mo.; and 40 meters west of railroad track. Bench mark is upstream corner, farthest from the river. Stone has been cracked on river side, and through the center.

\triangle SECOND CUT.

United States engineer office, St. Louis, Mo., 1900. (Chart No. 3.)
Latitude $38^{\circ} 19^{\prime} 37^{\prime \prime} .82$; meters $+1,166,-684$.
Longitude $90^{\circ} 22^{\prime} 29^{\prime \prime} .55$; meters +718 , -740 .
Elevation: 429.60.
To (A) Salt Bluff, azimuth $286^{\circ} 37^{\prime} 25^{\prime \prime}$, distance $6,691.3$ meters.
To \triangle Bushberg ' 88 , azimuth $1^{\circ} 40$ 22 ', distance $2,176.4$ meters.

Hole surrounded by triangle in rock, on second knob outside of railroad; 1, 100 meters below Sulphur Springs, Mo. Station is 7 feet from outer edge of rock; 15 feet from upstream edge; and 5 feet diagonally upstream from large fissure separating bed rock from large detached bowlder on downstream corner.

$$
\square \frac{46}{2}
$$

Mississippi River Commission, 1889. (Chart No. 3.)
Latitude $38^{\circ} 19^{\prime} 32^{\prime \prime} .01$; meters $+987,-863$.
Longitude $90^{\circ} 21^{\prime} 19^{\prime \prime} .55$; meters $+475,-982$.
Elevation: Stone, 406.27; pipe, 411.37.
To © Sulphur Springs, azimuth $279^{\circ} 05^{\prime}$, distance 1,781 meters.
To@ $46 / 1$, azimuth $281^{\circ} 40^{\prime}$, distance 668 meters.
To@46/3, azimuth $101^{\circ} 50^{\prime}$, distance 1,785 meters.
Flat stone and iron pipe, 900 meters from top of left bank of river; on west side of road on levee; 1,200 meters above the head of Foster Island; 400 meters above house occupied by Alex. Douglas, on land owned by Morrison Brothers. Elm tree, blazed triangle facing store, stands 6 meters away.

$$
\text { 『 } \frac{46}{1}
$$

Mississippi River Commission, 1889. (Chari No. 3.)
Latitude $38^{\circ} 19^{\prime} 27^{\prime \prime} .57$; meters $+850,-1,000$.
Longitude $90^{\circ} 20^{\prime} 52^{\prime \prime} .48$; meters $+1,275,-183$.
Elevation: Stone, 406.01; pipe, 411.12.
To@46/2, azimuth $101^{\circ} 40^{\prime}$, distance 668 meters.
Flat stone and iron pipe, on left bank; about 1 mile from river and one-half mile below Sulphur Springs, Mo.; on top of the second or back levee on land owned by Morrison Brothers; and 360 meters north of a road. .

\triangle FLAG 12.

Mississippi River Commission, 1880-81. (Chart No. 3.)
Latitude $38^{\circ} 18^{\prime} 57^{\prime \prime} .18$; meters $+1,763,-87$.
Longitude $90^{\circ} 21^{\prime} 12^{\prime \prime} .02$; meters $+292,-1,166$.
Elevation: 405.87.
To © Sulphur Springs, azimuth $124^{\circ} 55^{\prime}$, distance 2,368 meters.
Stone post, on land of Henry Smith; 110 meters from top of left bank; opposite the head of Foster Island; and due east from a point 500 meters south of Glen Park, Mo., railroad station. (Latitudes and longitudes given are approximate values.)

(2) SAITT BLUFF.

Mississippi River Commission, 1880-81. (Chart No. 3.)
Latitude $38^{\circ} 18^{\prime} 35^{\prime \prime} .65$; meters $+1,099,-751$.
Longitude $90^{\circ} 18^{\prime} 05^{\prime \prime} .65$; meters $+137,-1,321$.
To © Herculaneum, azimuth $44^{\circ} 56^{\prime} 35^{\prime \prime} .33^{\prime}$, distance $8,669.98$ meters.
To (4) Meramec, azimuth $165^{\circ} 21^{\prime} 33^{\prime \prime} .42$, distance $10,959.89$ meters.
To © Sulphur Springs, azimuth $107^{\circ} 21^{\prime} 08^{\prime \prime} .83^{\prime}$, distance $6,773.94$ meters.
To \triangle Schierhoff, azimuth $176^{\circ} 00^{\prime} 27^{\prime \prime}$, distance $12,489.1$ meters.
To \triangle Fines Bluff, azimuth $165^{\circ} 22^{\prime} 0 x^{\prime \prime}$, distance $10,582.5$ meters.
To \triangle Simpsion 25 , azimuth $137^{\circ} 57^{\prime} 33^{\prime \prime}$, distance $7,596.1$ meters.
To Δ Simpson 27, azimuth $122^{\circ} 27^{\prime} 07^{\prime \prime}$, distance 7,128.7 meters.
To \triangle Bushberg ' 88 , azimuth $87^{\circ} 44^{\prime} 07^{\prime \prime}$, distance $6,480.4$ meters.
To \triangle Second Cut, azimuth $106^{\circ} 40^{\prime} 09^{\prime \prime}$, distance 6,691.3 meters.
To \triangle Simpson 23, azimuth $144^{\circ} 08^{\prime} 38^{\prime \prime}$, distance $8,921.0$ meters.
To \triangle Simpson 35 , azimuth $53^{\circ} 16^{\prime} 02^{\prime \prime}$, distance $7,911.2$ meters.
Iron pipe, in cleared spot on highest point of a very prominent bluff known locally as Salt Bluff, Salt Lake Bluff, and Eagle Cliff. The bluff is situated back of Murdock
Lake, near Valmeyer, and northeast of Harrisonville, Ill.

$\theta 12 \mathrm{~W}$.

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 3.)
Latitude $38^{\circ} 18^{\prime} 32^{\prime \prime} .80$; meters $+1,011,-839$.
Longitude $90^{\circ} 18^{\prime} 35^{\prime \prime} .94$; meters $+873,-585$.
Elevation: 409.30 .
To © Salt Bluff, azimuth $263^{\circ} 11^{\prime}$.
To cupola of schoolhouse, azimuth $21^{\circ} 39^{\prime}$.
To finial of water tank, azimuth $15^{\circ} 49^{\prime}$.
To top gable of elevator, azimuth $11^{\circ} 57$.
Two-inch iron pipe, about 1 foot above surface of ground in Illinois bottom land three-fourths of a mile above Valmeyer, Ill.; 3 meters southwest of St. Louis, Iron Mountain and Southern Railway (lllinois Division); 22 meters above telegraph pole $21 / 15$; and 2 meters below road crossing.

\triangle BUSIIBERG, ' 88.

United States engineer office, St. Louis, Mo., 1888; redetermined, 1902. (Chart No. 4.)
Latitude $38^{\circ} 18^{\prime} 27^{\prime \prime} .26 ;$ meters $+841,-1,009$.
Longitude $90^{\circ} 22^{\prime} 32^{\prime \prime} .16$; metërs $+781,-676$.
To © Herculaneum, azimuth $356^{\circ} 32^{\prime} 25^{\prime \prime}$, distance $5,891.1$ meters.
To (1) Sulphur Springs, azimuth $180^{\circ} 11^{\prime} 52^{\prime \prime}$, distance $2,276.4$ meters.

To \triangle Second Cut, azimuth $181^{\circ} 40^{\prime} 21^{\prime \prime \prime}$, distance $2,176.4$ meters.
Hole drilled in 12 by 12 inch stone, in ledge of rock at top of bluff; 1,600 feet north of Bushberg station, Mo.; and 520 feet north from milepost 25 on railroad. Blazed trees; 18 -inch white oak, west 45 feet; 10 -inch black oak, northwest 35 feet.

© ILLINOIS, '88

United States engineer office, St. Louis, Mo., 1888; redetermined, 1902. (Chart No. 4.)

La.titude $38^{\circ} 17^{\prime} 29^{\prime \prime} .70$; meters $+916,-934$.
Longitude $90^{\circ} 22^{\prime} 38^{\prime \prime} .11$; meters $+926,-532$.
Elevation: 408.36.
Hole drilled in large rock, about 600 meters north of Riverside station, Mo., on St. Louis, Iron Mountain and Southern Railway; 60 feet east of track; about 500 feet south from milepost 26 ; on third main shelf below the track; and about onethird of the distance between fourth and fifth telegraph poles standing north of high switchstand.

$$
\square \frac{45}{1}
$$

Mississipni River Commission, 1889. (Chart No. 4.)
Latitude $38^{\circ} 17^{\prime} 04^{\prime \prime} .65$; meters $+143,-1,707$.
Longitude $90^{\circ} 20^{\prime} 58^{\prime \prime} .59$; meters $+1,424,-34$.
Elevation: Stone, 400; pipe, 405.08.
To@45/2, azimuth $85^{\circ} 00^{\prime}$, distance 754 meters.
Flat stone and iron pipe, on west side of road; one-half mile north of where main roads cross, in town of Harrisonville, Ill.; 125 meters north of crossroads; on pasture land of Patrick Murray and 85 meters north of his house. Walnut tree 2 feet in diameter, blaze facing pipe, $230^{\circ} 00^{\prime}-4$ meters distant; another walnut tree 4 feet in diameter, blaze facing pipe, $310^{\circ} 00^{\prime}-10$ meters distant.

[$\frac{45}{2}$

Mississippi River Commission, 1889. (Chart No. 4.)
Latitude $38^{\circ} 17^{\prime} 02^{\prime \prime} .49$; meters $+77,-1,773$.
Longitude $90^{\circ} 21^{\prime} 29^{\prime \prime} .50$; meters $+717,-741$.
Elevation: Stone, 399.19; pipe, 404.28 .
To@45/l, azimuth $265^{\circ} 00^{\circ}$, distance 754 meters.
Tog45/3, azimuth $84^{\circ} 55^{\prime}$, distance 1,750 meters.
Flat stone and iron pipe, on land of Tom James; at foot and on east side of levee; 35 meters south of east-and-west road to Harrisonville Landing, Ill.; 250 meters above the foot of Foster Island and 330 meters east from east bank of chute.

(4) 13 W.

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 4.)
Latitude $38^{\circ} 17^{\prime} 00^{\prime \prime} .13$; meters $+4,-1,846$.
Longitude $90^{\circ} 18^{\prime} 37^{\prime \prime} .69$; meters $+916,-542$.
Elevation: 406.90 .
To top gable of elevator, azimuth $166^{\circ} 44^{\prime}$.
To middle elevator chimney, azimuth $165^{\circ} 24^{\prime}$.
To gable of house, azimuth $28^{\circ} 16^{\prime}$.
To gable of barn, azimuth $27^{\circ} 19$.
Two-inch iron pipe, about 1 foot above surface of ground in Illinois bottom land; three-quarters of a mile below Valmeyer, Ill.; 3.83 meters west of center of track of St. Louis, Iron Mountain and Southern Railway (Illinois division); 384 meters below telegraph pole 23/5; 2 meters above private road crossing, and 103 meters above upper end of trestle No. 32.

$$
\square \frac{45}{3}
$$

Mississippi River Commission, 1889. (Chart No. 4.)
Latitude $38^{\circ} 16^{\prime} 57^{\prime \prime} .40$; meters $+1,770,-80$.
Longitude $90^{\circ} 22^{\prime} 41^{\prime \prime} .14$; meters $+1,000,-459$.
Elevation: 408.39.
To@ $45 / 2$, azimuth $264^{\circ} 55^{\prime}$, distance 1,750 meters.
Stone post, under sycamore tree $2 \frac{1}{3}$ feet in diameter on north bank of first creek below Riverside, Mo., and just north of north end of Lucas Bluff; 500 meters southeast of Riverside railroad station; 50 meters from right bank of river and about 20 meters east of the Mississippi River and Bonne Terre Railway.

A SIMPSON 35 .

United States engineer office, St. Louis, Mo., 1874; redetermined, 1902. (Chart No. 4.)

Latitude $38^{\circ} 16^{\prime} 02^{\prime \prime} .11$; meters $+65,-1,785$.
Longitude $90^{\circ} 22^{\prime} 26^{\prime \prime} .46$; meters $+643,-816$.
To ©Salt Bluff, azimuth $233^{\circ} 13^{\prime} 20^{\prime \prime}$, distance $7,911.2$ meters.
To © Herculaneum, azimuth $351^{\circ} 13^{\prime} 47^{\prime \prime}$, distance $1,421.5$ meters.
To Δ Simpson 45 , azimuth $341^{\circ} 34^{\prime} 11^{\prime \prime}$, distance 8, 162.4 meters.
Hole drilled in bare rock, over "Natural Bridge," on first point of rock and on bluff above Herculaneum, Mo.

A TANK.
United States engineer office, St. Louis, Mo., 1902. (Chart No. 4.)
Latitude $38^{\circ} 15^{\prime} 38^{\prime \prime} .96$; meters $+1,201,-649$.
Longitude $90^{\circ} 22^{\prime} 29^{\prime \prime} .75$; meters $+723,-736$.
Finial on railroad water tank at Herculaneum, Mo.

A chimney.

United States engineer office, St. Louis, Mo., 1902. (Chart No. 4.)
Latitude $38^{\circ} 15^{\prime} 37^{\prime \prime} .25$; meters $+1,149,-701$.
Longitude $90^{\circ} 22^{\prime} 36^{\prime \prime} .80$; meters $+895,-564$.
Large square brick chimney of St. Joe Lead Company at Herculaneum, Mo.

$$
\oplus 14 \mathrm{~W} .
$$

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 4.)
Latitude $38^{\circ} 15^{\prime} 23^{\prime \prime} .80$; meters $+734,-1,116$.
Longitude $90^{\circ} 18^{\prime} 00^{\prime \prime} .20$; meters $+5,-1,454$.
Elevation: 403.76.
To gable of house, azimuth $310^{\circ} 57^{\prime}$.
To gable of house, azimuth $341^{\circ} 54^{\prime}$.
To gable of house, azimuth $342^{\circ} 16^{\prime}$.
To gable of bain, azimuth $312^{\circ} 53^{\prime}$.
Two-inch iron pipe, about 1 foot above surface of ground in Illinois bottom land; $2 \frac{3}{4}$ miles below Valmeyer, Ill.; 3 meters east of center of track of St. Louis, Iron Mountain and Southern Railway (Illinois division); 102 meters above telegraph pole 25/10; 172 meters below telegraph pole 25/5; 26 meters below road crossing and 1.5 meters above sign "Railroad crosoing."

(1) HERCULANEUM.

Mississippi River Commission, 1880-81. (Chart No. 4.)
Latitude $38^{\circ} 15^{\prime} 16^{\prime \prime} .55$; meters $+510,-1,340$.
Longitude $90^{\circ} 22^{\prime} 17^{\prime \prime} .54$; meters $+426,-1,033$.
Elevation: 494.60.
To (大) Salt Bluff, azimuth $224^{\circ} 53^{\prime} 59^{\prime \prime} .27$, distance $8,669.98$ meters.
To © Caesars, azimuth $330^{\circ} 51^{\prime} 00^{\prime \prime} .44$, distance $11,887.10$ meters.
To © Sulphur Springs, azimuth $177^{\circ} 33^{\prime} 42^{\prime \prime} .79$, distance $8,164.13$ meters.
To \triangle Simpson 35, azimuth $171^{\circ} 13^{\prime} 53^{\prime \prime}$, distance $1,421.5$ meters.
To \triangle Riverside, azimuth $171^{\circ} 54^{\prime} 52^{\prime \prime}$, distance 2,704 meters.
To \triangle Bushberg 88 , azimuth $176^{\circ} 32^{\prime} 34^{\prime \prime}$, distance $5,891.1$ meters.
To \triangle Chimney, azimuth $143^{\circ} 43^{\prime} 35^{\prime \prime}$, distance 791.5 meters.
To \triangle Tank, azimuth $156^{\circ} 45^{\prime} 30^{\prime \prime}$, distance 752 meters.
Iron pipe, 10 feet back from most prominent point at upper end of Joachim Bluff, Mo.; 720 meters below the mouth of Joachim Creek; and about $2 \frac{1}{2}$ miles above Crystal City, Mo.

a jonchim.

United States engineer office, St. Louis, Mo., 1902. (Chart No. 4.)
Latitude $38^{\circ} 15^{\prime} 11^{\prime \prime} .00$; meters $+339,-1,511$.
Longitude $90^{\circ} 22^{\prime} 13^{\prime \prime} .89$; meters $+338,-1,121$.
Elevation: 416.26 .
To \triangle Simpson 35 , azimuth $169^{\circ} 01^{\prime} 59^{\prime \prime}$, distance $1,605.2$ meters.
To \triangle Riverside, azimuth $170^{\circ} 38^{\prime} 57^{\prime \prime}$, distance $2,886.4$ meters.
Iron pipe, 9 inches above surface of first prominent rock point below Joachim Bluff, Mo., and about 1,000 meters below the town of Herculaneum, Mo.; 20 feet outside of east rail of track of the Mississippi River and Bonne Terre Railway; 36.5 feet from a cross cut on rock about 10 feet south of normal from pipe to rail and 15 feet west of rail; also 64.9 feet from a similar cross upstream, the actual distance between the two crosees being 62 feet.

\triangle QUARRY.

United States engineer office, St. Louis, Mo., 1902. (Chart No. 4.)
Latitude $38^{\circ} 14^{\prime} 52^{\prime \prime} .24$; meters $+1,611,-239$.
Longitude $90^{\circ} 22^{\prime} 14^{\prime \prime} 83 ;$ meters $+361,-1,098$.
To ©Salt Bluff, azimuth $221^{\circ} 18^{\prime} 05^{\prime \prime}$, distance $9,175.5$ meters.
To \triangle Crystal, azimuth $343^{\circ} 32^{\prime} 19^{\prime \prime}$, distance 4, 179.8 meters.
Hole surrounded by triangle in rock, on Missouri bluffs; at north end of old quarry; 3,000 feet above the old house above Platin Rock and about 1,900 feet below Δ Joachim.

$$
\text { 回 } \frac{4}{1}
$$

Mississippi River Commission, 1889. (Chart No. 4.)
Latitude $38^{\circ} 14^{\prime} 31^{\prime \prime} .78$; meters $+980,-870$.
Longitude $90^{\circ} 20^{\prime} 51^{\prime \prime} .39$; meters $+1,250,-209$.
Elevation: Stone, 404.12; pipe, 409.22.
Flat stone and iron pipe, on top of levee; in Illinois and 680 meters back of head of Calico Island; 160 meters south of Henry Althoff's house; azimuth to schoolhouse $293^{\circ} 35^{\prime}$, distance 640 meters; Ivy and Harrisonville road on top of same levee.

$\square \frac{4}{8}$

Mississippi River Commission, 1889; redetermined by United States engineer office, St. Louis, Mo., 1902. (Chart No. 4.)

Latitude $38^{\circ} 14^{\prime} 17^{\prime \prime} .68$; meters $+545,-1,305$.
Longitude $90^{\circ} 22^{\prime} 15^{\prime \prime} .15$; meters $+368,-1,091$.
Elevation: 421.71.
To © Salt Bluff, azimuth $217^{\circ} 18^{\prime} 09^{\prime \prime}$, distance $10,002.4$ meters.
Stone post, 6 inches above surface of ground; in young timber on debris slope under bluff above Hugs Landing, Mo.; 462 feet below an old stone house; 101 feet above whistle post; 38 feet back of railroad fence; 15 feet back of small ditch inside of fence; and nearly opposite upstream end of old loading platform on river bank.

(1) 15 W.

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 4.)
Latitude $38^{\circ} 1.4^{\prime} 16^{\prime \prime} .21$; meters $+500,-1,350$.
Longitude $90^{\circ} 17^{\prime} 25^{\prime \prime} .79$; meters $+627,-832$.
Elevation: 404.36.
To gable of depot, Maeys, azimuth $332^{\circ} 28^{\prime}$.
To ton gable of elevator, azimuth $331^{\circ} 48^{\prime}$.
To gable of house, azimuth $353^{\circ} 55^{\prime}$.
To gable of house, azimuth $334^{\circ} 16^{\prime}$.
Two-inch iron pipe, about 1 foot above surface of ground in Illinois bottom land; $1 \ddagger$ miles above Maeys railroad station; 3.5 meters east of center of track of St. Louis, Iron Mountain and Southern Railway (Illinois division); 31 meters above upper end of trestle No. $35 ; 22.4$ meters below telegraph pole $26 / 15 ; 6.5$ meters west of telegraph pole $26 / 20$; and 65 meterd below whistle post.

■ No. 3 (Field).
Mississippi River Commission, 1889. (Chart No. 4.)
Latitude $38^{\circ} 14^{\prime} 13^{\prime \prime} .78$; meters $+425,-1,425$.
Longitude $90^{\circ} 22^{\prime} 09^{\prime \prime} .66$; meters $+235,-1,224$.
Elevation: 384.23 .
To@44/3, azimuth $132^{\circ} 09^{\prime}$, distance 184 meters.
Top of large ring bolt, in northern end of Platin Rock, about $1 \ddagger$ miles ahove Crystal City, Mo.; on point farthest out in river; 205 meters from northeast corner of large icchouse, 400 meters above Hugs Landing, Mo.

A PLATIN ${ }^{\prime} 02$

United States engineer office, St. Louis, Mo., 1902. (Chart No. 4.)
Latitude $38^{\circ} 14^{\prime} 09^{\prime \prime} .95$; meters $+307,-1,543$.
Longitude $90^{\circ} 22^{\prime} 11^{\prime \prime} .91$; meters $+290,-1,169$.
Elevation: 405.02.
To Salt Bluif, azimuth $216^{\circ} 08^{\prime} 03^{\prime \prime}$, distance $10,146.2$ meters.
Iron pipe, back of Platin Rock, about $1 \frac{1}{2}$ miles above Crystal City, Mo.; on high right bank; 2 feet from edge; 6.8 feet outside of outside rail of railroad incline of the Pittsburg Plate Glass Company. To point of frog of incline, northwest, 74 feet; to point of frog of spur, southwest, 33.9 feet; to top of switch stand spur, 51 feet; to top of sycamore stump, east, 9 feet. Pipe reset from the above references, December 9, 1904.

$\oplus 16 \mathrm{~W}$.

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 4.)
Latitude $38^{\circ} 12^{\prime} 49^{\prime \prime} .61$; meters $+1,530,-320$.
Longitude $90^{\circ} 16^{\prime} 27^{\prime \prime} .75$; meters $+675,-785$.
Elevation: 413.09.
To top gable of elevator, azimuth $152^{\circ} 42^{\prime}$.
To gable of Maeys depot, azimuth $151^{\circ} 32^{\prime}$.
To gable of house, azimuth $23^{\circ} 40^{\circ}$.
To gable of house, azimuth $159^{\circ} 53^{\prime}$.
Two-inch iron pipe, about 1 foot above surface of ground in Illinois bottom land; 1,000 meters below Maeys railroad station; 3.5 meters east of center of track of St . Louis, Iron Mountain and Southern Railway (Illinois Division); 36 meters below telegraph pole 28/15; 3 meters above private road crossing. (Not correctly plotted on chart.)

A CRYBTAL.

United States engineer office, St. Louis, Mo., 1888; redetermined, 1902. (Chart No. 4.)
Latitude $38^{\circ} 12^{\prime} 42^{\prime \prime} .23$; meters $+1,302,-548$.
Longitude $90^{\circ} 21^{\prime} 26^{\prime \prime} .15$; meters $+636,-824$.
To © Salt Bluff, azimuth $204^{\circ} 04^{\prime} 58^{\prime \prime}$, distance $11,937.7$ meters.
To \triangle Platin ' 02 , azimuth $157^{\circ} 38^{\prime} 10^{\prime \prime}$ ' distance $2,924.9$ meters.
To \triangle Quarry, azimuth $163^{\circ} 32^{\prime} 49^{\prime \prime}$, distance $4,179.8$ meters.
To \triangle Bushberg ' 88 , azimuth $171^{\circ} 25^{\prime} 34^{\prime \prime}$, distance $10,758.8$ metars.
To■44/3, aximuth $157^{\circ} 57^{\prime} 26^{\prime \prime}$, distance $3,175.2$ meters.

Iron pipe, 30 feet from eastern edge of "Buck Knob," first bluff in Missouri below Platin Creek. Station is on edge of field or peach orchard; 65 feet from southeast corner of same; 58 feet northwest from spike in blazed cedar tree; 24.2 feet northeast, and 28.3 feet southeast from peach trees. Pipe was set in 1903, replacing cedar post set in 1888.

$$
\square \frac{43}{1}
$$

Mississippi River Commission, 1889. (Chart No. 4.)
Latitude $38^{\circ} 12^{\prime} 38^{\prime \prime} .40$; meters $+1,184,-666$.
Longitude $90^{\circ} 19^{\prime} 03^{\prime \prime} .90$; meters $+95,-1,365^{\circ}$.
Elevation: Stone, 393.12 (approximate); pipe, 398.22.
To 『 $043 / 2$, azimuth $51^{\circ} 20^{\prime}$, distance 958 meters.
Flat stone and iron pipe, back of James Landing, III.; 40 meters north of east-andwest road; in pecan grove, on land oi Edward Schoening; blazed pecan tree 18 inches in diameter, 1 meter north of pipe. Cap of pipe rusted on, could not be removed; difference between stone and cap assumed to be 5.1 feet-the average of the differences for other similar stations.

$$
\text { [0 } \frac{43}{2}
$$

Mississippi River Commiseion, 1889. (Chart No. 4.)
Latitude $38^{\circ} 12^{\prime} 18^{\prime \prime} .84 ;$ meters $+582,-1,268$.
Longitude $90^{\circ} 19^{\prime} 34^{\prime \prime} .64$; meters $+343,-617$.
Elevation: 404.91.
To $043 / 1$, azimuth $231^{\circ} 20^{\prime}$, distance 958 metere
Stone post, on top of levee; directly back of James Landing, Ill.; 230 meters from left bank; on land of Edward Schoening; 300 meters above schoolhouse, just inside of levee.• (Not found in 1908.)

\triangle SIMPSON 4.

United States engineer office, St. Louis, Mo., 1874; redetermined, 1902. (Chart No. 4.)
Latitude $38^{\circ} 11^{\prime} 50^{\prime \prime} .95$; meters $+1,571,-279$.
Longitude $90^{\circ} 20^{\prime} 40^{\prime \prime} .41$; meters $+983,-477$.
To Salt Bluff, azimuth $196^{\circ} 46^{\prime} 04^{\prime \prime}$, distance $13,033.2$ meters.
To \triangle Crystal, azimuth $144^{\circ} 51^{\prime} 53^{\prime \prime}$, distance $1,933.5$ meters.
To Δ Simpson 35 , azimuth $161^{\circ} 35^{\prime} 16^{\prime \prime}$, distance $8,162.4$ meters.
To Δ Bushberg ' 88 , azimuth $167^{\circ} 28^{\prime} 22^{\prime \prime}$, distance 12,518 meters.
Hole in rock, with " 45 " cut on river side, on downstream slope and about onequarter way down from the top of first bluif' above Kennetts Castle, at Selma, Mo. Station is best reached from the Castle by following path near edge of the bluffs.

$$
\square \frac{43}{3}
$$

Mississippi River Commission, 1889. (Chart No. 4.)
Latitude $38^{\circ} 11^{\prime} 42^{\prime \prime} .32$; meters $+1,305,-545$.
Longitude $90^{\circ} 20^{\prime} 32^{\prime \prime} .17$; meters $+783,-677$.
Elevation: 410.49 .
Stone post, 300 feet above northeast corner of Kennetts Castle at Selma, Mo.; 19 feet west of triangle formed with boat spikes in tie and in center of railroad track; $10 \frac{1}{2}$ feet north of the fifth telegraph pole above Selma station; two blazed cottonwood trees east of track, 69 feet northeast and 81 feet southeast.

回No. 2 (Fiold).
Mississippi River Commission, 1889. (Chart No. 4.)
Latitude $38^{\circ} 11^{\prime} 34^{\prime \prime} .70$; meters $+1,070,-780$.
Longitude $90^{\circ} 20^{\circ} 27^{\prime \prime} .31$; meters $+665,-795$.
Elevation: 418.97.
Cross cut on the upstream end of the bottom step of the stone steps ascending the bluff from Selma, Mo., railroad station to Kennetts Castle. Azimuth to northeast corner of Kennetts Castle, $143^{\circ} 15^{\prime}$, distance 135 meters.

© 17 W.

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 4.)
Latitude $38^{\circ} 11^{\prime} 34^{\prime \prime} 34$; meters $+1,059,-791$.
Longitude $90^{\circ} 15^{\prime} 11^{\prime \prime} .34$; meters $+276,-1,184$.
Elevation: 400.43 .
To middle of chimney on house, azimuth $52^{\circ} 56^{\prime}$.
To gable of house, azimuth $81^{\circ} 09^{\prime}$.
To gable of barn, azimuth $239^{\circ} 20^{\circ}$.
To south dormer window, azimuth $240^{\circ} 46^{\prime}$.
Two-inch iron pipe, about 1 foot above surface of ground in Illinois bottom land; $2 \frac{1}{2}$ miles below Maeys railroad station; 5 meters north of road crossing; 48 meters east of stone-arch wagon bridge; 3 meters east of center of track of St. Louis, Iron Mountain and Southern Railway (Illinois Division); and 105 meters below telegraph pole 30/10. (Not correctly plotted on chart.)

A SIMPSON 47.

United States engineer office, St. Louis, Mo., 1874; redetermined, 1902. (Chart No. 4.)
Latitude $38^{\circ} 11^{\prime} 07^{\prime \prime} .37$; meters $+227,-1,623$.
Longitude $90^{\circ} 20^{\prime} 01^{\prime \prime} .09 ;$ meters $+27,-1,434$.
To © Salt Bluff, azimuth $191^{\circ} 28^{\prime} 12^{\prime \prime}$, distance $14,103.9$ meters.
To \triangle Bushberg ' 88 , azimuth $164^{\circ} 51^{\prime} 27^{\prime \prime}$, distance $14,051.8$ meters.
To \triangle Ellis ' 02 , azimuth $274^{\circ} 47^{\prime} 01^{\prime \prime}$, distance $2,915.8$ meters.
Hole drilled in rock, with figures " 47 " cut adjacent; on high point jutting out at lower end of first bluff below Kennetts Castle; 1,050 meters below railroad station at Selma, Mo.; and 400 meters above railroad trestle at Cliffdale Hollow.

A ELLIS ${ }^{\prime} 02$.

United States engineer office, St. Louis, Mo., 1902. (Chart No. 4.)
Latitude $38^{\circ} 10^{\prime} 59^{\prime \prime} .47$; meters $+1,834,-16$.
Longitude $90^{\circ} 18^{\prime} 01^{\prime \prime} .70$; meters $+41,-1,419$.
Elevation: 403.19.
To © Caesars, azimuth $10^{\circ} 06^{\prime} 38^{\prime \prime}$, distance $2,495.9$ meters.
To Δ Simpson 47 , azimuth $94^{\circ} 48^{\prime} 14^{\prime \prime}$, distance $2,915.8$ meters.
To Δ Simpson 51, azimuth $30^{\circ} 54^{\prime} 15^{\prime \prime}$, distance $1,999.2$ meters.
Iron pipe, on levee in Illinois; 10 feet west of levee crest; opposite head of Michaels (Osborne) towhead; 335 feet south of tree in front yard of John Ellis' house; and 315 feet north of hackberry tree on weat slope of levee.

- $\frac{42}{1}$

Mississippi River Commission, 1889. (Chart No. 4.)
Latitude $38^{\circ} 10^{\prime} 51^{\prime \prime} .63$; meters $+1,592,-258$.
Longitude $90^{\circ} 16^{\prime} 54^{\prime \prime} .72$; meters $+1,332,-128$.
Elevation: Stone, 387.78; pipe, 392.86 .
To $042 / 2$, azimuth $43^{\circ} 15^{\prime}$, distance 755 meters.
Flat stone and iron pipe, directly back from Lowrys Landing, Ill.; at edge of timber; main ditch 150 meters back of pipe; a blazed oak tree, 1 foot in diameter, 1 meter north of pipe. (Not found in 1908.)

$$
\square \frac{42}{2}
$$

Mississippi River Commiseion, 1889. (Chart No. 4.)
Latitude $38^{\circ} 10^{\prime} 33^{\prime \prime} .72$; meters $+1,040,-810$.
Longitude $90^{\circ} 17^{\prime} 15^{\prime \prime} .82$; meters $+385,-1,075$.
Elevation: 402.67.
To $142 / 1$, azimuth $223^{\circ} 15^{\prime}$, distance 755 meters.
Stone post, on east side of top of levee in Illinois; directly back und 300 meters from Lowrys Landing on left bank; 60 meters above Frank Wine's house; 260 meters
below Peter Lowry's house; 580 meters above a achoolhouse, within levee and on Thompson's place; opposite two oak trees 6 inches and 12 inches in diameter. (Not found in 1908.)
\odot T. B. M. 150.
Mississippi River Commission, 1880. (Chart No. 4.)
Latitude $38^{\circ} 10^{\prime} 14^{\prime \prime} .98$; meters $+462,-1,388$.
Longitude $90^{\circ} 18^{\prime} 55^{\prime \prime} .74$; meters $+1,357,-104$.
Elevation: '385.71.
Point on rock, 30 meters below small run; 160 meters below railroad trestle at Michaels Hollow, Mo.; and 250 meters above old hurdle.

\triangle SIMPSON 51.

United States engineer office, St. Louis, Mo., 1874; redetermined, 1902. (Chart No. 4.)

Latitude $38^{\circ} 10^{\prime} 03^{\prime \prime} .84$; meters $+118,-1,732$.
Longitude $90^{\circ} 18^{\prime} 43^{\prime \prime} .88$; meters $+1,068,-393$.
To \triangle Ellis ' 02 , azimuth $210^{\circ} 53^{\prime} 49^{\prime \prime}$, distance $1,999.2$ meters.
Hole drilled in rock, on second bluff south of Michaels Landing, Mo.; 1 foot back from the figures " 51 " also cut in the rock, and in the direction indicated by the figure "1." To reach the station go over first bluff below Michaels Landing, up the second and two-thirds way down, station being on the first ledge above the succeeding depression.

$$
\text { ■ } \frac{42}{3}
$$

Mississippi River Commission, 1889. (Chart No. 4.)
Latitude $38^{\circ} 09^{\prime} 42^{\prime \prime} .06$; meters $+1,297,-553$.
Longitude $90^{\circ} 18^{\circ} 16^{\prime \prime} .34$; meters $+398,-1,063$.
Elevation: 415.97.
Stone post, on right bank; on side of hill; in front of, under(). Caesars, and 105 meters from it; almost in line with old hurdle; about 60 meters above Robbers Rock; just outside of railroad and 45 meters from shore.

© CAESARS.

Miseissippi River Commission, $1880-81$. (Chart No. 4.)
Latitude $38^{\circ} 09^{\prime} 39^{\prime \prime} .78$; meters $+1,227$, -623 .
Longitude $90^{\circ} 18^{\prime} 19^{\prime \prime} .70$; meters $+480,-981$.
Elevation: 729.80.
To © Kidd, azimuth $260^{\circ} 25^{\prime} 22^{\prime \prime} .94$, distance $7,937.86$ meters.
To © Brickey, azimuth $315^{\circ} 34^{\prime} 49^{\prime \prime} .31$, distance $11,518.81$ meters.
To \otimes Herculaneum, azimuth $150^{\circ} 53^{\prime} 27^{\prime \prime} .55$, distance $11,887.10$ meters.
To \triangle Simpson 51 , azimuth $141^{\circ} 33^{\prime} 39^{\prime \prime}$, distance 946.9 meters.
To \triangle Simpson 53 , azimuth $321^{\circ} 00^{\prime} 54^{\prime \prime}$, distance 473.6 meters.
To \triangle Simpson 59, azimuth $319^{\circ} 07^{\prime} 12^{\prime \prime}$, distance $8,025.0$ meters.
To \triangle Ellis ' 02 , azimuth $190^{\circ} 06^{\prime} 27^{\prime \prime}$, distance $2,495.9$ meters.
Stone post, with corners chipped off; 10 feet west from face of cliff on third prominent bluff below Michaels Hollow, Mo.; and opposite foot of third stone dike below Michaels Hollow.

A SIMPSON 53.

United States engineer office, St. Louis, Mo., 1881; redetermined 1902. (Chart No. 4.)
Latitude $38^{\circ} 09^{\prime} 27^{\prime \prime} .84$; meters $+858,-992$.
Longitude $90^{\circ} 18^{\prime} 07^{\prime \prime} 46 ;$ meters $+182,-1,279$.
To Θ Caesars, azimuth $141^{\circ} 01^{\prime} 01^{\prime \prime}$, distance 473.6 meters.
Hole in rock, on Missouri bluffs;' at extreme top of first bluff downstream from bluff on which is © Caesars.
(3) KIDD.

Mississippi River Commission, 1880-81. (Chart No. 5.)
Latitude $38^{\circ} 10^{\prime} 22^{\prime \prime} .49$; meters $+693,-1,157$.
Longitude $90^{\circ} 12^{\prime} 58^{\prime \prime} 13$; meters $+1,415,-46$.
To © Brickey, azimuth $358^{\circ} 38^{\prime} 45^{\prime \prime}, 38$, distance $9,550.04$ meters.
To © Caesars, azimuth $80^{\circ} 28^{\prime} 41^{\prime \prime} .65$, distance $7,937.86$ meters.
To © County' Line, azimuth $309^{\circ} 36^{\prime} 06^{\prime \prime} .32$, distance $10,648.12$ meters.-
To \triangle Ellis '02, azimuth $98^{\circ} 47^{\prime} 56^{\prime \prime}$, distance $7,476.1$ meters.
To \triangle Simpeon 59 , azimuth $19^{\circ} 16^{\prime} 15^{\prime \prime}$, distance $7,824.1$ meters.
To \triangle Simpaon 57 , azimuth $44^{\circ} 06^{\prime} 41^{\prime \prime}$, distance $6,845.7$ meters.
To Δ Simpson 55 , azimuth $69^{\circ} 06^{\prime} 31^{\prime \prime}$, distance $7,205,7$ meters.

Center of stone pest, on bluff in Illinois; 4 meters from edge of cliff; seven-eighths of a mile northwest of Jacob Fultz's house; one-quarter mile south of Jacob Frich's house and on his land. To reach station from foot of bluffs follow left-hand road, leading up the bluffs from Jacob Fultz's house, for about three-quarters of a mile, then take road to Jacob Frich's house and go south up bluff to edge of cliff.
$\oplus 18 \mathrm{~W}$.
Board on Examination and Survey of Mississippi River, 1908. (Chart No. 5.)
Latitude $38^{\circ} 10^{\prime} 20^{\prime \prime} .69$; meters $+638,-1,212$.
Longitude $90^{\circ} 13^{\prime} 30^{\prime \prime} .10$; meters $+733,-728$.
Elevation: 399.54.
To \otimes Kidd, azimuth $266^{\circ} 01^{\prime}$.
To Brownsburg church spire, azimuth $308^{\circ} 03^{\prime}$.
To top gable of elevator, azimuth $312^{\circ} 13^{\prime}$.
To gable of red barn, azimuth $96^{\circ} 40^{\prime}$.
To gable of house, azimuth $95^{\circ} 27^{\prime}$.
To gable of schoolhouse, azimuth $353^{\circ} 14^{\prime}$.
Two-inch iron pipe, about 1 foot above surface of ground in Illinois bottom land, 3 meters east of center of track of St. Louis, Iron Mountain and Southern Railway (Illinois Division); and about 1 mile above Brownsburg station (Fults, post-office); 55 meters above telegraph pole $32 / 15 ; 200$ meters below pole 32/10; 120 meters below lower end of trestle No. 42A; and 191 meters below sign "Brownsburg one mile."
$\oplus 19 \mathrm{~W}$.
Board on Examination and Survey of Mississippi River, 1908. (Chart No. 5.)
Latitude $38^{\circ} 09^{\prime} 23^{\prime \prime} .24$; meters $+717,-1,133$.
Longitude $90^{\circ} 12^{\prime} 11^{\prime \prime} .61$; meters $+283,-1,178$.
Elevation: 401.04 .
To top gable of elevator, azimuth $133^{\circ} 45^{\prime}$.
To gable of barn, azimuth $121^{\circ} 07^{\prime}$.
To gable of house, azimuth $135^{\circ} 59^{\prime}$.
To gable of house, azimuth $18^{\circ} 22^{\prime}$.
Two-inch iron pipe, about 1 foot above surface of ground, in Illinois bottom land; 4 meters west of center of track of St. Louis, Iron Mountain and Southern Railway (Illinois Division); one-half mile below Brownsburg station (Fults, poet-office); 81 meters above telegraph pole $34 / 5$ and 121 meters below switchstand.

$$
\square \frac{41}{1}
$$

Mississippi River Commission, 1889.. (Chart No. 5.)
Latitude $38^{\circ} 09^{\prime} 04^{\prime \prime} .22$; meters $+130,-1,720$.
Longitude $90^{\circ} 14^{\prime} 47^{\prime \prime} .23$; meters $+1,150,-311$.
Elevation: Stone, 395.30; pipe, 400.40.
To $*$ Kidd, azimuth $227^{\circ} 32^{\prime}$.
To $941 / 2$, azimuth $48^{\circ} 45^{\prime}$, distance 800 meters.
Flat stone and iron pipe, one-half mile above Ivy Landing (village), Monroe County IIl.; 250 meters east of flood gate in levee crossing large drainage ditch; in cultivated field owned by Wm. Winkleman and under a leaning 24 -inch pecan tree. To house beyond smaller (east and west) ditch, azimuth $109^{\circ} 30^{\circ}$, distance 270 meters; to another house, azimuth $7^{\circ} 00^{\circ}$, distance 380 meters. (Found in 1908; pipe bent over.)

\triangle SIMPSON 55

United States engineer office, St. Louis, Mo., 1881; redetermined, 1902. (Chart No. 5.)

Latitude $38^{\circ} 08^{\prime} 59^{\prime \prime} .06$; meters $+1,821,-29$.
Longitude $90^{\circ} 17^{\prime} 34^{\prime \prime} .61$; meters $+843,-618$.
To \Leftrightarrow Kidd, azimuth $249^{\circ} 03^{\prime} 40^{\prime \prime}$, distance $7,205.7$ meters.
Iron pin, leaded into rock, in Missouri bluffs; 20 feet northwest of old location of shot tower, on bluff north of Rush Tower, Mo.; and 275 meters above (northwest of) railroad trestle over Muddy Creek.

- $\frac{41}{2}$

Mississippi River Commission, 1889. (Chart No. 5.)
Latitude $38^{\circ} 08^{\prime} 47^{\prime \prime} .19$; meters $+1,455,-395$.
Longitude $90^{\circ} 15^{\prime} 11^{\prime \prime} .79$; meters $+287,-1,174$.
Elevation: 394.04.
To $941 / 1$, azimuth $228^{\circ} 45^{\prime}$, distance 800 meters.
Stone post, about three-fourths oi a mile west from Ivy Landing (village), Ill.; 180 meters back from leit bank; in cultivated field and about 240 meters north of shore end of hurdle. Stone is covered a foot or inore with sand.

```
\oplus 20 W.
```

Board on Fxamination and Survey of Mississippi River, 1908. (Chart No. 5.)
Latitude $38^{\circ} 08^{\prime} 23^{\prime \prime} .53 ;$ meters $+726,-1,124$.
Longitude $90^{\circ} 10^{\prime} 49^{\prime \prime} .13$; meters $+1,197,-264$.
Elevation: 398.38.
To top gable of Renault elevator, azimuth $313^{\circ} 04^{\prime}$.
To gable of barn, azimuth $319^{\circ} 26^{\prime}$.
To gable of house, azimuth $345^{\circ} 53^{\prime}$.
To gable of house, azimuth $279^{\circ} 17^{\prime}$.
To top gable of Brownsburg elevator, azimuth $132^{\circ} 51^{\prime}$.
Two-inch iron pipe, about 1 foot above surface of ground in Illinois bottom land; 3 meters east of center oi track of St. Louis, Iron Mountain and Southern Railway (Illinois Division); $1 \frac{1}{4}$ miles above Renault, Ill.; 130 meters above telegraph pole $3 \overline{5} / 25$; 292 meters above sigu " Renault one mile;" 150 meters above upper end of trestle No. 49, and 3 meters above road croesing.

$$
\square \frac{41}{3}
$$

Mississippi River Commission, 1889. (Chart No. 5.)
Latitude $38^{\circ} 07^{\prime} 55^{\prime \prime} .62$; meters $+1,715,-135$.
Longitude $90^{\circ} 16^{\prime} 23^{\prime \prime} .93$; meters +583, -878 .
Elevation: 448.25.
Cross cut on natural rock wall, $1 \frac{1}{3}$ miles below Rush Tower, Mo.; on point of Missouri bluils, just back oi Danby Landing; 800 meters from the river bank; 80 meters below Big Hollow; and 19 meters southeast of point of rocks that projects toward the river. Inverted figures " $3 / 41$ " are cut on the wall near the bench mark.

\triangle SIMPSON 57.

United States engineer office, St. Louis, Mo., 1881; redetermined, 1902. (Chart No. 5.)

Latitude $38^{\circ} 07^{\prime} 43^{\prime \prime} .03$; meters $+1,327 ;-523$.
Longitude $90^{\circ} 16^{\prime} 13^{\prime \prime} .77$; meters $+335,-1,126$.
To © 6 Kidd, azimuth $224^{\circ} 04^{\prime} 40^{\prime}$, distance $6,845.7$ meters.
Hole drilled in rock on extreme top of fourth bluff below Rush Tower, Mo.

(1) $\frac{40}{4}$

Mississippi River Commission, 1889. (Chart No. 5.)
Latitude $38^{\circ} 07^{\prime} 03^{\prime \prime} .50$; meters $+108,-1,742$.
Longitude $90^{\circ} 15^{\prime} 31^{\prime \prime} .11$; meters $+758,-704$.
Elevation: 400.37.
Stone post, near foot of Missouri bluffs; near west side of road; on land of Leo Lynch and 115 meters north of his house; $1 \frac{1}{2}$ miles below Danby Landing, Mo.; and 150 meters above point where Islr De Bois Creek leaves the bluffs.

\triangle FISH BEND.

United States engineer office, St. Louis, Mo., 1903. (Chart No. 5.)
Latitude $38^{\circ} 06^{\prime} 54^{\prime \prime} .40$; meters $+1,677,-173$.
Longitude $90^{\circ} 13^{\prime} 29^{\prime \prime} .36$; meters $+715,-747$.
To \triangle Simpson 59, azimuth $61^{\circ} 57^{\prime} 46^{\prime \prime}$, distance 2,063.6 meters.
Iron pipe, set on the line Cassiedy (temporary)-Simpson 59 , and 53.77 meters back from \triangle Cassiedy; 548 meters above Fish Bend Slough; on Salt Lake Towhead, left bank of river; and three-eighths mile above Penitentiary Point, Ill.; 29 meters from 8 -inch cottonwood stump. Three blazed 8-inch cottonwood trees are: 8 feet south; 28 feet northeast; and 38 feet northwest.

© county line.

Mississippi River Commission, 1880-81. (Chart No. 5.)
Latitude $38^{\circ} 06^{\prime} 42^{\prime \prime} .21$; meters $+1,301,-549$.
Longitude $90^{\circ} 07^{\prime} 21^{\prime \prime} 36$; meters - $-520,-942$.
To \otimes Magnolia, azimuth $14^{\circ} 32^{\prime} 16^{\prime \prime} .52$, distance $7,634.70$ meters.
To © Brickeys, azimuth $70^{\circ} 58^{\prime} 25^{\prime \prime} .53$, distance $8,442.63$ meters.
To © Correll, azinuth $342^{\circ} 52^{\prime} 12^{\prime \prime} .14$, distance $12,136.64$ meters.
To © Kidd, azimuth $129^{\circ} 39^{\prime} 34^{\prime \prime} .32$, distance $10,648.12$ meters.
Center of stone post, on Illinois bluffs; about 3 miles southeast of Glasgow City, and about 2 miles northwest of Prairie du Rocher, III. It is on the line between Monroe and Randolph counties, and 1.5 metere back of a county line stone.

(1) 21 W.

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 6.)
Latitude $38^{\circ} 06^{\prime} 34^{\prime \prime} .69$; meters $+1,070,-780$.
Longitude $90^{\circ} 08^{\prime} 19^{\prime \prime} .64$; meters $+478,-983$.
Elevation: 397.91.
To top gable of elevator, azimuth $132^{\circ} 22^{\prime}$.
To finial of water tank, Prairie du Rocher, azimuth $312^{\circ} \mathbf{4 7}^{\prime}$.
To gable of house, azimuth $337^{\circ} 03^{\prime}$.
To gable of house, azimuth $66^{\circ} 19^{\prime}$.
To middle of chimney of residence, azimuth $133^{\circ} 29^{\prime}$.
Two-inch iron pipe, about 1 foot above surface of ground in Illinois bottom land, 3.5 meters east of center of track of St. Louis, Iron Mountain and Southern Railway (Illinois Division); it miles below Renault, Ill.; 53 meters below telegraph pole 38/25; 75 meters above post on railroad marked "County Line;" and about seveneighths of a mile west of (*)County Line.

A BIMPEON 59.

United States engineer office, St. Louis, Mo., 1889; redetermined, 1903. (Chart No. 5.)

Latitude $38^{\circ} 06^{\prime} 22^{\prime \prime} .94$; meters $+707,-1,143$.
Longitude $90^{\circ} 14^{\prime} 44^{\prime \prime} 12$; meters $+1,075,-387$.
To © Brickeys, azimuth $307^{\circ} 34^{\prime} 51^{\prime \prime}$, distance 3,544 meters.
To © Cæsars, azimuth $139^{\circ} 09^{\prime} 25^{\prime \prime}$, distance $8,024.9$ meters.
To $ब$ Kidd, azimuth $199^{\circ} 15^{\prime} 10^{\prime \prime}$, distance $7,824.1$ meters.
To \triangle Simpson 67, azimuth $306^{\circ} 59^{\prime} 40^{\prime \prime}$, distance 2,345 meters.
Hole drilled in rock, on Missouri bluffs; on downstream slope of seventh bluff above Brickeys, Mo., or second bluff below lsle de Bois Creek.

- hartia.

United States engineer office, St. Louis, Mo., 1903. (Chart No. 5.)
Latitude $38^{\circ} 06^{\prime} 22^{\prime \prime} .78$; meters $+702,-1,148$.
Longitude $90^{\circ} 12^{\prime} 53^{\prime \prime} .65$; meters $+1,307,-155$.
Elevation: 394.42.
To Ames, azimuth $28^{\circ} 08^{\prime} 49^{\prime \prime}$, distance $1,035.7$ meters.
To © Simpson 69, azimuth $356^{\circ} 19^{\prime} 42^{\prime \prime}$, distance 2,073.5 meters.
Iron pipe, in Illinois; 3 meters from top of revetted high bank; 700 meters below Penitentiary Point, and 296 meters above shore end of hurdle.

[^47]
© SIMPSON 67.

United States engineer office, St. Louis, Mo., 1874; redetermined, 1903. (Chart No. 5.$)$

Latitude $38^{\circ} 05^{\prime} 37^{\prime \prime} .17$; meters $+1,146,-704$.
Longitude $00^{\circ} 13^{\prime} 27^{\prime \prime} .26$; meters $+664,-798$.
To \triangle Simpson 59 , azimuth $127^{\circ} 00^{\prime} 27^{\prime \prime}$, distance 2,345 meters.
Hole drilled in small rock, in group of three bowlders on Missouri shore and about 1 mile above Brickey Mill; 900 meters below railroad trestle at Morrison Hollow; and 130 meters below the next trestle south.

A AMES.

United States engineer office, St. Louis, Mo., 1903. (Chart No. 5.)
Latitude $38^{\circ} 05^{\prime} 36^{\prime \prime}$; meters $+1,110,-740$.
Longitude $90^{\circ} 13^{\prime} 25^{\prime \prime} .32$; meters +617 , -845 .
To \triangle Hartig, azimuth $208^{\circ} 08^{\prime} 29^{\prime \prime}$ distance $1,635.7$ meters.
To \triangle Simpson 69 , azimuth $304^{\circ} 43^{\prime} 48^{\prime \prime}$, distance $1,100.5$ meters.
1 To \triangle Simpson 59, azimuth $127^{\circ} 00^{\prime} 46^{\prime \prime}$, distance 2,404.3 meters.
Iron pipe, on projecting point, outside of small railroad cut, 1 mile above Brickeys, Mo.; 59 meters below (southeast of) \triangle Simpson 67, and on the line Simpson 67-Simpson 59; 490 meters above second railroad trestle above Brickeys, Mo.; and 180 meters below first railroad trestle below Morrison Hollow.

[1. B. M. 40 HOLMAN.

United States engineer office, St. Louis, Mo., 1879; redetermined by Mississippi River Commission, 1880 and 1889. (Chart No. 5.)

Latitude $38^{\circ} 05^{\prime} 21^{\prime \prime} .50$; meters $+663,-1,187$.
Longitude $90^{\circ} 12^{\prime} 58^{\prime \prime} .87$; meters $+1,435,-27$.
Elevation: 379.90. (Precise levels of 1880.)
To B. M. $18=41$ Holman, azimuth $306^{\circ} 45^{\prime}$, distance 752 meters.
Raised triangle with letter "B" cut on rock ledge, on Missouri shore; 770 meters above (northwest of) upstream corner of Brickey Mill; and 100 meters above first railroad trestle above Brickeys, Mo.

$\oplus 22 \mathrm{~W}$.

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 5.)
latitude $38^{\circ} 05^{\prime} 18^{\prime \prime} .45$; meters $+569,-1,281$.
Longitude $90^{\circ} 06^{\prime} 34^{\prime \prime} .57$; meters +843, -620.
Elevation: 397.24.
To church spire, szimuth $306^{\circ} 09$.
To top gable of elevator, azimuth $312^{\circ} 23^{\prime}$.
To finial of water tank, azimuth $313^{\circ} 54^{\prime}$.
To corner of brick building at top, azimuth $292^{\circ} 17^{\prime}$.
Two-inch iron pipe, about 1 foot above surface of ground in Illinois bottom land; 10.8 meters east of center of track of St. Louis, Iron Mountain and Southern Railway (Illinois Division); one-half mile above the railroad station at Prairie du Rocher, Ill.; 107 meters below telegraph pole 41; 91 meters below switch stand; and 102 meters northwest of highway bridge over drainage ditch.
\triangle SIMPSON 69.
United States engineer office, St. Louis, Mo., 1874; redetermined, 1903. (Chart No. 5.)

Latitude $38^{\circ} 05^{\prime} 15^{\prime \prime} .66$; meters +483, $-1,367$.
Longitude $90^{\circ} 12^{\prime} 48^{\prime \prime} .20$; meters $+1,175,-287$.
To \triangle Rombauer, azimuth $307^{\circ} 17^{\prime} 07^{\prime \prime}$, distance 569.9 meters.
To \triangle Hartig, azimuth $176^{\circ} 19^{\prime} 46^{\prime \prime}$, distance $2,073.5$ meters.
One-inch hole in stone, 4 feet by $3 \frac{1}{2}$ feet and surrounded by bowlders; on Missouri shore; 460 meters above mill at Brickeys, Mo.; and 6 meters from upper end of first bluif above Brickeys.

Q BRICKEY $\square=\frac{37}{3}$

Mississippi River Commission, 1880-81. (Chart No. 5.)
Latitude $38^{\circ} 05^{\prime} 12^{\prime \prime} .82$; meters $+395,-1,455$.
Longitude $90^{\circ} 12^{\prime} 48^{\prime \prime} .87$; meters $+1,191,-271$.
Elevation: 601.14.
To © County line, azimuth $250^{\circ} 55^{\prime} 03^{\prime \prime} .44$, distance $8,442.63$ meters.
To © Caesars, azimuth $135^{\circ} 38^{\prime} 13^{\prime \prime} .55$, distance $11,518.81$ meters.
To \otimes Kidd, azimuth $178^{\circ} 38^{\prime} 51^{\prime \prime} 10$, distance $9,550.64$ meters.
To © Magnolia, azimuth $307^{\circ} 21^{\prime} 45^{\prime \prime} .18$, distance $7,630.95$ meters.
To Δ Simpson 59, azimuth $127^{\circ} 36^{\prime} 02^{\prime \prime}$, distance $3,544.0$ meters.
Center of stone post, on top of Missouri bluffs; 100 meters back from shore line; and one-quarter mile above (northwest of) Brickeys, Mo. Stone has been shattered and the bench mark is a dressed knob.

回 B. M. 18=41 HOLMAN.

United States engineer office, St. Louis, Mo., 1872 and 1879; redetermined, Mississippi River Commission, 1880 and 1889. (Chart No. 5.)

Latitude $38^{\circ} 05^{\prime} 06^{\prime \prime} .94 ;$ meters $+214,-1,636$.
Longitude $90^{\circ} 12^{\prime} 34^{\prime \prime} .05$; meters $+830,-632$.
Elevation: 384.55. (Precise levels, 1880.)
To (1. M. 40 Holman, azimuth $126^{\circ} 45^{\prime}$, distance 752 meters.
Raised square, with letters U.S.B. M. above and the number 18 below, cut on horizontal surface of natural rock; 20 meters above the upstrean corner of mill at Brickeys, Mo. This bench mark was established by Smith in 1872, elevation 385.74; by Holman in 1879, elevation 384.25; and by Mississippi River Commission precise levels in 1880.

A ROMBAUER.

United States engineer office, St. Louis, Mo., 1903. (Chart No. 5.)
Latitude $38^{\circ} 05^{\prime} 04^{\prime \prime} .47$; meters $+138,-1,712$.
Longitude $90^{\circ} 12^{\prime} 29^{\prime \prime} .60$; meters $+721,-741$.
To \triangle Snell, azimuth $307^{\circ} 14^{\prime} 09^{\prime \prime}$, distance 961.5 meters.
To \triangle Simpson 69, azimuth $127^{\circ} 17^{\prime} 19^{\prime \prime}$; distance 569.9 meters.
Iron pipe, on edge of high bank at Brickeys, Mo.; in southeast corner of front yard of large two-story frame house belonging to Judge R. E. Rombauer and east of "Lirisco" railroad.

\triangle CARR.

United States engineer office, St. Louis, Mo., 1903. (Chart No. 5, station not plotted.)

Latitude $38^{\circ} 05^{\prime} 04^{\prime \prime} .01$; meters +124, $-1,726$.
Longitude $90^{\circ} 11^{\prime} 35^{\prime \prime} .77$; meters +872 , -590 .
To \triangle Snell, azimuth $43^{\circ} 53^{\prime} 32^{\prime \prime}$, distance 787.9 meters.
To \triangle Hickory, azimuth $352^{\circ} 11^{\prime} 41^{\prime \prime}$, distance $1,087.9$ meters.
Iron pipe, on bar in front of and about 150 meters from Carr's house at old Sycamore Landing, Ill.; and opposite Snell Hollow in Missouri bluffs. (Not found in 1908.)
\triangle PLUM NO. 2.
United States engineer office, St. Louis, Mo., 1903. (Chart No. 5.)
Latitude $38^{\circ} 04^{\prime} 50^{\prime \prime} .33$; meters $+1,552,-298$.
Longitude $90^{\circ} 10^{\prime} 40^{\prime \prime} .58 ;$ meters $+989,-473$.
To \triangle Simpson 75 , azimuth $353^{\circ} 13^{\prime} 26^{\prime \prime}$, distance $1,597.7$ meters.
Iron pipe, on edge of revetted high bank, in front of Dickey Field, Ill.; and $1 \frac{1}{2}$ miles below Brickeys, Mo.; 335 meters above small shanty; and 15 meters east of wild plum tree near edge of bank.

\triangle BNELL.

United States engineer office, St. Louis, Mo., 1903. (Chart No. 5.)
Latitude $38^{\circ} 04^{\prime} 45^{\prime \prime} .60$; meters $+1,400,-444$.
Longitude $90^{\circ} 11^{\prime} 58^{\prime \prime} .19$; meters $+1,418,-44$.
To \triangle Carr, azimuth $223^{\circ} 53^{\prime} 18^{\prime \prime}$, distance 787.9 meters.
To \triangle Hickory, azimuth $306^{\circ} 18^{\prime} 28^{\prime \prime}$, distance 861.3 meters.
To \triangle Rombauer, azimuth $127^{\circ} 14^{\prime} 28^{\prime \prime}$, distance 961.5 meters.
Iron pipe, about 960 meters below railroad station at 13rickeya, Mo.; in front of middle of first bluff above Snell Hollow and near edge of high railroad embankment.

1 $\square \frac{38}{1}$
Mississippi River Commission, 1889. (Chart, No. 5.)
Latitude $38^{\circ} 04^{\prime} 44^{\prime \prime} .50$; meters $+1,372,-478$.
Longitude $90^{\circ} 08^{\prime} 42^{\prime \prime} .09$; meters $+1,048,-415$.
Elevation: Stone, 392.61; pipe, 397.71.
To@ $38 / 2$, azimuth $41^{\circ} 30^{\circ}$, distance 894 meters.
Flat stone and iron pipe, on top of old high bank in Illinois and back of Fort Chartres Island; at edge of timber and cultivated field; 140 meters southwest of floodgate in drainage ditch; 900 meters from river bank; and 1,050 meters north of Fort Chartres Landing, Ill. To an oak tree, azimuth $101^{\circ} 40^{\prime}-6$ meters; and to a house, $215^{\circ} 21^{\prime}$ -90 meters.

\triangle PAWPAW NO. 2.

United States engineer office, St. Louis, Mo., 1903. (Chart No. 5.)
Latitude $38^{\circ} 04^{\prime} 37^{\prime \prime} .54$; meters $+1,157,-692$.
Longitude $90^{\circ} 09^{\prime} 47^{\prime \prime} .70$; meters $+1,163,-300$.
To \triangle Simpson 75, azimuth $46^{\circ} 28^{\prime} 03^{\prime \prime}$, distance $1,747.7$ meters.
Iron pipe on Fort Chartres Island, Ill., and about one-third of the distance from Dickey Field down to Fort Chartres Landing, Ill.; 37.8 meters back from \triangle Pawpaw (temporary) on the line Pawpaw-Simpson 75; 10 meters from 11 -inch pecan tree; 11.6 meters from 18 -inch hackberry tree; and 8.3 meters from 16 -inch pecan tree.

\triangle HICKORY.

United States engineer office, St. Louis, Mo., ${ }^{1903 . ~(C h a r t ~ N o . ~ 5 .) ~}$
Latitude $38^{\circ} 04^{\prime} 29^{\prime \prime} .05$; meters $+896,-954$.
Longitude $90^{\circ} 11^{\prime} 29^{\prime \prime} .71$; meters $+724,-739$.
To \triangle Simpson 75 , azimuth $307^{\circ} 41^{\prime} 19^{\prime \prime}$, distance 1540.9 meters.
To \triangle Carr, azimuth $172^{\circ} 11^{\prime} 44^{\prime \prime}$, distance $1,087.9$ meters.
Iron pipe, on Missouri shore; on 'flat accretion at upper end of Fort Chartres hurdles; 30.5 meters upstream from third large ravine below Brickeys, Mo.; 39.6 meters in front (east of) "Frisco" railroad track; and on line with Δ Snell and the western side of old mill at Brickeys.

$$
\square \frac{38}{2}
$$

Miesissippi River Commission, 1889. (Chart No. 5.)
Latitude $38^{\circ} 04^{\prime} 22^{\prime \prime} .80$; meters $+703,-1,147$.
Longitude $90^{\circ} 0907^{\prime \prime} .26$; meters $+177,-1,286$.
Elevation: 391.90.
To®38/1, azimuth $221^{\circ} 30^{\prime}$, distance 894 meters.
Stone post, 35 meters back from river bank; 875 meters upstream from Fort Chartres Landing, Ill.; in the timber and near foot of 18 -inch boxelder tree. (Not found in 1908.)

\triangle SIMPSON 75.

United States engineer office, St. Louis, Mo., 1879; redetermined, 1892 and 1903. (Chart No. 5.)
Latitude $38^{\circ} 03^{\prime} 58^{\prime \prime} .48$; meters $+1,803,-47$ (1892).
Longitude $90^{\circ} 10^{\prime} 39^{\prime \prime} .67$; meters $+967,-496$ (1892).
Latitude $38^{\circ} 03^{\prime} 58^{\prime \prime} .50$; meters $+1,804,-46$ (1903).
Longitude $90^{\circ} 10^{\prime} 39^{\prime} .69$; meters $+968,-495$ (1903).
To © Magnolia, azimuth $308^{\circ} 46^{\prime} 05^{\prime \prime}$, distance 3,738.3 meters (1892).
To \triangle Simpson 77 , azimuth $307^{\circ} 53^{\prime} 22^{\prime \prime}$, distance $3,971.7$ meters (1892).
To \Leftrightarrow Magnolia, azimuth $308^{\circ} 45^{\prime} 57^{\prime \prime}$, distance 3,739 meters (1903).
To \triangle Plum No. 2, azimuth $179^{\circ} 13^{\prime} 27^{\prime \prime}$, distance 1,597.7 meters (1903).
To \triangle Pawpaw No. 2, azimuth $226^{\circ} 28^{\prime} 03^{\prime \prime}$, distance $1,747.7$ meters (1903).
To \triangle Hickory, azimuth $127^{\circ} 41^{\prime} 50^{\prime \prime}$, distance $1,540.9$ meters (1903).
Hole in rock, Missouri; on second bluff above Establishment Creek; 230 feet below old shot tower, below Salt Point, and opposite head of Establishment (or Bruce) Island; and on line with hurdle No. 0 of Fort Chartres system. To reach station follow road that goes up bluff in first ravine above Establishment Creek until the ahoulder of bluff is reached, then turn east and get on line with hurdle No. 0.

\triangle CROSS.

United States engineer office, St. Louis, Mo., 1892. (Chart No. 5, station not plotted.)
Latitude $38^{\circ} 03^{\prime} 32^{\prime \prime} .80$; meters $+1,011,-839$.
Longitude $90^{\circ} 10^{\prime} 03^{\prime \prime} .26$; meters $+79,-1,384$.
To © Magnolia, azimuth $307^{\circ} 23^{\prime} 26^{\prime \prime}$, distance 2,551 meters.
Hole in rock, in Missouri; halfway up first bluff above Establishment Creek; on line of old Fort Chartres Dam or hurdle No. 2 present series; and very near \odot P. B. M. $29=$ 回 $38 / 3$.

A BROCE.

United States engineer office, St. Louis, Mo., 1903. (Chart No. 5.)
Latitude $38^{\circ} 03^{\prime} 24^{\prime \prime} .39$; meters $+752,-1,098$.
Longitude $90^{\circ} 08^{\prime} 55^{\prime \prime} .67$; meters $+1,357,-106$.
To \triangle Cambria, azimuth $323^{\circ} 28^{\prime} 33^{\prime \prime}$, distance $2,308.9$ meters.
Iron pipe, near lower end of Establishment (or Bruce) Island; on Missouri side of river and nearly opposite Fort Chartres Landing, Ill.; about 500 feet below point of timber, on old foot of island, and lower end of revetment now covered, on aand ridge on east side of island; and in thicket of small willows.

$$
\odot \text { P. 13. M. } 29 \square \frac{38}{3}
$$

Mississippi River Commission, 1880 and 1889. (Chart No. 5.)
Latitude $38^{\circ} 03^{\prime} 32^{\prime \prime} .92$; meters $+1,015,-835$.
Longitude $90^{\circ} 10^{\prime} 03^{\prime \prime} .40$; meters $+83,-1,380$.
Elevation: 416.79.
Copper bolt, leaded horizontally into point of limestone bluff in Missouri; about 1 foot above surface of ground; 50 meters north of farmhouse; 440 meters above (northeast of) railroad bridge across Establishment Creek; and directly opposite main ahore end of hurdle No. 2 of the Fort Chartres system.

$\oplus 23 \mathrm{~W}$.

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 8.)
Latitude $38^{\circ} 04^{\prime} 14^{\prime \prime} .06$; meters $+434,-1,416$.
Longitude $90^{\circ} 05^{\prime} 07^{\prime \prime} .13$; meters $+174,-1,289$.
Elevation: 398.71.
To finial of water tank, azimuth $132^{\circ} 34^{\prime}$.
To top gable of elevator, azimuth $133^{\circ} 12^{\prime}$.
To.church spire, azimuth $142^{\circ} 46^{\prime}$.
To school cupola, azimuth $140^{\circ} 20^{\circ}$.
To gable of barn, azimuth $269^{\circ} 11^{\prime}$.
Two-inch iron pipe, about 1 foot above surface of ground in Illinois bottom land; 3.34 meters west of center of track of St. Louis, Iron Mountain and Southern Railway (Illinois Division); about $1 \ddagger$ miles below Prairie du Rocher depot; 293 -meters below sign "Prairie du Rocher one mile"; 300 meters below telegraph pole $42 / 20$; 34 meters below telegraph pole $42 / 25$; and 126 meters above road crossing.

(1) BREWERVILLE.

Miesissippi River Commission, 1880-81. (Chart No. 6.)
Latitude $38^{\circ} 03^{\prime} 35^{\prime \prime} 35$; meters $+1,090,-760$.
Longitude $90^{\circ} 03^{\prime} 23^{\prime \prime} .89$; meters +583 , -880 .
To (4) Correll, azimuth $20^{\circ} 48^{\prime} 30^{\prime} .50$, distance $6,244.91$ meters.
To © Magnolia, azimuth $78^{\circ} 06^{\prime} 10^{\prime \prime} .47$, distance $7,880.26$ meters.
To \triangle Ziegler, azimuth $346^{\circ} 04^{\prime} 30^{\prime \prime}$, distance $12,055.4$ meters.
To \triangle Ste. Genevieve, azimuth $354^{\circ} 41^{\prime} 10^{\prime \prime}$, distance $8,988.5$ meters.
Center of stone post, with top broken off, on Illinois bluffs 1 mile above (northwest of) Modoc, Ill.; 21 $\frac{1}{2}$ miles below Prairie du Rocher, near edge of low cliff; on bare soot in pasture owned by Francis Boniew.
© 24 W .
Board on Examination and Survey of Mississippi River, 1908. (Chart No. 6.)
Latitude $38^{\circ} 03^{\prime} 27^{\prime \prime} .15$; meters $+837,-1,013$.
Longitude $90^{\circ} 04^{\prime} 02^{\prime \prime} .65$; meters $+65,-1,398$.
Elevation: 401.08.

I'o top gable of elevator, azimuth $312^{\circ} 21^{\prime}$.
To finial of water tank, azimuth $132^{\circ} 39^{\prime}$.
'To top gable of elevator, azimuth $132^{\circ} 57^{\prime}$.
To gable of barn, azimuth $21.3^{\circ} 54^{\prime}$.
To gable of house, azimuth $273^{\circ} 12^{\prime}$.
Two-inch iron pipe, about 1 foot above surface of ground in Illinois bottom land; 3 meters west of center of track of St. Louis, Iron Mountain and Southern Railway (Illinois Division); $1 \frac{5}{3}$ miles above Modoc, Ill., railroad station; 44 meters below telegraph pole $42 / 5 ; 1,000$ meters westwardly from (a) Brewerville.
(a) MAGNOLIA.

Mississippi River Commission, 1880-81. (Chart No. 6.)
Latitude $38^{\circ} 02^{\prime} 42^{\prime \prime} .54$; meters $+1,312,-538$.
Longitude $90^{\circ} 08^{\prime} 40^{\prime \prime} .13$; meters $+979,-484$.
Elevation: 664.60.
To (a) County Line, azimuth $194^{\circ} 33^{\prime} 27^{\prime \prime} .94$, distance $7,634.70$ meters.
To © Correll, azimuth $307^{\circ} 26^{\prime} 09^{\prime \prime} .04$, distance $6,922.23$ meters.
To (4) Brewerville, azimuth $258^{\circ} 02^{\prime} 55^{\prime \prime} .55$, distance $7,880.26$ meters.
To \Leftrightarrow Brickey, azimuth $127^{\circ} 24^{\prime} 18^{\prime \prime} .54$, distance $7,630.95$ meters.
To \triangle Simpson 75 , azimuth $128^{\circ} 47^{\prime} 11^{\prime \prime}$, distance 3,739 meters (1903).
To \triangle Simpson 75 , azimuth $128^{\circ} 47^{\prime} 19^{\prime \prime}$, distance $3,738.3$ meters (1892).
To \triangle Cross, azimuth $127^{\circ} 24^{\prime} 18^{\prime \prime}$, distance 2,551 meters.
'To@ $37 / 1$, azimuth $257^{\circ} 15^{\prime}$.
Tob37/2, azimuth $269^{\circ} 35^{\prime}$.
Center of stone post, with top broken ofi, on highest point of high hill, 120 meters above trestle at Cambria Hollow, Mo.; 1,500 meters below railroad bridge across Establishment Creek; and 100 meters back from railroad.
\triangle SIMPSON $\because \%$.
United States engineer office, St. Louis, Mo., 1874; redetermined, 1892 and 1903. (Chart No. 6.)

Latitude $38^{\circ} 02^{\prime} 39^{\prime \prime} .35$; meters $+1,213,-637$ (1892).
Longitude $90^{\circ} 08^{\prime} 31^{\prime \prime}$. 12 ; meters $+759,-704$ (1892).
Latitude $38^{\circ} 02^{\prime} 39^{\prime \prime} .36$; meters $+1,214,-636$ (1903).
Longitude $90^{\circ} 08^{\prime} 31^{\prime \prime} .12$; meters +759 , -704 (1903).
To ASimpson 75, azimuth $127^{\circ} 54^{\prime} 41^{\prime \prime}$, distance $3,971.7$ meters (1892).
To \triangle Simpson 75 , azimuth $127^{\circ} 54^{\prime} 29^{\prime \prime}$, distance $3,972.2$ meters (1903).
Hole in rock, on Missouri bluffs; close to edge of prominent ledge on lower side of first bluff below Establishment Creek; 245 meters below (southeast of) (6) Magnolia; 65 meters back from railroad; and 1,000 meters above Cambria Hollow.

\triangle CAMBRIA.

United Statés engineer office, St. Louis, Mo., 1903. (Chart No. 6.)
Latitude $38^{\circ} 02^{\prime} 24^{\prime \prime} .21$; meters $+746,-1,104$.
Longitude $90^{\circ} 07^{\prime} 59^{\prime \prime} .32$; meters $+1,447,-16$.
Elevation: 381.91.
To \triangle Turkey, azimuth $270^{\circ} 20^{\prime} 42^{\prime \prime}$, distance $1,618.7$ meters.
To Δ Glendale, azimuth $311^{\circ} 40^{\prime} 11^{\prime \prime}$, distance 7.52 .3 meters.
One-inch hole, 2 inches deep, in center of triangle cut on large bowlder, in Missouri; 73 meters above (northwest of) railroad bridge at Cambria Hollow; 22 meters from face of. bluff; and 8.5 meters from foot of railroad embankment.

\triangle TURKEY.

United States engineer office, St. Louis, Mo., 1903. (Chart No. 6.)
Latitude $38^{\circ} 02^{\prime} 23^{\prime \prime} .89$; meters $+737,-1,113$.
Longitude $90^{\circ} 06^{\prime} 52^{\prime \prime} .94$; meters $+1,291,-172$.
To \triangle Whitesand, azimuth $18^{\circ} 38^{\prime} 14^{\prime \prime}$, distance $1,097.1$ meters.
To \triangle Glendale, azimuth $65^{\circ} 07^{\prime} 05^{\prime \prime}$, distance 1,165 meters.
To \triangle Elms, azimuth 323° ' $10^{\prime} 26^{\prime \prime}$, distance $1,147.7$ meters.
Iron pipe, in Illinois; on head of Turkey Island; on south bank of depression or old slough; opposite Magnolia Mollow, Mo.; 3 meters from 20 -inch cottonwood tree; and 7 moters from 12 -inch cottonwood.
H. Doc. $50,61-1 \cdots 28^{*}$

\odot P. B. M. 30.

Mississippi River Commission, 1880. (Chart No. 6.)
Latitude $38^{\circ} 02^{\prime} 08^{\prime \prime} .27$; meters $+255,-1,595$.
Longitude $90^{\circ} 07^{\prime} 35^{\prime \prime} .97$; meters $+877,-586$.
Elevation: 395.95.
Center of copper bolt, leaded horizontally in natural rock in Missouri bluff; 1,300 meters above White Sand Depot; and about 250 meters above lower end of bluff. The letters "U.S. P. B. M." are cut near the bolt. (Not found, 1908.)

\therefore GILENDALE.

United States engineer office, St. Louis, Mo., 1903. (Chart No. 6.)
Latitude $38^{\circ} 02^{\prime} 07^{\prime \prime} .99$; meters $+246,-1,604$.
Longitude $90^{\circ} 07^{\prime} 36^{\prime \prime} .27$; meters $+884,-579$.
To \triangle Elms, azimuth $284^{\circ} 02^{\prime} 19^{\prime \prime}$, distance $1,790.3$ meters.
To \triangle Simpson 83 , saimuth $308^{\circ} 24^{\prime} 38^{\prime \prime}$, distance $2,042.1$ meters.
To \triangle C'ambria, azimuth $131^{\circ} 40^{\prime} 25^{\prime \prime}$, distance 752.3 meters.
To \triangle 'Turkey, azimuth $245^{\circ} 06^{\prime} 39^{\prime \prime}$, distance 1.165 meters.
Hole in rock, on Missouri bluffs, first bluff above Magnolia Hollow; on highest stripped ledge; 25 feet out from top of bluff and 1 meter from edge of cliff.

$$
\text { (i) } 25 \mathrm{~W} \text {. }
$$

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 6.)
Latitude $38^{\circ} 02^{\prime} 04^{\prime \prime} .64$; meters $+143,-1,707$.
Longitude $90^{\circ} 02^{\prime} 00^{\prime \prime} .16$; meters $+4,-1,459$.
Elevation: 390.56.
To gable of house, azimuth $217^{\circ} 00^{\prime}$.
To middle of chimney, azimuth $217^{\circ} 01^{\prime}$.
To middle of sign "R. R. Crossing," azimuth $302^{\circ} 27^{\prime}$.
Two-inch iron pipe, about 1 foot above surface of ground in Illinois bottom land; 10.26 meters west of center of track of St. Louis, Iron Mountain and Southern Railway (Illinois Division); about three-quarters of a mile below Modoc, Ill.; 120 meters above telegraph pole 46/20; and 150 meters below telegraph pole 46/15.

$$
\left[\begin{array}{l}
36 \\
1 \\
1
\end{array}\right.
$$

Mississippi River Commission, 1889. (Chart No. 6.)
Latitude $38^{\circ} 01^{\prime} 55^{\prime \prime} .29$; meters $+1,705,-145$.
Longitude $90^{\circ} 04^{\prime} 05^{\prime \prime} .93$; meters $+145,-1,319$.
Elevation: Stone, 384.90; pipe, 390.01.
To@36/2, azimuth $24^{\circ} 45^{\prime}$, distance 628 meters.
Flat stone and iron pipe, in Illinois, $1 \frac{1}{8}$ miles back from the foot of Turkey Island; in cultivated field; southwest of old slough or lake and 130 meters therefrom; and 200 meters southwest of Frank Schifferdecker's house, on opposite side of lake. (Found 1908; pipe slightly bent over.)

\triangle ELMS.

United States engineer office, St. Louis, Mo., 1903. (Chart No. 6.)
Latitude $38^{\circ} 01^{\prime} 53^{\prime \prime} .89$; meters $+1,662,-188$.
Longitude $90^{\circ} 06^{\prime} 25^{\prime \prime} .06$; meters $+612,-852$.
'To \triangle White Sand, azimuth $83^{\circ} 38^{\prime} 28^{\prime \prime}$, distance $1,036.9$ meters.
To \triangle Simpson 83 , azimuth $9^{\circ} 18^{\prime} 51^{\prime \prime}$, distance 845.6 meters.
To \triangle Simms, azimuth $304^{\circ} 44^{\prime} 43^{\prime \prime}$, distance $1,307.8$ meters.
To \triangle Turkey, azimuth $143^{\circ} 40^{\prime} 43^{\prime \prime}$, distance $1,147.7$ meters.
To \triangle Glendale, azimuth $104^{\circ} 03^{\prime} 02^{\prime \prime}$, distance $1,790.3$ meters.
Iron pipe, at 'Turkey Island Landing, in Illinois; 120 meters northwest from honse; 18.5 meters below 36 -inch elm tree; 19 meters below 24 -inch sycamore tree; 24.5 meters from river bank; and 98 ieet west of northwest corner of corncrib.
[] U.S. B. M. $20=47 \mathrm{IOL} M A N$.
United States engineer office, St, Louis, Mo., 1872 and 1879; Mississippi River Commission, 18s9. (Chart No. 6.)
Latitude $38^{\circ} 01^{\prime} 53^{\prime \prime} .77$; meters $+1,658,-192$.
Longitude $90^{\circ} 07^{\prime} 12^{\prime \prime} .71$; meters $+310,-1,154$.
Elevation: 372.00. (Adjusted to preciso levels, 1880.)
To \odot P. 13. M. 30 , azimuth $128^{\circ} 25^{\prime}$, distance 719 meters.
Raised square, with letters and number "U.S. B. M. 20" cut on solid flat rock on Missouri shore; 600 meters above White Sand Depot; 175 meters above Δ Whitesand; aud 310 meters below railroad trestle at Magnolia Hollow; about 5 feet from edee of rock and 62 meters below lower end of another ledge. This bench mark was estab)lished by Smith in 1872; elevations: 371.67 by Holman in 1879; and 372, indirectly by Mississippi River Commission precise levels to Nos. 46 and 48, Holman, in 1880. Location determined by Mississippi River Commission in 1889.

$$
[0] \frac{37}{3}
$$

Mississippi River Commission, 1889. (Chart No. 6.)
Latitude $38^{\circ} 01^{\prime} 51^{\prime \prime} .89$: meters $+1,600,-250$.
Longitude $90^{\circ} 07^{\prime} 11^{\prime \prime} .68$; meters $+\cdot 285,-1,179$.
Elevation: 431.30.
Round knob, cut on horizontal surface of natural rock, b50 meters above White Sand Depot, Mo.; just above the first rock bluff (Bald Rock) upstream from the landing; and 40 meters from shore. "U.S. B. M. $37 / 3$ " is cut on the vertical face of the rock near the knob.

© WHITESAND.

United States engineer office, St. Iouis, Mo., 1903. (Chart No. 6.)
Latitude $38^{\circ} 01^{\prime} 50^{\prime \prime} .17$; meters $+1,547,-303$.
Longitude $90^{\circ} 07^{\prime} 07^{\prime \prime} .31$; meters $+178,-1,285$.
Flevation: 392.65.
To A Elms, azimuth $263^{\circ} 38^{\prime} 02^{\prime \prime}$, distance $1,036.9$ meters.
'To \triangle Turkey, a mimuth $195^{\circ} 38^{\prime} 05^{\prime \prime}$, distance 1,097 . 1 meters.
Hole in center of triangle, cut in a large bowlder in front of middle of first bluff above White Sand Depot, Mo.; about 50 feet from center oi railroad track and 3 feet lower in elevation; and opposite crevice in face of bluff.

$$
\left[\begin{array}{c}
36 \\
2
\end{array}\right.
$$

Mississippi River Commission, 1889. (Chart No. 6.)
latitude $38^{\circ} 01^{\prime} 36^{\prime \prime} .97$; meters $+1,140,-710$.
Longitude $90^{\circ} 04^{\prime} 16^{\prime \prime} .68$; meters $+^{-407},-1,057$.
Elevation: 393.16..
To@36/1, azimuth $204^{\circ} 45^{\prime}$, distance 628 meters.
To $36 / 3$, azimuth $24^{\circ} 45^{\prime}$, distance 1,925 meters.
Stone post, in Illinois; nearly opposite Rubicon Hollow in Missouri bluffs; 630 meters back from high bank of river; in a cultivated field; and on south bank of dry slough. (Found in 1908; disturbed.)

\triangle SIMMS.

United States engineer office, St. Louis, Mo., 1903. (Chart No. 6.)
Latitude $38^{\circ} 01^{\prime} 29^{\prime \prime} .72$; meters $+916,-934$.
Longitude $90^{\circ} 05^{\prime} 41^{\prime \prime} .00$; meters $+1,000,-464$.
To \triangle B. M. 49 Holman, azimuth $353^{\circ} 16^{\prime} 02^{\prime \prime}$, distance 979.1 meters.
To \triangle Simpson 85, azimuth $55^{\circ} 56^{\prime} 51^{\prime \prime}$, distance 791.5 meters.
To \triangle Elms, azimuth $124^{\circ} 45^{\prime} 10^{\prime \prime}$, distance $1,307.8$ meters.
To \triangle Simpson 33, azimuth $85^{\circ} 48^{\prime} 13^{\prime \prime}$, distance $1,214.8$ meters:
Iron pipe, on lower end of prominent ridge in woods on Illinois shore; on west side of Turkey Island and about three-fourths of a mile upstream from a point opposite Sims (Grays) Cave in Missouri bluffs; 200 feet below edge of cultivated field; $\overline{5}$ feet west of 10 -inch elm tree; 12.5 feet northeast of $12-\mathrm{inch}$ elm; and 25.5 feet cast of 12 inch elm. Trees are blazed with triangles facing pipe. (Not found in 1908.)
\triangle SIMPSON 83.
United States engineer office, St. Louis, Mo., 1874; redetermined, 1903. (Chart No. 6.)

Latitude $38^{\circ} 01^{\prime} 26^{\prime \prime} .83 ;$ meters $+827,-1,023$.
Longitude $90^{\circ} 06^{\prime} 30^{\prime \prime} .67$; meters $+748,-716$.
Elevation: 376.29.
To \triangle Elms, azimuth $189^{\circ} 18^{\prime} 48^{\prime \prime}$, distance 845.6 meters.
To Δ Simms, azimuth $265^{\circ} 47^{\prime} 43^{\prime \prime}$, distance $1,214.8$ meters.
'To Δ Simpson 85 , azimuth $302^{\circ} 30^{\prime} 48^{\prime \prime}$, distance 659.1 meters.
To A Glendale, azimuth $128^{\circ} 25^{\prime} 18^{\prime \prime}$, distance 2,042.1 meters.
Two-inch hole in center of triangle, cut in lower edge of rock ledge in Missouri; and 250 feet below upper edge of first bluff below Frenchman Creek; 100 feet from foot of railroad embankment; 130 feet from center of track; and 200 feet from 14 -inch blazed oak near top of bluff.

\triangle SIMPSON 85.

United States engineer office, St. Louis, Mo., 1874; redetermined, 1903. (Chart No. 6.)

Latitude $38^{\circ} 01^{\prime} 15^{\prime \prime} .34 ;$ meters $+473,-1,377$.
Longitude $90^{\circ} 06^{\prime} 07^{\prime \prime} .89$; meters $+193,-1,271$.
Elevation: 378.20.
To 0 Simpson 83 , azimuth $122^{\circ} 31^{\prime} 02^{\prime \prime}$, distance 659.1 meters.
'To Δ Holman, azimuth $299^{\circ} 10^{\prime} 01^{\prime \prime}$, distance $2,183.5$ meters.
To \triangle Simms, azimuth $235^{\circ} 50^{\prime} 35^{\prime \prime}$, distance 791.5 meters.
Two-inch hole, 4 inches deep, in center of triangle, cut on triangular bowlder 8 by 5 by 5 feet, and abreast of middle of first bluff below Frenchman Creek, in Missouri; '20 feet from foot of railroad embankment and 77 feet from center of track; opposite second telegraph poleabove pole 60/20; and 27 iect above (northwest of) three prominent bowlders. The number " 85 " is cut in bowlder near hole.

$\oplus 20 \mathrm{~W}$.

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 6.)
Latitude $38^{\circ} 01^{\prime} 00^{\prime \prime} .40$; meters $+12,-1,838$.
Longitude $89^{\circ} 59^{\prime} 54^{\prime \prime} .18$; meters $+1,322,-142$.
Elevation: 387.89.
Lo gable of depot at Roots, azimuth $303^{\circ} 13^{\prime}$.
To gable of barn, azimuth $69^{\circ} 30^{\prime}$.
To gable of barn, azimuth $70^{\circ} 34^{\prime}$.
Two-inch iron pipe, about. 1 foot above surface of ground in Cllinois bottom land; 18 miles above Roots station ("Iron Mountain"); 395 meters above junction of Illinois Southern Railway and St. Louis, Iron Mountain and Southern Railway (Illinois Division); and 2.76 meters east of center of track of latter road; 166 meters above telegraph pole 49; 165 meters above sign "Roots one mile;" 52 meters below telegraph pole $48 / 25$; and 2 meters below private road crossing.

\triangle B. M. 49 (HOLMAN).

United States engineer office, St. Louis, Mo. (levels of 1879), 1903. (Chart No. 6.)
Latitude $38^{\circ} 00^{\prime} 58^{\prime \prime} .18$; meters $+1,794,-56$.
Longitude $90^{\circ} 05^{\prime} 36^{\prime \prime} .29$; meters $+885,-579$.
Elevation: 380.41. (Adjusted to precise levels, 1880.)
To \triangle Simms, azimuth $173^{\circ} 16^{\prime} 05^{\prime \prime}$, distance 979.1 meters.
Raised knob in triangle, cut on bench ledge of rock on Missouri shore; opposite highest point of bluff below Lower Frenchman Hollow; 600 feet below railroad bridge at same hollow; 61 feet out from center of track and 19 feet from foot of railroad embankment; and 37.3 feet from lower northeast corner of bowlder 4 by 3 by 3.5 feet. The letters " 13. M." are cut in the perpendicula: face of rock, slightly inshore from and below the triangle. Triangulation station Simpson 87, exposed at 18 -foot stage, St. Louis gauge, is 12 feet upstream from this station, and 14.5 feet from center of lettering "B. M."

© HOLMAN.

United States engineer office, St. Louis, Mo., 1903. (Chart No. 6.)
Latitude $38^{\circ} 00^{\prime} 40^{\prime \prime} .82$; meters $+1,259,-591$.
Longitude $90^{\circ} 04^{\prime} 49^{\prime \prime} .73$; meters $+1,213,-251$.
To Δ Richards, azimuth $286^{\circ} 00^{\prime} 37^{\prime \prime}$, distance 819.7 meters.
To \triangle Simpson 85 , azimuth $119^{\circ} 10^{\prime} 49^{\prime \prime}$, distance $2,183.5$ meters.
Hole in center of triangle, cut in bowlder on Missouri shore; 335 feet below (3. M. 50 Holman, a raised knob in a triangle, elevation 377.06, opposite first telegraph pole south of pole 61/25; 780 feet below railroad bridge at Rubicon Hollow and abreast of large projecting bowlder on top of bluff; 40.5 feet from center oi railroad track and 5 feet from foot of railroad embankment; opposite telegraph pole 62/28; 34 feet below large flat bowlder and 27 feet above large bowlder standing on edge. A piece of three-quarter-inch iron gas pipe was placed in hole to assist in relocating the station.

$$
\text { [0] } \frac{36}{3}
$$

Mississippi River Commission, 1889. (Chart No. 6.)
Latitude $38^{\circ} 00^{\prime} 40^{\prime \prime} .21$; meters $+1,240,-610$.
Longitude $90^{\circ} 04^{\prime} 49^{\prime \prime} .59 ;$ meters $+1,210$, -254 .
Elevation: 396.35.
To $\square 36 / 2$, azimuth $204^{\circ} 45^{\prime}$, distance 1,925 meters.
Knob cut on bowlder, on Missouri shore, 3 miles above Ste. Genevieve, Mo., and 25 meters from shore line. The letters and numbers "U.S. IS. M. 36/3" are cut beside the knob on the bowlder. (Not found in 1908.)

\triangle BOTTOM.

United States engincer office, St. Louis, Mo., 1899. (Chart No. 6.)
Latitude $38^{\circ} 00^{\prime} 40^{\prime} .19$; meters $+1,239,-611$.
Longitude $90^{\circ} 02^{\prime} 17^{\prime \prime} .36$; meters $+424,-1,040$.
To © Correll, azimuth $83^{\circ} 30^{\prime} 55^{\prime \prime}$, distance $3,866.4$ meters.
To \triangle Wilder, azimuth $57^{\circ} 59^{\prime} 27^{\prime \prime}$, distance $2,493.7$ meters.
To \triangle Ziegler, azimuth $348^{\circ} 32^{\prime} 45^{\prime \prime}$, distance $6,429.3$ meters.
To \triangle Maxwell, azimuth $21^{\circ} 55^{\prime} 20^{\prime \prime}$, distance $2,590.5$ meters.
Iron pipe, in Illinois bottomland; on west side of road leading from ferry landing opposite Little Rock Landing, Mo., to Moro station on the Illinois Southern Railway; about 400 feet west of point where road crosses track; and 300 feet west of south end of levee. (Not found in 1908.)

\triangle RICHARDS.

United States engineer office, St. Louis, Mo., 1903. (Chart No. 6.)
Latitude $38^{\circ} 00^{\prime} 33^{\prime \prime} .48$; meters $+1,032,-818$.
Longitude $90^{\circ} 04^{\prime} 17^{\prime \prime} .43$; meters $+425,-1,039$.
To \triangle Holman, azimuth $106^{\circ} 00^{\prime} 56^{\prime \prime}$, distance 819.7 meters.
Hole in large flint nodule and limestone bowlder, at foot of railroad embankment; a little upstream from the middle of second-bluff above Little Rock Landing, Mo.; 385 feet east of mouth of natural drain, in face of bluif. A piece of three-quarter-inch iron gas pipe was placed in hole to assist in relocating the station.

$$
\text { (4) CORRELL=[0] } \frac{36}{4}
$$

Mississippi River Commission, 1880-81. (Chart No. 6.)
Latitude $38^{\circ} 00^{\prime} 26^{\prime \prime} .00$; meters $+802,-1,048$.
Longitude $90^{\circ} 04^{\prime} 54^{\prime \prime} .81$; meters $+1,337,-127$.
Elevation: 624 (approximate).
To ${ }^{9}$ County line, azimuth $162^{\circ} 53^{\prime} 42^{\prime \prime} .47$, distance $12,136.64$ meters.
To@ Brewerville, azimuth $200^{\circ} 47^{\prime} 34^{\prime \prime} .48$, distance $6,244.91$ meters.
To(A) Magnolia, azimuth $127^{\circ} 23^{\prime} 27^{\prime \prime} .83$, distance $6,922.23$ meters.
To \mathcal{A} Vause, azimuth $321^{\circ} 53^{\prime} 18^{\prime \prime} .67$, distance $13,233.07$ meters.
To \triangle Bottom, azimuth $263^{\circ} 29^{\prime} 18^{\prime \prime}$, distance $3,866.4$ meters.
To \triangle Wilder, azimuth $297^{\circ} 06^{\prime} 26^{\prime \prime}$, distance $1,940.7$ meters.
To \triangle Flurst, azimuth $290^{\circ} 31^{\prime} 12^{\prime \prime \prime}$, distance $5,855.7$ meters.
To Δ Ziegler, azimuth $318^{\circ} 51^{\prime} 34^{\prime \prime}$, distance $7,784.1$ meters.
To 4 Ste. Genevieve, azimuth $315^{\circ} 33^{\prime} 20^{\prime \prime}$, distance $4,358.3$ meters.
Originally a stone post, replaced with an iron pipe in 1890,3 miles upstrean irom Ste. Genevieve, Mo.; 480 meters back from river bank; in cultivated field, on top oi hill; If miles westwerdly from Little Rock Landing, Mo.

($\uparrow 27 \mathrm{~W}$.

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 6.)
Latitude $38^{\circ} 00^{\prime} 25^{\prime \prime} .60$; meters $+789,-1,061$.
Longitude $89^{\circ} 58^{\prime} 46^{\prime \prime} .93$; meters $+1,145,-319$.
Elevation: 389.84.
To \triangle Ste. Genevieve, azimuth $62^{\circ} 25^{\prime}$.
To St. Leo's church spire, azimuth $179^{\circ} 01^{\prime}$.
To top gable of elevator, azimuth $229^{\circ} 25^{\prime}$.
To gable of depot at Roots, azimuth $303^{\circ} 28^{\prime}$.
To gable of house, azimuth $260^{\circ} 51^{\prime}$.
To gable of house, azimuth $80^{\circ} 14^{\prime}$.
Two-inch iron pipe, about 1 foot above surface of ground in Illinois bottom land; about one-half mile northwest of Roots station ("Iron Mountain"); 2.46 meters west of center oi track of St. Louis, Iron Mountain and Southern Railway (Illinois division); 182 meters below telegraph pole $50 ; 92$ meters above telegraph pole $50 / 5 ; 184$ meters below switch stand; and 1,506 meters below junction of the Illinois Southern Railway and the "Iron Mountain" Railway.

\triangle ORANE.

United States engineer office, St. Louis, Mo., 1903. (Chart No. 6.)
Latitude $38^{\circ} 00^{\prime} 21^{\prime \prime} .91$; meters $+676,-1,174$.
Longitude $90^{\circ} 03^{\prime} 44^{\prime \prime} .75$; meters $+1,092,-372$.
Elevation: 396.94.
To 1 Southern, azimuth $319^{\circ} 18^{\prime} 56^{\prime \prime}$, distance 879.3 meters.
Iron pipe, on railroad embankment in lower (Wilder) quarry; 6 feet from telegraph pole near first trestle above Little Rock Landing, Mo.

\triangle LITNLE ROCK.

United States engineer office, St. Louis, Mo., 1899. (Chart No. 6.)
Latitude $38^{\circ} 00^{\prime} 15^{\prime \prime} .59$; meters $+481,-1,369$.
Longitude $90^{\circ} 03^{\prime} 34^{\prime \prime} .59$; meters +844 , -620 .
Hole in rock, on high bank; immediately in front of 2 -story frame building; and about 35 meters below Little Rock Landing, Mo.

\triangle TANK.

United States engineer office, St. Louis, Mo., 1903. (Chart No. 6.)
Latitude $38^{\circ} 00^{\prime} 13^{\prime \prime} .58$; meters $+419,-1,431$.
Longitude $90^{\circ} 03^{\prime} 36^{\prime \prime} .83$; meters +899 , -565 .
Finia! of water tank of Illinois Southern Railway near Little Rock Landing, Mo.; and directly back from \triangle Little Rock.

$$
[0] \frac{35}{1}
$$

Mississippi River Commission, 1889. (Chart No. 6.)
Latitude $38^{\circ} 00^{\prime} 13^{\prime \prime} .53$; meters +417, $-1,433$.
Longitude $90^{\circ} 00^{\prime} 42^{\prime \prime} .96$; meters $+1,048,-416$.
Elevation: Stone, 388.08; pipe, 393.17.
'To 『35/2, azimuth $37^{\circ} 15^{\prime}$ '. distance 1,297 meters.
Flat stone and iron pipe, in west edge of cultivated field, on Ste. Genevieve Island (now in Illinois); 1,600 meters from the Mississippi River and opposite Ste. Genevieve, Mo.
\triangle SOUTIIERN.
United States engineer office, St. Louis, Mo., 1903. (Chart No. 6.)
Latitude $38^{\circ} 00^{\prime} 00^{\prime \prime} .28$; meters $+9,-1,841$.
Longitude $90^{\circ} 03^{\prime} 21^{\prime \prime} .26$; meters +519 , -945 .
To Δ Maxwell, azimuth $333^{\circ} 11^{\prime} 14^{\prime \prime}$, distance $1,313.3$ meters.
To \triangle Crane, azimuth $139^{\circ} 19^{\prime} 10^{\prime \prime}$, distance 879.3 meters.
Iron pipe, near middle of second bluff on hill below Little Rock: Landing, Mo.; about 60 feet back from edge of bluff and on contour about 10 feet lower than crest. An 18-inch white oak and a 20 -inch black oak, about 30 feet apart and blazed with triangles, are 22 feet in front of the station.

\triangle WILDER.

United States engincer office, St. Louis, Mo., 1899. (Chart No. 6.)
Latitude $37^{\circ} 59^{\prime} 57^{\prime \prime} .31$; meters $+1,767,-83$.
Longitude $90^{\circ} 03^{\prime} 44^{\prime \prime} .03$; meters $+1,074,--390$.
To © Correll, azimuth $117^{\circ} 07^{\prime} 09^{\prime \prime}$, distance $1,940.7$ meters.
To A Maxwell, azimuth $313^{\circ} 17^{\prime} 19^{\prime \prime \prime}$, distance $1,576.7$ meters.
To \triangle Bottom, azimuth $237^{\circ} 58^{\prime} 34^{\prime \prime}$, distance 2,493.7 meters.
Iron pipe, in Missouri; on top of first hill below Little Rock Landing; about 550 meters from the river; and nearly in line with water tank and southeast corner of old mill at the landing.
(1) 28 w .

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 6.)
Latitude $37^{\circ} 59^{\prime} 50^{\prime \prime} .07$; meters $71,544,-306$.
Longituide $89^{\circ} 57^{\prime} 37^{\prime \prime} .61$; meters +918 , -546 .
Elevation: 387.61.
To gable of house, azimuth $347^{\circ} 03^{\prime}$.
To gable of house, azimuth $343^{\circ} 54^{\prime}$.
To gable of barn, azimuth $33^{\circ} 02^{\prime}$.
To gable of barn, azimuth $98^{\circ} 06^{\prime}$.
To gable of barn, azimuth $33^{\circ} 42^{\prime}$.
Two-inch iron pipe, about 1 foot above surface of ground in Illinois bottom land; seven-cighths mile below Roots station ("Iron Mountain"); on mound in borrow pit on south side of wagon road; about 620 meters above (west of) drawbridge over Kaskaskia River; 76 meters below telegraph pole $51 / 10$; about 90 meters below point of curve of St. Louis, Iron Mountain and Southern Railway (Illinois division); 15 meters west of center of track and 18 meters southwest of lower end of trestle No. 68.

$$
\left[\frac{35}{2}\right.
$$

Mississippi River Commission, 1889. (Chart No. 6.)
Latitude $37^{\circ} 59^{\prime} 40^{\prime \prime} .06$; meters $+1,235,-615$.
Longitude $90^{\circ} 01^{\prime} 15^{\prime \prime} .08$; meters $+368,-1,096$.
Elevation: 384.99.
To $35 / 1$, azimuth $217^{\circ} 15^{\prime}$, distance 1,279 meters.
To ■ $35 / 3$, azimuth $36^{\circ} 40^{\prime}$, distance 2, 102 meters.
Stone post, in field, on Ste. Genevieve Island (now in Illinois); opposite Ste. Genevieve, Mo.; 400 meters back from river bank; 415 meters west of northeast corner, and 285 meters north of northwest corner of scattered timber; and 270 meters northeast, directly back from buildings near the river.

(1) 29 W .

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 6.)
Latitude $37^{\circ} 59^{\prime} 23^{\prime \prime} .50$; meters $+725,-1,125$.
Longitude $89^{\circ} 55^{\prime} 57^{\prime \prime} .49$; meters $+1,403,-61$.
Elevation: 389.42.
To top gable of elevator, azimuth $322^{\circ} 18^{\prime}$.
To middle of chimney, Reily Lake depot, azimuth $322^{\circ} 26^{\prime}$.
To east edge of farmhouse chimney, azimuth $318^{\circ} 17^{\prime}$.
To west edge of outside chimney, azimuth $319^{\circ} 00^{\prime}$.
Two-inch iron pipe, about 16 inches above surface of ground in Illinois bottomland; 3 meters west of center of track of St. Louis, Iron Mountain and Southern Railway (Illinois Division); about 1 mile above Reily Lake depot; 166 meters above telegraph pole 53/5; 116 meters below telegraph pole $53 ; 7$ meters below lower end of trestle No. 72 , over a ditch 3 meters wide (running water).

\triangle MAXWELL.

United States engineer office, St. Louis, Mo., 1899 and 1903. (Chart No. 6.)
Latitude $37^{\circ} 59^{\prime} 22^{\prime \prime} .25$; meters $+686,-1,164$ (1899).
Longitude $90^{\circ} 02^{\prime} 56^{\prime \prime} .99$; meters $+1,391,-73$ (1899).
Latitude $37^{\circ} 59^{\prime} 22^{\prime \prime} .27$; meters $+687,-1,163$ (1903).
Longitude $90^{\circ} 02^{\prime} 56^{\prime \prime} .98$; meters $+1,390$, -74 (1903).
To \triangle Vieux Village, azimuth $307^{\circ} 22^{\prime} 15^{\prime \prime}$, distance $6,092.8$ meters (1899).

To A Bottom, azimuth $201^{\circ} 54^{\prime} 55^{\prime \prime}$, distance 2,590.5 meters (1.899).
To Δ Wilder, azimuth $133^{\circ} 17^{\prime} 49^{\prime \prime}$, distance $1,576.7$ meters (1899).
To \triangle Warehouse $=$ G $35 / 3$, azimuth $312^{\circ} 50^{\prime} 52^{\prime \prime}$, distance $1,068.8$ meters (1890).
To \triangle Southern, azimuth $153^{\circ} 11^{\prime} 29^{\prime \prime}$, distance $1,313.3$ meters (1903).
Iron pipe, on top of first prominent hill above Ste. Genevieve, Mo.; in open field a little northeast of crest of hill, and about 225 meters below the Bantz stone house.

\triangle HURST.

United States engineer oftice, St. Louis, Mo., 1900. (Chart No. 6.)
Latitude $37^{\circ} 59^{\prime} 19^{\prime \prime} .37$; meters $+597,-1,253$.
Longitude $90^{\circ} 01^{\prime} 10^{\prime \prime} .09$; meters $+246,-1,218$.
Elevation: 387.34.
'To(3) Correll, azimuth $110^{\circ} 33^{\prime} 30^{\prime \prime}$, distance $5,855.7$ meters.
To \triangle Ziegler, azimuth $5^{\circ} 28^{\prime} 50^{\prime \prime}$, distance $3,826.8$ meters.
Iron pipe, on Ste. Genevieve Island (in Illinois); about 1,060 meters above slough between Ste. Genevieve and Moro islands; 10 feet from edge of bank; 10 feet above an old road leading down the bank; to northwest corner of white house, azimuth 240°, distance 100 feet; dead twin stump, south, 6 feet; blazed 8 -inch boxelder, $150^{\circ}-10$ feet.

$$
\triangle \text { WAREIIOUSE }=0 \frac{35}{3}
$$

Mississippi River Commission, 1889; redetermined, United States engineer office, St. Louis, Mo., 1899. (Chart No. 6.)

Latitude $37^{\circ} 58^{\prime} 45^{\prime \prime} .43$; meters $+1,401,-449$.
Longitude $90^{\circ} 02^{\prime} 06^{\prime \prime} .86$; meters $+167,-1,297$.
Elevation: 390.92.
To \triangle Maxwell, azimuth $132^{\circ} 51^{\prime} 23^{\prime \prime}$, distance $1,668.8$ meters.
To \triangle Ste. Genevieve, azimuth $89^{\circ} 3 \overline{0}^{\prime}$, distance 1,053 meters.
To@ $35 / 4$, azimuth $36^{\circ} 50^{\prime}$, distance 806 meters.
To@35/2, azimuth $216^{\circ} 40^{\prime}$, distance 2, 102 meters.
Stone post, in cultivated field, one-quarter mile east of and below Ste. Genevieve, Mo.; 25 meters back from old high bank; about 270 meters east of bridge over South Gabouri Creek; and 370 meters north of "Frisco" railroad bridge over V'alley Spring Branch.

\triangle STE. GENEVIEVE.

United States engineer office, St. Louis, Mo., 1899. (Chart No. 6.)
Latitude $37^{\circ} 58^{\prime} 45^{\prime \prime} .06$; meters $+1,389$, - 461 .
Longitude $90^{\circ} 02^{\prime} 49^{\prime \prime} .78$; meters $+1,215,-250$.
Center of spire and cross of the cathedral at Ste. Genevieve, Mo.

$$
\odot \text { P. В. M. } 33 .
$$

Missisoipui River Commission, 1880. (Chart No. 6.)
Latitude $37^{\circ} 58^{\prime} 43^{\prime \prime} .14$: meters $+1,330,-520$.
Longitude $90^{\circ} 02^{\prime} 38^{\prime \prime} .72$; meters $+945,-520$.
Elevation: 407.86.
Center of copper bolt, leaded horizontally in south side of southeast corner of public school building in Ste. (ienevieve, Mo.; 4 inches from corner in fifth course of stone below the bricks. The letters "U.S. P. B. M." are cut near the bolt.

$$
\left[\frac{35}{4}\right.
$$

Mississippi River Commission, 1889. (Chart No. 6.)
Latitude $37^{\circ} 58^{\prime} 24^{\prime \prime} .16$; meters $+745,-1,105$.
Iongitude $90^{\circ} 02^{\prime} 26^{\prime \prime} .50$; meters $+647,-818$.
Elevation: Stone, 397.27; pipe, 402.37.
Tos Ste. Genevieve, azimuth $138^{\circ} 30^{\prime}$, distance 855 meters.
To勺35/3, azimuth $216^{\circ} 50^{\prime}$, distance 806 meters.
Flat stone and iron pipe, inside of fence on west side of main road leading south from Ste. Genevieve, Mo.; 20 meters north of lane leading west from main road and about 350 meters south of South Gabouri Creek.

\triangle FAIRY.

United States engineer office, St. Louis, Mo., 1899. (Chart No. 6.)
Latitude $37^{\circ} 57^{\prime} 36^{\prime \prime} .83$; meters $+1,136,-714$.
Longitude $89^{\circ} 58^{\prime} 22^{\prime \prime} .05$; meters $+538,-927$.
Elevation: 382.11.
To © Kaskaskia, azimuth $266^{\circ} 06^{\prime} 27^{\prime \prime}$, distance $5,756.5$ meters.
To (a) Vause, asimuth $15^{\circ} 26^{\prime} 01^{\prime \prime}$, distance $5,386.2$ meters.
Iron pipe, on Missouri shore; $3 \frac{1}{2}$ miles below Ste. Genevieve, Mo.; 185 meters north and in front of McClary's house and opposite flat section of revetted bank; about 60 meters from water's edge at mean stage and 9 meters from high bank; blazed trees: sycamore, northwest, 149 meters; cottonwood, northeast, 123 meters. Pipe set a few inches below surface of ground with mound of stone for surface mark.

$$
\text { [. } \frac{34}{4}
$$

Mississippi River Commission, 1889. (Chart No. 6.)
Latitude $37^{\circ} 57^{\prime} 24^{\prime \prime} .00$; meters $+740,-1,110$.
Longitude $89^{\circ} 58^{\prime} 27^{\prime \prime} .97$; meters $+683,-782$.
Elevation: Stone, 378.25 ; pipe, 383.34 .
Flat stone and iron pipe, in Missouri, about 32 miles below Ste. Genevieve; in cultivated field about 120 meters west of road leading south from river; 470 meters south of river bank; and 700 meters north of buildings owned by Jules Detchmendy.

\triangle VIEUX VILIAGE.

United States engineer office, St. Louis, Mo., 1899. (Chart No. 6.)
Latitude $37^{\circ} 57^{\prime} 22^{\prime \prime} .25$; meters $+686,-1,164$.
Longitude $89^{\circ} 59^{\prime} 38^{\prime \prime} .65$; meters $+944,-521$.
Elevation: 386.37.
To \triangle Ziegler, azimuth $85^{\circ} 38^{\prime} 25^{\prime \prime}$, distance $2,605.4$ meters.
To \triangle Maxwell, azimuth $127^{\circ} 24^{\prime} 18^{\prime \prime}$, distance $6,092.8$ meters.
To \triangle Double flag (probably covered), azimuth $127^{\circ} 56^{\prime} 35^{\prime \prime}$, distance 2,045.6 meters.
Iron pipe, in Missouri, about 3 miles below Ste. Genevieve; on slight ridge in cultivated field 100 meters back from river; 17 meters from high bank; and 275 meters upstream from shore end of hurdle No. 18, Ste. Genevieve works. Nearly on line with mouth of Kaskaskia (Okaw) River and shore end of this hurdle. A mound oi stone piled around the pipe serves as a surface ratark.

© ZIEGLER.

United States engineer office, St. Louis, Mo., 1899. (Chart No. 6.)
Latitude $37^{\circ} 57^{\prime} 15^{\prime \prime} .82$; meters $+488,-1,362$.
Longitude $90^{\circ} 01^{\prime} 25^{\prime \prime} .06 ;$ meters $+612,-853$.
To © 3 Brewerville, azimuth $166^{\circ} 05^{\prime} 43^{\prime \prime}$, distance $12,055.4$ meters.
To ${ }^{6}$ Correll, azimuth $138^{\circ} 53^{\prime} 43^{\prime \prime}$, distance $7,784.1$ meters.
To \triangle Bottom, azimuth $168^{\circ} 33^{\prime} 17^{\prime \prime}$, distance $6,429.3$ meters.
To \triangle Hurst, azimuth $185^{\circ} 28^{\prime}$ ' $40^{\prime \prime}$, distance $3,826.8$ meters.
'To \triangle Vieux village, azimuth $265^{\circ} 37^{\prime} 19^{\prime \prime}$, distance 2,605.4 meters.
To \triangle Double flag (probably covered), azimuth $214^{\circ} 03^{\prime} 14^{\prime \prime}$, distance $1,757.6$ meters.
Square stone post, with top marked "U. S.;" in cultivated field on hill about 2 miles below Ste. Genevieve, Mo.; about 900 meters west of large Indian mounds in Big Field; 122 meters west of main road at foot of bluffs and 245 meters south of prolongation of road to river; 73 meters west of edge of timber; 153 meters southwest of sinkhole. To 15 -inch blazed pecan tree, $350^{\circ}-8$ meters.

$$
\left[\frac{33}{1}\right.
$$

Mississippi River Commission, 1889. (Chart No. 7.)
Latitude $37^{\circ} 58^{\prime} 58^{\prime \prime} .81$; meters $+1,813,-37$.
Longitude $89^{\circ} 55^{\prime} 37^{\prime \prime} .61$; meters $+918,-547$.
Elevation: Stone, 378.28; pipe, 383.38 .
To[33/2, azimuth $346^{\circ} 50^{\circ}$, distance 289 meters.

Flat stone and iron pipe, 675 meters above railway station at Reily Lake, Ill.; 75 meters west from the St. Louis, Iron Mountain and Southern Railway (Illinois Division); on the inside of fence around the field of J. Morrison and 400 meters east of southwest corner; on edge of timber and 600 meters from the left bank of Kaskaskia River. 'Two blazed honey-locust trees on south side of road are: south 23° east, and south 68° east, respectively. (Stone found, 1908; pipe missing.)

$$
\text { ■ } \frac{33}{2}
$$

Mississippi River Commission, 1889. (Chart No. 7.
Latitude $37^{\circ} 58^{\prime} 49^{\prime \prime} .69$; meters $+1,532,-318$.
Longitude $89^{\circ} 55^{\prime} 34^{\prime \prime} .99$; meters $+854,-611$.
Elevation: 370.62.
To[$333 / 1$, azimuth $166^{\circ} 50^{\prime}$, distance 289 meters.
Stone post, set in willows, about one-fourth mile west of Reily Lake, Ill.; on north bank of small creok and 195 meters southwest of "Iron Mountain" railway bridge over same; nearly opposite southeast corner of J. Morrison's field; at foot of dead 3 -foot water-oak blazed and marked "U.S. B. M.", south 70° west; an 18 -inch elm also marked "U.S. B. M.", south 25 ${ }^{\circ}$ east. (Not found, 1908; probably covered.)
(1) 30 W .

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 7.)
Latitude $37^{\circ} 58^{\prime} 36^{\prime \prime} .28$; meters $+1,119,-731$.
Longitude $89^{\circ} 55^{\prime} 11^{\prime \prime} .91$; meters $+291,-1,174$.
Elevation: 387.58.
To east edge of brick store front, azimuth $157^{\circ} 37^{\prime}$.
To gable of house, azimuth $138^{\circ} 09^{\prime}$.
To gable of house, azimuth $163^{\circ} 16^{\prime}$.
To switchstand, azimuth $142^{\circ} 31^{\prime}$.
Two-inch iron pipe, about 1 foot above surface of ground in Illinois bottom land; 344 meters below depot door at Reily Lake, III.; 3 meters east of center of main track of St. Louis, Iron Mountain and Southern Railway (Illinois Division); 108 meters above upper end of trestle No. $74 ; 15$ meters below one switchstand and 85 meters above another; 37 meters below road crossing; and 80 meters below telegraph pole 54/5.

\triangle MONUMENT.

United States engineer oflice, St. Louis, Mo., 1899. (Chart No. 7.)
Latitude $37^{\circ} 58^{\prime} 01^{\prime \prime} .07$; meters $+33,-1,817$.
Longitude $89^{\circ} 54^{\prime} 31^{\prime \prime} .16$; meters $+761,-704$.
Center of prominent shaft, in Kaskaskia Cemetery; on bluff above and about 600 meters north of Fort Gage, III.
(9) KASKASKIA.

Mississippi River Commission, 1880-81. (Chart No. 7.)
Latitude $37^{\circ} 57^{\prime} 49^{\prime \prime} .43$; meters $+1,524,-326$.
Longitude $89^{\circ} 54^{\prime} 26^{\prime \prime} .77$; meters $+653,-811$.
To (3) Vause, azimuth $52^{\circ} 09^{\prime} 38^{\prime \prime} .42$, distance $9,092.33$ meters.
'To 8 Rozier, azimuth $3^{\circ} 28^{\prime} 51^{\prime \prime} .37$, distance $11,101.40$ meters.
To \triangle Fairy, azimuth $86^{\circ} 08^{\prime} 52^{\prime \prime}$, distance $5,756.5$ meters.
'To \triangle Commons, azimuth $45^{\circ} 34^{\prime} 01^{\prime \prime}$, distance $1,869.7$ meters.
'To \triangle Commons No. 2, azimuth $21^{\circ} 03^{\prime} 07^{\prime \prime}$, distance $1,124.9$ meters.
To \triangle New Kaskaskia, azimuth $8^{\circ} 25^{\prime} 26^{\prime \prime}$, distance 4, 662.9 meters.
To $33 / 4$, azimuth $56^{\circ} 20^{\prime}$, distance 1,268 meters.
Hole in center of stone post, near top of Illinois bluff at Fort Gage; on edge of old earthwork fortification; and about 4 feet east of oak picket fence. The footpath in rear of Lynn's store leads to the station.

$$
\text { [-] } \frac{33}{4}
$$

Mississippi River Commission, 1889. (Chart No. 7.)
Latitude $37^{\circ} 57^{\prime} 26^{\prime \prime} .60$; meters $+820,-1,030$.
Longitude $89^{\circ} 55^{\prime} 10^{\prime \prime} .02$; meters $+245,-1,220$.
Elevation: Stone, 374.83; pipe, 379.93.
Tos Kaskaskia, azimuth $236^{\circ} 20^{\prime}$, distance 1,268 meters.

Flat stone and iron pipe, on old Kaskaskia Commons; near the north end of Kaskaskia Island (now on right hank of river); and opposite Fort Gage, Ill.; 21 miles north of the new town of Kaskaskia, Ill.; 140 meters east of a building; 180 meters north of a grove; about 330 meters back from river bank; and 120 meters west of road leading south from the old town of Kaskaskia. A blazed pecan tree stands southwest, \bar{b} meters.

A COMMONS NO. 2.

United States engineer office, St. Louis, Mo., 1899. (Chart No. 7.)
Latitude $37^{\circ} 57^{\prime} 15^{\prime \prime} .38$; meters $+474,-1,376$.
Longitude $89^{\circ} 54^{\prime} 43^{\prime \prime} .33$; meters $+1,058,-407$.
Too Kaskaskia, azimuth $201^{\circ} 0 ?^{\prime} 57^{\prime \prime}$, distance $1,124.9$ meters.
To A Commons, azimuth $74^{\circ} 26^{\prime} 38^{\prime \prime}$, distance 966.4 meters.
Iron pipe, near head of Kaskaskia lsland (now on right bank oi river); nearly opposite first large ditch below fort Gage, III.; about 65 meters from river bank.

A COMMONS.

United States engineer office, St. Louis, Mo., 1899. (Chart No. 7.)
Latitude $37^{\circ} 57^{\prime} 06^{\prime \prime} .97$; meters $+215,-1$, 635).
Longitude $89^{\circ} 555^{\prime} 21^{\prime \prime} .46$; meters $+524,-041$.
To Kaskaskia, azimuth $225^{\circ} 33^{\prime} 27^{\prime \prime}$, distance $1,869.7$ meters.
ToA Commons No. 2, azimuth $254^{\circ} 26^{\prime} 14^{\prime \prime}$, distance 966.4 meters.
Iron pipe, near head of Kaskaskia Island (now on right bank of river); 8 inches above surface of ground, in cultivated field; about 1,000 meters back from river and about 400 meters east of Old River; 95 feet southeast of a pecap tree, on edge oí clump of small brush; 45 feet west of road with telephone line on east side; 140 feet north of telephone pole, standing northwest of locust tree blazed and marked with nails forming the letter"i."
[-] $\frac{32}{2}$
Mississippi River Commission, 1889. (Chart No. 7.)
Latitude $37^{\circ} 50^{\prime} 52^{\prime \prime} .93$; meters $+1,632,-218$.
Longitude $89^{\circ} 53^{\prime} 23^{\prime \prime} .66$; meters $+578,-887$.
Elevation: Stone, 394.59; pipe, 399.68.
To $32 / 3$, azimuth $50^{\circ} 25^{\prime}$, distance 1,280 meters.
Flat stone and iron pipe, near foot of Illinois bluffs; $1 \frac{1}{1}$ miles below Fort Gage, I 11. ; between wagon road and Illinois Southern Railway; 75 meters southeast of wagon bridge; 80 meters southeast of the north corner of a field; 35 meters northeast of orchard; and 600 meters from the river bank.

$$
\left[\begin{array}{c}
32 \\
3
\end{array}\right.
$$

Mississippi River Commission, 1889. (Chart No. 7.)
Latitude $37^{\circ} 56^{\prime} 26^{\prime \prime} .59$; meters $+820,-1,030$.
Longitude $80^{\circ} 54^{\prime} 04^{\prime \prime} .09$; meters $+100,-1,365$.
Elevation: 378.64.
'To $032 / 4$, azimuth $50^{\circ} 25^{\prime}$, distance 560 meters.
Stone post, on Kaskaskia Island (now on right bank of river) ; about 1 d miles below Fort Gage, III.; on the land of Mr. Delassus; and 130 meters back from river bank. To a blazed elm tree, azimuth $300^{\circ} 50^{\prime}$, distance 20 meters; to a blazed locust tree, $2 \boldsymbol{2} 1^{\circ}$ $22^{\prime}-27$ meters.

$$
\left[\begin{array}{c}
32 \\
4
\end{array}\right.
$$

Mississippi River Commission, 1889. (Chart No. 7.)
Latitude $37^{\circ} 56^{\prime} 14^{\prime \prime} .92$; meters $+460,-1,390$.
Longitude $80^{\circ} 54^{\prime} 21^{\prime \prime} .91$; meters $+535,-930$.
Elevation: 382.68.
'To@32/3, arimuth $230^{\circ} 25^{\prime}$, distance 560 meters.
Stone post, on Kaskaskia Island (now on right bank oi river); about $1 \$$ miles below Fort Gage, lil.; on crest of ridge, land of Mr. Delassus; and 700 meters from the river; 120 meters east of road from old Kaskaskia to the foot of the island and 180 meters southeast oi junction of roads; at foot of pecan tree blazed and marked "B. M."; blazed pecan treesstand northeast 36 meters, and another, west 39 meters, respectively.

\triangle NEW KASKASKIA

United States engineer office, St. Louis, Mo., 1899. (Chart No. 7.)
Latitude $37^{\circ} 55^{\prime} 19^{\prime \prime} .83$; meters $+611,-1,239$.
Longitude $89^{\circ} 54^{\prime} 54^{\prime \prime} .74$; meters $+1,337,-129$.
Center of cross and spire of the church at Kaskaskia, Ill. (new town); on Kaskaskia Island (now on right bank of river).

$$
\triangle 56=\square \frac{31}{1}
$$

Mississippi River Commission, 1888. (Chart No. 7.)
Latitude $37^{\circ} 55^{\prime} 15^{\prime \prime} .94$; meters $+492,-1,358$.
Longitude $89^{\circ} 51^{\prime} 17^{\prime \prime} .54$; mèters $+428,-1,037$.
Elevation: 515.88.
To $\triangle 451 / 2$, azimuth $328^{\circ} 44^{\prime}$, distance 3,000 meters.
To@ $31 / 2$, azimuth $17^{\circ} 03^{\prime}$, distance 32.5 meters.
Stone post, on southern slope of Illinois bluffs; about 1 mile above Southern Illinois Penitentiary; 125 meters east of road at foot of bluffs; 200 meters north from first wagon bridge above the penitentiary; outside a field, near south corner, and 25 meters from the fence.

$$
\text { © } \frac{31}{2}
$$

Mississippi River Commission, 1888. (Chart No. 7.)
Latitude $37^{\circ} 55^{\prime} 14^{\prime \prime} .94$; meters $+460,-1,390$.
Longitude $89^{\circ} 51^{\prime} 17^{\prime \prime} .93$; meters $+438,-1,024$.
Elevation: 477.47.
To $\triangle 56=\square \frac{31}{1}$, azimuth $197^{\circ} 03^{\prime}$, distance 32.5 meters.
Cross mark, on solid rock below $\triangle 56=\square 31 / 1$; near 24 -inch blazed oak.

\triangle CIIURCII SPIRE (CHESTER, ILL.).

Mississippi River Commission, 1880-81. (Not in limits of Board on Examination and Survey of Mississippi River charts.)

Latitude $37^{\circ} 54^{\prime} 55^{\prime \prime} 36$; meters $+1,707,-143$.
Longitude $89^{\circ} 49^{\prime} 21^{\prime \prime}$; 22 ; meters $+518,-948$.
The most prominent church spire in Chester, Ill.; in northeastern part of city; and about 1 mile from river.

Mississippi River Commission, 1880-81. (Chart No. 7.)
Latitude $37^{\circ} 54^{\prime} 48^{\prime \prime} .43$; meters $+1,493,-357$.
Longitude $89^{\circ} 59^{\prime} 20^{\prime \prime} .73$; meters $+506,-960$.
Elevation: 568.59, and 567.84. (Sce description.)
To © Rozier, azimuth $310^{\circ} 10^{\prime} 28^{\prime \prime} .69$, distance $8,521.73$ meters.
To(Kaskaskia, azimuth $232^{\circ} 06^{\prime} 37^{\prime \prime}$. 69 , distance $9,092.33$ meters.
To(*) Chester, azimuth $274^{\circ} 20^{\prime} 16^{\prime \prime} .62$, distance $15,611.56$ meters.
To © Correll, azimuth $141^{\circ} 56^{\prime} 44^{\prime \prime} .19$, distance $13,223.07$ meters.
To \triangle Fairy, azimuth $195^{\circ} 25^{\prime} 25^{\prime \prime}$, distance $5,386.2$ meters.
To \triangle Church Spire, Chester, azimuth $269^{\circ} 06^{\prime} 47^{\prime \prime}$, distance $14,645.8$ meters.
To \triangle New Kaskaskia, azimuth $261^{\circ} 30^{\circ} 04^{\prime \prime}$, distance $6,568.7$ meters.
Center of stone post, with top broken off, on high bluff in Missouri; 300 meters back from old river; 3 miles above St. Marys, Mo.; one-half mile below River Aux Vases; and about 1 mile above Saline Creek. First elevation is top of stone; the second is a shoulder cut on downstreain side of stone and about 0.3 feet below ground.

\triangle IRON PIPE.

United States engineer office, St. Louis, Mo., 1899. (Chart No. 7.)
Latitude $37^{\circ} 54^{\prime} 14^{\prime \prime} .32$; meters $+441,-1,409$.
Longitude $89^{\circ} 50^{\prime} 53^{\prime \prime} .55$; meters $+1,308,-158$.
Iron pipe, on Horse Island, on right bank of river; nearly opposite Southern Illinois Penitentiary; about 1,400 feet below head of revetment; in front of negro cabins; and 10 feet downstream from railroad spike driven in blazed 30 -inch sycamore tree.

\triangle SIMPSON 121.

United States engineer office, St. Louis, Mo., 1880; stadia determination by Board on Examination and Survey of Mississippi River, 1908. (Chart No. 7.)

Latitude $37^{\circ} 54^{\prime} 19^{\prime \prime} .82$; meters $+611,-1,239$.
Longitude $89^{\circ} 58^{\prime} 47^{\prime \prime} .76$; meters $+1,167,-209$.
One-inch hole in rock, in center of irregular elevation on Hissouri bluffs; above old quarry and about 3 miles above St. Marys, Mo.; about 450 meters above Saline Creek; 5.2 feet from outer corner of rock; 20 feet north of and slightly back from an oblong bowlder 4 by 8 by 3 feet, lying on edge of bluff; and 6.5 feet below a rail fence. Blazed trees: 5 -inch red oak, 7 feet back; 10 -inch white oak, 17 feet back and slightly downstream; 10 -inch red oak, 30 feet back and upstream; clump of three small cedars 6 feet directly in front.

(6) CIESTER.

Mississippi River Commission, 1880-81. (Chart No. 7.)
Latitude $37^{\circ} 54^{\prime} 09^{\prime \prime} .65$; meters $+298,-1,552$.
Longitude $89^{\circ} 48^{\prime} 43^{\prime \prime} .55$; meters $+1,064,-402$.
To © Vause, azimuth $94^{\circ} 26^{\prime} 48^{\prime \prime} .10$, distance $15,611.56$ meters.
To(4) Killion, azimuth $350^{\circ} 29^{\prime} 03^{\prime \prime} .03$, distance $11,219.89$ meters.
'To : Rozier, azimuth $64^{\circ} 37^{\prime} 19^{\prime \prime} .35$, distance $10,031.77$ meters.
To \triangle Church Spire, Chester, III, azimuth $146^{\circ} 51^{\prime} 10^{\prime \prime}$, distance $1,683.1$ meters.
Center of hole in top of stone marking-post, on highest point of Illinois bluffs about one-hali mile below Chester, Ill.; and about one-half mile back of Cole's Mill; in cultivated field on Widow Cole's property; and downstream from angle in road leading from the eastern part of Chester down the blulfs to Cole's Mill.

A FLAG 27.

Mississippi River Commission, 1880-81. (Chart No. 7, station not plotted.)
Latitude $37^{\circ} 53^{\prime} 55^{\prime \prime} .92$; meters $+1,724,-126$.
Longitude $89^{\circ} 52^{\prime} 51^{\prime \prime} .44$; meters $+1,257,-209$.
To (4) Rozier, azimuth $37^{\circ} 44^{\prime} 48^{\prime \prime}$, distance $4,907.9$ meters.
To (a)Chester, azimuth $265^{\circ} 58^{\prime} 54^{\prime \prime \prime}$, distance $6,071.0$ meters.
Stone post, on south side of Kaskaskia Island (now on right bank of river); opposite foot of Cousin Wills Island; about 200 meters back from old river bank; near road leading to Dozaville; and 4.7 feet from 2 -foot cottonwood tree.

$$
\text { A } 451 / 3
$$

Mississippi River Commiesion, 1880--81; redetermined, United States engineer office, St. Louis, Mo., 1893. (Chart No. 7.)

Latitude $37^{\circ} 53^{\prime} 52^{\prime \prime} .79$; meters $+1,628,-222$.
Longitude $89^{\circ} 50^{\prime} 13^{\prime \prime} .75$; meters $+336,-1,130$.
Elevation: 378.01.
To $\triangle 56=\emptyset 31 / 1$, azimuth $148^{\circ} 44^{\prime} 19^{\prime \prime}$, distance 3,000 meters.
To I. O. O. F. hall, azimuth $230^{\circ} 28^{\prime} 54^{\prime \prime}$, distance 1,032 meters.
To Presbyterian Church spire, Chester, Ill., azimuth $256^{\circ} 56^{\prime} 39^{\prime \prime}$, distance 1,059 meters.

Stone post near the foot of Horse Island, on right bank of river; on well-defined ridge 180 meters from river and 230 meters from foot of island.

\triangle SIMPSON 125.

United States engineer office, St. Louis, Mo., 1880; redetermined, Board on Examination and Survey of Mississippi River, 1908. (Chart No. 7.)

Latitude $37^{\circ} 53^{\prime} 16^{\prime \prime} .75$; meters $+517,-1,334$.
Longitude $89^{\circ} 57^{\prime} 37^{\prime \prime} .50$; meters $+916,-550$.
Elevation: 370.95 .
Iron pin, cemented in flat detached rock on Missouri shore; 21 feet above low water; 375 feet north from north corner of Mr. Rozier's barn; 500 feet upstream from first railroad trestle above St. Miarys, Mo.; and 52.75 fegt out from blazed 1 -foot sycamore tree. "U.S. 125 " is cut in outer edge of rock 4 feet from station. (On Board on Examination and Survey of Mississippi River chart station is erroneously marked "Simpson 123".)

$\triangle \mathrm{FIAG} 28$.

Mississippi River Commission, 1880-81. (Chart No. 7, station not plotted.)
Latitude $37^{\circ} 53^{\prime} 16^{\prime \prime} .35$; meters $+504,-1,346$.
Longitude $89^{\circ} 52^{\prime} 06^{\prime \prime} .85$; meters $-167,-1,299$.
To \triangleq Rozier, azimuth $56^{\circ} 59^{\prime} 13^{\prime \prime}$, distance $4,882.7$ meters.
'To ${ }^{(3)}$ Chester, azimuth $251^{\circ} 40^{\prime} 40^{\prime \prime}$, distance $5,231.9$ meters.
Stone post, in Missouri; on right bank of Old River; about 1 mile above head of Horse Island; under 29 -inch cottonwood tree in edge of woods and about 10 feet west of fence corner on land owned by Frank Smith; about 180 meters southeast of high bank of river and about 150 meters southeast of a house. A wooden triangle was mailed on the cottonwood tree and three deep notches were cut in tree under triangle.

$$
\text { [] } \frac{30}{2}
$$

Mississippi River Commission, 1888; redetermined, United States engineer oflice, St. Loulis, Mo., 1893. (Chart No. 7.)

Latitude $37^{\circ} 53^{\prime} 05^{\prime \prime} .15$; meters $+159,-1,601$.
Longitude $89^{\circ} 47^{\prime} 51^{\prime \prime} .70$; meters $+1,2633,-203$.
Elevation: 399.40.
To \triangle Flag $291 / 2$, azimuth $44^{\circ} 24^{\prime} 31^{\prime \prime}$, distance $1,420.3$ meters.
To $930 / 3$, a\%imuth $39^{\circ} 02^{\prime}$, distance 1,977 meters.
Stone post, in Illinois and about 1,250 meters upstream from the mouth of Marys River; 73 meters from river bank; and 30 meters back from the Wabash, Chester and Western Railroad. There is a stone culvert 2 by 2.5 feet under railroad directly in front of stone.

$$
\triangle F H A O 29
$$

Mississippi River Commission, 1880-81. (Chart No. 7.)
Latitude $37^{\circ} 52^{\prime} 53^{\prime \prime} .29$; meters $+1,643,-207$.
Longitude $89^{\circ} 49^{\prime} 07^{\prime \prime} .12$; meters $+174,-1,293$.
Flevation: 376.85. (377.00, 1900, Skelly.)
To \triangle Rozier, azimuth $77^{\circ} 05^{\prime}$. distance 8,707.6 meters.
T@30/3, azimuth $333^{\circ} 00^{\prime}$, distance 1,315 meters.
Stone post, on right bank; three-quarters of a mile below Claryville, Mo.; about 200 meters below a nouse; 120 meters north of building on west side of road; about 240 meters from river and 75 meters west of a fence on west side of lane ruming toward the river; on land of Charles Cole; immediately back oi a fence and under a large sycamore tree. (Elevation 377.52 on chart is erroncous.)

$$
\odot \text { Р. В. M. } 35
$$

Mississippi River Commission, 1880. (Chart No. 7.)
Latitude $37^{\circ} 52^{\prime} 45^{\prime \prime} .90$; meters $+1,415,-435$.
Longitude $89^{\circ} 56^{\prime} 58^{\prime \prime} .51$; meters $+1,430,-37$.
Elevation: 395.87.
Center of copper bolt, leaded horizontally in west end of water table in southwest cormer of storehouse belonging to E. S. Lanbaugh, on northeast corner oi Second and Walnut streets, St. Marys, Mo. The bolt is set back about 5 millimeters in the stone and the letters "U. S. P. B. M." are cut near the bolt.

- P. B. M. 30.

Mississippi River Commission, 1880. (Chart No. 7.)
Latitude $37^{\circ} 52^{\prime} 45^{\prime \prime} .02$; meters $+1,388,-462$.
Longitude $89^{\circ} 56^{\prime} 59^{\prime \prime} .34$; meters $+1,450,-17$.
Elevation: 402.81.
Center of copper bolt, leaded horizontally in southwest corner of Martin Roundstone's ice house on east side of Walnut street, St. Marys, Mo. 'The letters "U.S. P. B. M." are cut near the bolt, which is in the fifth course of stone from the bottom.

\triangle FIAO 291,

-

Mississippi River Commission, 1880-81. (Chart No. 7.)
Latitude $37^{\circ} 52^{\prime} 32^{\prime \prime} .17$; meters $+992,-858$.
Lnngitude $89^{\circ} 48^{\prime} 32^{\prime \prime} .36$; meters $+791,-676$.
Elevation: 377.74.

To@ $30 / 2$, azimuth $224^{\circ} 24^{\prime} 06^{\prime \prime}$, distance $1,420.3$ meters.
To $930 / 3$, azimuth $25^{\circ} 54^{\prime}$, distance 579 meters.
To曰13. M. Copper Bolt, $=\triangle$ Simpson 182, azimuth $271^{\circ} 11^{\prime}$, distance 3,382 meters.
Stone post, marked "U. S.," on right bank $1 \frac{1}{}$ miles below (lary ville, Mo.; about 100 meters from river bank; 400 meters below Blocks Landing, Mo.; and 1,700 meters above head of Crains Island.

$$
\left[\begin{array}{c}
{[6]} \\
30 \\
3
\end{array}\right.
$$

Mississippi River Commission, 1888. (Chart No. 7.)
Latitude $37^{\circ} 52^{\prime} 15^{\prime \prime} .28$; meters $+471,-1,379$.
Longitude $89^{\circ} 48^{\prime} 42^{\prime \prime} .71$; meters $+1,044,-423$.
Elevation: 377.63.
To \triangle Flag 29 , azimuth $153^{\circ} 00^{\prime}$, distance 1,315 meters.
To \triangle Flag $291 / 2$, azimuth $205^{\circ} 54^{\prime}$, distance 579 meters.
To@ $30 / 2$, azimuth $219^{\circ} 02^{\prime}$, distance 1,977 meters.
To $030 / 4$, azimuth $39^{\circ} 03^{\prime}$, distance 363 meters.
Stone post, in Missouri and about 1,700 meters upstream from head of Crain Istand; about 650 meters from right bank of river; on the west side of public road; cast of rail fence and 25 meters north of wire fence.

Mississippi River Commission, 1888. (Chart No. 7.)
Latitude $37^{\circ} 52^{\prime} 06^{\prime \prime} .14$; meters $+189,-1,661$.
Longitude $89^{\circ} 48^{\prime} 52^{\prime \prime} .06$; meters $+1,273,-194$.
Elevation: Stone, 372.34; pipe, 377.42.
To曰30/3, azimuth $219^{\circ} 03$, distance 363 meters.
Flat stone and iron pipe, on right bank; if miles below (laryville, Mo.; and 970 meters from the river; 30 meters west of a hedge; 350 meters west of a public road; and 160 meters from a fence corner at edge of timber.
(6) ROTIER.

Mississippi River Commission, 1880-81. (Chart No. 7.)
Latitude $37^{\circ} 51^{\prime} 50^{\prime \prime} .03$; meters $+1,542,-308$.
Longitude $89^{\circ} 54^{\prime} 54^{\prime \prime} .35$; meters $+1,329,-138$.
To (®) Vause, azimuth $130^{\circ} 13^{\prime} 12^{\prime \prime} .29$, distance $8,521.73$ meters.
To $\otimes 8)$ Killion, azimuth $301^{\circ} 43^{\prime} 20^{\prime \prime} .60$, distance $12,845.01$ meters.
To \Leftrightarrow Chester, aximuth $244^{\circ} 33^{\prime} 31^{\prime \prime} .66$, distance $10,031.77$ meters.
To © Kaskaskia, azimuth $183^{\circ} 28^{\prime} 34^{\prime \prime} .43$, distance $11,101.40$ meters.
To \triangle Church Spire, Chester, Ill., azimuth $234^{\circ} 54^{\prime} 20^{\prime \prime}$, distance $9,945.2$ meters.
Center of hole in top of stone marking post (shattered), on highest point of first prominent bluff below and about 2 miles from St. Marys, Mo. A path up the bluif to the station leaves the "Friseo" railroad at a point 390 meters above Perryville Junction, Mo.

Mississippi River Commission, 1889; redetermined, United States engineer office, St. Louis, Mo., 1893. (Chart No. 8.)
Latitude $37^{\circ} 52^{\prime} 29^{\prime \prime} .92$; meters $+922,-928$.
Longitude $89^{\circ} 46^{\prime} 14^{\prime \prime} .02$; meters $+343,-1,124$.
Elevation: 354.66 (head of arrow).
To \triangle Flag $291 / 2$, azimuth $91^{\circ} 13^{\prime}$, distance 3,382 meters.
To $\operatorname{SSimpson} 184$, azimuth $311^{\circ} 31^{\prime} 55^{\prime \prime}$, distance 760.1 meters.
Bolt leaded in rock ledge, on Illinois shore (low water); 300 meters below ('rains Creek; and 1,350 meters below Marys River. Bolt was gone in 190s, and ledge was marked with an arrow.

\triangle SIMPSON 184.

United States engineer office, St. Louis, Mo., 1878; redetermined, 1803. (Chart. No. 8.)
Latitude $37^{\circ} 52^{\prime} 13^{\prime \prime} .57$; meters $+418,-1,432$.
Longitude $89^{\circ} 45^{\prime} 50^{\prime \prime} .74$; meters $+1,240,-227$.
To \triangle Simpson 182, azimuth $131^{\circ} 32^{\prime} 09^{\prime \prime}$, distauce 760.1 meters.

448 Waterway, str louis to the gulf and chicago.

Hole with number " 184 " roughly cut, in large stone standing on edge, 20 feet from edge of high bank in Illinois; on second stony point below and $1 \frac{1}{2}$ miles from Marys River; 88 feet south of a 3 -foot blazed elm; and 46 feet west of 3 -inch blazed locust tree.

A KIlRK'03.
United States engineer office, St. Louis, Mo., 1903. (Chart No. 8.)
Latitude $37^{\circ} 51^{\prime} 51^{\prime \prime} .89$; meters $+1,600$, --250.
Longitude $89^{\circ} 45^{\prime} 08^{\prime \prime} .60$; meters $+210,-1,257$.
Tos Waters '03, azimuth $3339^{\circ} 40^{\prime} 40^{\prime \prime}$, distance 2, 697.6 meters.
To © Killion, azimuth $26^{\circ} 31^{\prime} 44^{\prime \prime}$, distance 7,620.3 meters.
Iron pipe, 6 inches above surface of ground, on front slope of Illinois bluffs; beicween railroad and highway; 950 feet above Kirks landing; and 225 feet below large ravine. To a blazed 10 -inch hickory tree, $200^{\circ}-36.5$ feet.

A MANGKER '03.

United States engincer oflice, St. Jouis, Mo., 1903. (Chart No. 8.)
Latitude $37^{\circ} 51^{\prime} 38^{\prime \prime} .09$; meters $+1,174,-676$.
Longitude $89^{\circ} 44^{\prime} 27^{\prime \prime} .34 ;$ meters $+668,-798$.
To (3) Lower base, azimuth $342^{\circ} 04^{\prime} 59^{\prime \prime}$, distance 4, 198.3 meters.
To@ Killion, azimuth $34^{\circ} 37^{\prime} 16^{\prime \prime}$, distance $7,767.3$ meters.
To A Bishop '03, azimuth $332^{\circ} 40^{\prime} 13^{\prime \prime}$, distance 5, 175.2 meters.
Tos Waters '03, azimuth $1^{\circ} 57^{\prime} 40^{\prime \prime}$, distance $2,105.4$ meters.
Hole drilled in rock and stirrounded by triangle, on prominent point of Illinois bluffs; directly back of Mansker's house; opposite foot of Craina Island; on right bank about midway between mouth of Marys River and Rockwood, Ill.; 175 meters below railroad trestle.

$$
\begin{gathered}
29 \\
2
\end{gathered}
$$

Mississippi River Commission, 1888; redetermined, United States engineer office, St. Louis, Mo., 1893 and 1903. (Chart No. 8.)
Latitude $37^{\circ} 51^{\prime} 33^{\prime \prime} .15$; meters $+1,022,-82: 3$.
Longitude $89^{\circ} 44^{\prime} 28^{\prime \prime} .35$; meters $+693,-774$.
Elevation: 407.41. (Levels of 1908, 407.77.)
To (4) Lower base, azimuth $341^{\circ} 05^{\prime} 23^{\prime \prime}$, distance $4,061.5$ meters.
To \oplus Killion, azimuth $35^{\circ} 07^{\prime} 07^{\prime \prime}$, distance 7, 628.1 meters.
Tos Waters ' 03 , azimuth $1^{\circ} 25^{\prime \prime} 18^{\prime \prime}$, distance $1,952.4$ meters.
To ${ }^{29} 29$, azimuth $33^{\circ} 17^{\prime} 29^{\prime \prime}$, distance 1,944.7 meters (1893).
Stone post, 12 inches above surface of ground, in pasture, on front slope of Illinois bluffs; 3 -miles above Rockwood, Ill.; 400 feet below Mansker's house, and about 60 feet back from wagon road.

\triangle HEINEMANN HOUSE.

United States engineer office, St. Louis, Mo., 1903. (Chart No. 8; station not plotted.)
Laititude $37^{\circ} 50^{\prime} 44^{\prime \prime} .15$; meters $+1,361,-489$.
Longitude $89^{\circ} 42^{\prime} 30^{\prime \prime} .42$; meters $+744,-723$.
Finial on cupola of prominent white house on Illinois bluffs one-half mile above Rockwood, Ill.

今 WATERS '03.
United States engineer office, St. Louis, Mo., 1903. (Chart No. 8.)
Latitude $37^{\circ} 50^{\prime} 29^{\prime \prime} .84$; meters $+920,-930$.
Longitude $89^{\circ} 44^{\prime} 30^{\prime \prime} .29$; meters $+741,-726$.
Elevation: 377.07.
To (6) Lower base, azimuth $324^{\circ} 11^{\prime} 49^{\prime \prime}$, distance 2,330.9 meters.
To Killion, azimuth $45^{\circ} 21^{\prime} 11^{\prime \prime}$, distance $6,100.5$ meters.
To \triangle Bois Brule ' 03 , azimuth $320^{\circ} 40^{\prime} 40^{\prime \prime}$, distance $1,166.4$ meters.
To \triangle Kirk ' 03 , azimuth $159^{\circ} 41^{\prime} 08^{\prime \prime}$, distance 2,697.6 meters.
To \triangle Mansker '03, azimuth $181^{\circ} 57^{\prime} 38^{\prime \prime}$, distance $2,105.4$ meters.
To ${ }^{\text {29/2 }}$, azimuth $181^{\circ} 23^{\prime} 17^{\prime \prime}$, distance 1,952.4 meters.
Iron pipe, 3 inches above surface of ground at Waters Landing, Mo.; nearly opposite the head of Liberty Island (on left bank); 81 feet below warehouse, on west side of road; outside of rail fence; 40 feet from top of bank (1903); 362 feet below end of
hurdle and 326 feet below prominent cottonwood tree.

Mississippi River Commission, 1888. (Chart No. 8.)
Latitude $37^{\circ} 50^{\prime} 04^{\prime \prime} .61$; meters $+142,-1,708$.
Longitude $89^{\circ} 41^{\prime} 20^{\prime \prime} .11$; meters $+492,-975$.
Elevation: Stone, 386.29 ; pipe, 391.38 .
To $28 / 2$, azimuth $44^{\circ} 56^{\prime}$, distance 1, li5 meters.
Hat stone and iron pipe, at foot of Illinois bluffs; back of Liberty Island; 250 meters below a ravine near lower end of Rockwood, III.; 1, 180 meters below the post-office; on river side of Grand Tower and Chester road; and in fence corner, inside a small, narrow field.

$$
\triangle F I A G 31
$$

Mississippi River Commission, 1880-81. (Chart No. 8, station not plotted.)
Latitude $37^{\circ} 50^{\prime} 04^{\prime \prime} .48$; meters $+138,-1,712$.
Longitude $89^{\circ} 42^{\prime} 54^{\prime \prime} .76$; meters $+1,339,-128$.
To条 Rozier, azimuth $100^{\circ} 32^{\prime} 30^{\prime \prime}$, distance 17,891.2 meters.
To (4) Killion, azimuth $62^{\circ} 19^{\prime} 33^{\prime \prime}$, distance $7,543.7$ metors.
To © Chenter, azimuth $131^{\circ} 30^{\prime} 00^{\prime \prime}$, distance $11,390.8$ meters.
Stone post, on western side of and about 1 mile below head of Liberty Island; about 170 meters back from high bank; 20 meters back from large growth of cottonwood and sycamore; and 2 feet 10 inches northeast of a 32 -inch sycamore tree.

A BOIS BRULE 03.
United States ongineer office, St. Louis, Mo., 1903. (Chart No. 8.)
Latitude $37^{\circ} 49^{\circ} 58^{\prime \prime} .23$; meters $+1,795^{\prime},--55$.
Longitude $89^{\circ} 44^{\prime} 04^{\prime \prime} .08$; meters $+100,-1,368$.
Elevation: 374.24.
To (6 Lower base, azimuth $321^{\circ} 43^{\prime} 16^{\prime \prime}$, distance $1,166.7$ meters.
To \triangle Waters ' 03 , azimuth $146^{\circ} 40^{\prime} 56^{\prime \prime}$, distance $1,166.4$ meters.
Iron pipe, 3 inches above suriace of ground, on land of Meredith at Anchor Landing, Mo., formerly Bois Brule post-office. Station is on fence row back of upper warehouse; 47.4 feet back of line of west end of store building; and 212 feet from top of bank. To northwest corner of store, $295^{\circ} 40^{\prime}-188.8$ feet; blazed trees; 24 -inch pecan, $21^{\circ} 20^{\prime}-177$ feet; 23 -inch pecan $147^{\circ} 20^{\prime}-402$ feet; 6 -inch peach (not blazed) 120° 15' -23 feet.

$$
\left[\begin{array}{c}
28 \\
2
\end{array}\right.
$$

Mississippi River Commission, 1888. (Chart No. 8.)
Latitude $37^{\circ} 49^{\prime} 38^{\prime \prime} .08$; meters $+1,174,-676$.
Longitude $89^{\circ} 41^{\prime} 53^{\prime \prime} .48$; meters $+1,308,-160$.
Elevation: 368.27.
To@28/1, azimuth $224^{\circ} 56^{\prime}$, distance 1,155 meters.
To $28 / 3$, azimuth $44^{\circ} 35^{\prime}$, distance 2,388 meters.
Stone post, near middle of Liberty Island, on left bank; about 620 meters from river and nearly opposite Bishop Landing, Mo.; close to a north-and-south ience and in timber; on the De Holland place; 140 meters south of a bend in fence and about 30 meters from edge of timber.
3) LOWER BASE.

Mississippi River Commission, 1880-81. (Chart No. 8.)
Latitude $37^{\circ} 49^{\prime} 28^{\prime \prime} .52$; meters $+879,-971$.
Longitude $89^{\circ} 43^{\prime} 34^{\prime \prime} .53$; meters $+845,-623$.
Elevation: Copper rivet in stone, 373.73 ; pipe, 376.65 (1908, pipe, 376.75).
To(4) Killion, azimuth $67^{\circ} 12^{\prime} 55^{\prime \prime} .46$, distance $6,187.72$ meters.
To \triangle Bois Brule ' 03 , azimuth $141^{\circ} 43^{\prime} 34^{\prime \prime}$, distance $1,166.7$ meters.
'To Δ Waters '03, azimuth $144^{\circ} 12^{\prime} 23^{\prime \prime}$, distance $2,330.9$ meters.
To Δ Mansker ' 03 , azimuth $162^{\circ} 05^{\prime} 32^{\prime \prime}$, distance $4,198.3$ meters.
To \triangle Bishop ' 03 , azimuth $299^{\circ} 04^{\prime} 43^{\prime \prime}$, distance $1,240.7$ meters.
To (29/2, azimuth $161^{\circ}\left(65^{\prime}{ }^{5} 6^{\prime \prime}\right.$, distance $4,061.5$ meters.
To \triangle Heinemann House, azimuth $213^{\circ} 54^{\prime} 33^{\prime \prime}$, distance 2, 809.6 meters.
Stone and pipe, in Missouri; three-quarters of a milo above Bishop Landing; 385 feet from high bank, at top of slope, on land of Barney Huber; between fourth and fifth hurdles above Bishop Landing, 900 teet and 456 feet from their respective shore
ends. References: Stone chimney, Mansker house, $161^{\circ} 10^{\prime}$; north gable of Vessells's house, $295^{\circ} 37^{\prime}$; north gable of schoothouse $352^{\circ} 07^{\prime}$; south gable Huber's house, 107° 10^{\prime}; 31-foot sycamore tree, northwest corner of field, $148^{\circ} 12^{\prime}$; walnut stump on same ridge, baek of station, $78^{\circ} 42^{\prime}-227$ feet. Blazed trees: 32 -inch pecan, $274^{\circ} 48^{\prime}-356$ feet; 38 -inch cim, $28^{\prime 2} 2^{\circ} 11^{\prime}-585$ feet; 6 -foot sycamore, $3^{\circ} 58^{\prime}-965$ feet. Geodetic point is cross on copper rivet leaded in stone marking post set 2 feet under ground; surface mark is center of cap on iron pipe 14 inches above starface.

(a) O'IIARRAII.

Mississippi River Commission, 1880-81. (Chart No. 8.)
Latitude $37^{\circ} 49^{\prime} 21^{\prime \prime} .42$; meters $+660,-1,190$.
Longitude $89^{\circ} 38^{\prime} 41^{\prime \prime} .57$; meters $+1,017,-451$.
To (3) Backbone, azimuth $11^{\circ} 45^{\prime} 58^{\prime \prime}$. 62 distance $8,587.07$ meters.
To (大) Killion, azimuth $80^{\circ} 25^{\prime} 59^{\prime \prime} .04$, distance $13,053.34$ meters.
To(3) Worthen, azimuth $290^{\circ} 50^{\prime} 02^{\prime \prime} .60$, distance $16,180.86$ meters.
To(i) Fountain Blulf, azimuth $318^{\circ} 15^{\prime} 20^{\prime \prime}$, distance 19,186.2 meters.
To F Flag 37, azimuth $329^{\circ} 39^{\prime} 18^{\prime \prime}$, distance 15,568.5 meters.
Tos Levee' 99 , azimuth $46^{\circ} 01^{\prime} 17^{\prime \prime}$, distance $2,762.2$ meters.
Tos Illinois, azimuth $44^{\circ} 25^{\prime} 11^{\prime \prime}$, distance 2,809 meters.
To \triangle Seventy-six, azimuth $347^{\circ} 02^{\prime} 28^{\prime \prime}$, distance $11,667.8$ meters.
T'o \triangle Pinnacle, azimuth $347^{\circ} 17^{\prime} 45^{\prime \prime}$, distance 11,647 meters.
' $00 \oplus 51 \mathrm{H}$, azimuth $342^{\circ} 16^{\prime}$, distance 1,502 meters.
Stone post, near top of narrow, high ridge on Illinois bluffs; on second prominent peak below Cora City, Ill.; on land of O'Harrah. To reach station from the river: Take road from Hamilton Landing, about one-half mile below Liberty Island, to Cora City; thence go down road beyond frame church to first house and well on east side of road then go up bluff to top of narrow ridge.

- BISHOP' ${ }^{\prime} 03$.

United States ongineer office, St_{i} Louis, Mo., 1903. (Chart No. 8.)
Latitude $37^{\circ} 49^{\prime} 08^{\prime \prime} .96$; meters $+276,-1,574$.
Longtiude $89^{\circ} 42^{\prime} 50^{\prime \prime} .20$; meters $+1,228,-240$.
Elevation: 375.12.
To(:) Lower Base, azimuth $119^{\circ} 05^{\prime} 10^{\prime \prime}$, distance $1,240.7$ meters.
To \triangle Mansker ' 03 , azimuth $152^{\circ} 41^{\prime} 12^{\prime \prime}$, distance 5, 175.2 meters.
To \triangle Heinemann House, azimuth $189^{\circ} 21^{\prime} 17^{\prime \prime}$, distance 2,974. 2 meters.
Iron pipe, set flush with surface of ground, on upstream side of revetted point at Bishop Landing, Mo. References: U.S. light, $260^{\circ}-11.5$ feet; lone sycamore tree, $20^{\circ}-12.2$ feet. (Elevation on chart is incorrect.)

(1) 52 H .

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 8.)
Latitude $37^{\circ} 48^{\prime} 54^{\prime \prime} .23$; meters $+1,672,-178$.
Longitude $89^{\circ} 39^{\prime} 01^{\prime \prime} .69$; meters, $+41,-1,427$.
Elevation: 375.43.
To $\oplus 51 \mathrm{H}$, azimuth $301^{\circ} 47^{\prime}$, distance 1,117 meters.
Two-inch iron pipe, in Illinois bottomland; directly back of Hamilton Landing; 9.5 feet east of center of track of St. Louis, Iron Mountain and Southern Railway (Illinois Division); 1,100 feet below first road crossing below Cora City, and 60 feet above milepost 73 .

$$
\text { [- } \frac{28}{3}
$$

Mississippi River Commission, 1888. (Chart No. 8.)
Latitude $37^{\circ} 48^{\prime} 42^{\prime \prime} .92$; meters $+1,323,-527$.
Longitude $89^{\circ} 43^{\prime} 02^{\prime \prime} .00$; meters $+49,-1,419$.
Elevation: 375.72.
To ${ }^{(28 / 4}$, azimuth $44^{\circ} 29^{\prime}$, distance 1,040 meters.
To @28/2, azimuth $224^{\circ} 35^{\prime}$, distance 2,388 meters.
Stone post, in cultivated field; 850 meters back and southwest from Bishop Landing, Mo.; about 150 meters west of church, and about 125 meters south of a wagon road.

(6) 51 II

Board of Examination and Survey of Mississippi River, 1908. (Chart No. 8.)
Latitude $37^{\circ} 48^{\prime} 35^{\prime \prime} .03$; meters $+1,080,-770$.
Longitude $89^{\circ} 38^{\prime} 22^{\prime \prime} .87$; meters $+560,-908$.
Elevation: 374.43.
To (大) O'Harrah, azimuth $162^{\circ} 16^{\prime}$, distance 1,502 meters.
To (1) 50 H , azimuth $308^{\circ} 15^{\prime}$, distance 1,784 meters.
Two-inch iron pipe, in Illinois bottomland; 2 miles below Cora City, Ill.; 9.5 feet east of center of track of St. Louis, Iron Mountain and Southern Railway (Illinois Division); near point of intersection of tangents of first curve below Cora (iity.

© LAVEF 99

United States engineer office, St. Louis, Mo., 1899. (Chart No. 8.)
Latitude $37^{\circ} 48^{\prime} 19^{\prime \prime} .20$; meters $+592,-1,258$.
Longitude $89^{\circ} 40^{\prime} 02^{\prime \prime} .82$; meters $+69,-1,399$.
To®e Backbone, azimuth $357^{\circ} 53^{\prime} 52^{\prime \prime}$, distance $6,492.9$ meters.
To © 0^{\prime} 'Harrah, ayimuth $226^{\circ} 00^{\prime} 27^{\prime \prime}$, distance $2,762.2$ meters.
Iron pipe, on Illinois shore; on a small levee between road and river, and about 2 feet higher than road; 4 feet from edge of high bank; 331 feet north of piling at upper end of Liberty Bend revetment; 81 feet north of blazed cottonwood tree, and 38 feet west of road.

$$
[0] \frac{28}{4}
$$

Mississippi River Commixsion, 1888. (Chart No. 8.)
Latitude $37^{\circ} 48^{\prime} 18^{\prime \prime} .86$; meters $+581,-1,269$.
Longitude $89^{\circ} 43^{\prime} 31^{\prime \prime} .79$; meters +778 , -690 .
Elevation: Stone, 370.93; pipe, 376.03.
To@28/3, azimuth $224^{\circ} 29$, distance 1, 040 meters.
Flat stone and iron pipe, in cultivated field; 1,800 meters back of Bishop Landing, Mo. References: To upper one of two buildings $118^{\circ} 30^{\prime}-385$ meters; and to lower one of two buildings $50^{\circ} 30^{\prime}-275$ meters. The four buildings stand on western side of road running back from landing past the station and down the river.

\triangle ILLINOIS.

United States engineer office, St. Louis, Mo., 1899. (Chart No. 8.)
Latitude $37^{\circ} 48^{\prime} 16^{\prime \prime} .34$; meters $+504,-1,346$.
Longitude $89^{\circ} 40$ 01 $01^{\prime \prime} .93$; meters $+47,-1,421$.
Elevation: 372.30.
To © Backbone, azimuth $358^{\circ} 03^{\prime} 45^{\prime \prime}$, distance $6,403.9$ meters.
To * O^{\prime} Harrah, azimuth $224^{\circ} 24^{\prime} 22^{\prime \prime}$, distance 2,809 meters.
Iron pipe (set 1903) on levee, 3 feet high, on Illinois shore; between the river and the wagon road from Hamilton Landing to Wagner Landing; five-eighths of a mile below foot of Liberty Island; 41 feet from high bank; and 38 feet above upper end of bank protection marked by six clumps of piles.
(3) KILLION.

Mississippi River Commission, 1880-81. (Chart No. 8.)
Latitude $37^{\circ} 48^{\prime} 10^{\prime} .73$; meters $+331,-1,519$.
Longitude $89^{\circ} 47^{\prime} 27^{\prime \prime} .73$; meters +678 , -790 .
To © Lower Base, azimuth $247^{\circ} 10^{\prime} 32^{\prime \prime} .49$, distance 6, 187.72 meters.
To (6) Backbone, azimuth $299^{\circ} 11^{\prime} 48^{\prime \prime} .38$, distance $12,750.39$ meters.
To © Chester, azimuth $170^{\circ} 29^{\prime} 49^{\prime \prime} .56$, distance $11,219.89$ meters.
To $\Leftrightarrow \mathrm{O}^{\prime} \mathrm{Harrah}$, azimuth $260^{\circ} 20^{\prime} 36^{\prime \prime} .46$, distance $13,053.34$ meters.
To \Leftrightarrow Rozior, azimuth $121^{\circ} 47^{\prime} 54^{\prime \prime} .55$, distance $12,845.01$ meters.
To \triangle Kirk ' 03 , azimuth $206^{\circ} 30^{\prime} 18^{\prime \prime}$, distance $7,620.3$ meters.
To Δ Mansker ' 03 , azimuth $214^{\circ} 35^{\prime} 26^{\prime \prime}$, distance 7,767.3 meters.
To \triangle Waters ' 03 , azimuth $225^{\circ} 19^{\prime} 22^{\prime \prime}$, distance 6, 100.5 meters.
To \triangle Flag 31, azimuth $242^{\circ} 16^{\prime} 46^{\prime \prime}$, distance $7,543.7$ meters.
'To■29/2, azimuth $215^{\circ} 05^{\prime} 17^{\prime \prime}$, distance $7,628.1$ meters.

Stone post, on high bluff in Missouri; back of Belgique village on land of Thomas Ueiss. To reach station from the river, take the road from Belgigue to the bluffs, crossing under railway before reaching Widow Burn's place; follow the first road to the left along the foot of the bluffs about 1 mile nearly to F . Mattingley's house; then cross small ravine and ascend bluff. Blazed trees with spike in center of blaze: 18 -inch red oak, $285^{\circ}-29.56$ feet; 8 -inch black oak, $75^{\circ}-9.22$ feet; 12 -inch post oak, $55^{\circ}-31.45$ fcet.

$$
\oplus 50 \mathrm{II} .
$$

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 8.)
Latitude $37^{\circ} 47^{\prime} 59^{\prime \prime} .29$; meters $+1,828,-22$.
Longitude $89^{\circ} 37^{\prime} 25^{\prime \prime} .58$; meters $+626,-842$.
Elevation: 383.82 .
To $\oplus 49 \mathrm{H}$, azimuth $307^{\circ} 42^{\prime}$, distance 2,217 meters.
Two-inch iron pipe, in Illinois bottomland; $1 \frac{7}{8}$ miles above Raddle atation; 35 feet west of center of track of St. Louis, Iron Mountain and Southern Railway (Illimois Division); opposite center of cut and on highest point of waste bank; near right-ofway fence and 15 feet below private road crossing to house.

\triangle WAGNER ${ }^{\circ} 03$.

United States engineer office, St. Louis, Mo., 1903. (Chart No. 8.)
Latitude $37^{\circ} 47^{\prime} 36^{\prime \prime} .67$; meters $+1,131,-719$.
Longitude $89^{\circ} 39^{\prime} 38^{\prime \prime} .89$; meters $+952,-516$.
Elevation: 373.49.
Iron pipe, 6 inches above surface of ground, on Illinois bank; 805 feet below warehouse at Wagner Landing; on a prominent point in pasture , Fernediately above a large drainage ditch, and about 20 feet from top of bank. Station was established on azimuth $271^{\circ} 20^{\prime}$, distance 15.86 feet from \triangle Wagner ' 99 (oak stake).

$$
\left[\frac{27}{3}\right.
$$

Mississippi River Commission, 1888. (Chart No. 8.)
Latitude $37^{\circ} 47^{\prime} 13^{\prime \prime} .09$; meters $+404,-1,446$.
Longitude $89^{\circ} 41^{\prime} 03^{\prime \prime} .30$; meters $+81,-1,387$.
Elevation: 371.08.
To $027 / 4$, azimuth $89^{\circ} 56^{\prime}$, distance 864 meters.
Stone post, near Jones Point, Mo., and back of Liberty Bar; 180 meters below lane between property of Barney Hoover and William P. Faherty; on east side of fence at road; 225 meters back of high bank and 190 meters south of right anglo in road at Jones Point.

$$
\text { [- } \frac{27}{4}
$$

Mississippi River Commission, 1888. (Chart No. 8.)
Latitude $37^{\circ} 47^{\prime} 13^{\prime \prime} .06$; meters $+403,-1,447$.
Longitude $89^{\circ} 41^{\prime} 38^{\prime \prime} .61$; meters $+945,-523$.
Elevation: Stone, 372.02; pipe, 377.11.
To ${ }^{27} / 3$, azimuth $269^{\circ} 566^{\circ}$, distance 864 meters.
Flat stone and iron pipe, in Missouri bottom land; 17 miles northeast of Menfro, Mo.; in cultivated field of William P. Faherty; 850 meters back of Jones Point; 270 meters southeast of angle in road; 350 meters westwardly from three buildings; and 40 meters east of old slough in timber.

$$
\text { 囚 } \frac{27}{1}
$$

Mississippi River Commission, 1888. (Chart No. 8.)
Latitude $37^{\circ} 47^{\prime} 12^{\prime \prime} .66$; meters $+390,-1,460$.
Longitude $89^{\circ} 39^{\prime} 06^{\prime \prime} .58$; meters $+161,-1,307$.
Elevation: Stone, 365.06; pipe, :70.15.
Flat stone and iron pipe, 2 feet above surface of ground, in Illinois bottom land; $2 f$ miles above Mccteans Point; just 2 meters east of fence, on east side of county road; on land of John Tudor; 75 meters south of house; 50 meters south of 5 -foot elm tree in road; 670 metors north from where line between townships 8 and 9 crosses the Wil-kinson-Wagners Landing road; on east bank of old slough, near its upper end.

United States engineer office, St. Louis, Mo., 1899. (Chart No. 8.)
Latitude $37^{\circ} 47^{\prime} 12^{\prime \prime} .92$; meters $+398,-1,452$.
Longitude $89^{\circ} 39^{\prime} 26^{\prime \prime} .40$; meters $+646,-822$.
Elevation: 373.24.
Iron pipe, 6 inches above surface of ground, on lllinois shore; 30 feel from high bank; 1,935 iect below warehouse at Whites Landing; 500 feet west of tall dead blazed tree; 2,400 feet below mouth of large drainage ditch.

© 1. B. M. 42.

Mississippi River Commission, 1880. (Chart No. 8.)
Latitude $37^{\circ} 45^{\prime} 09^{\prime \prime} .74$; meters $+300,-1,550$ (scaled from chart).
Longitude $89^{\circ} 40^{\prime} 46^{\prime \prime} .73$; meters $+1,144,-315$ (scaled from chart).
Elevation: 378.69.
Center of copper bolt, set horizontally in vertical face of natural rock at upper extremity of Missouri bluff, about 640 meters below Grand Eddy, Mo. It is about 14 meters below extreme upper point of the bluff rocks and the letters "U.S. P. B. M." are cut in the rock near the bolt.

$$
\text { 回 } \frac{26}{1}
$$

Mississippi River Commission, 1888. (Chart No. 8.)
Latitude $37^{\circ} 45^{\prime} 41^{\prime \prime} .04$; meters $+1,265,-585$.
Longitude $89^{\circ} 39^{\prime} 12^{\prime \prime} .02$; meters $+294,-1,165$.
Elevation: Stone, 364.21; pipe, 369.30 .
To 2 26/2, azimuth $31^{\circ} 56^{\prime}$, distance 910 meters.
Flat stone and iron pipe, in Illinois bottom land; at back edge of field owned by William Wilkinson; 1 meter from east-and-west fence; 20 meters from house near head of Wilkinson Island; 600 meters south and 150 meters east of Pleasant Grove schoolhouse at the southwest corner of section 3, township 9 south, range 5 west; 1,400 meters back of McLeans Point; and 160 meters south of and near the upper end of narrow slough.
\triangle BRICK HOUSE.
United States engineer office, St. Louis, Mo., 1899. (Chart No. 8, station not plotted.)

Latitude $37^{\circ} 45^{\prime} 19^{\prime \prime} .78$; meters $+610,-1,240$.
Longitude $89^{\circ} 41^{\prime} 09^{\prime \prime} .74$; meters $+238,-1,231$.
Chimney, in north gable of brick house on blufis at Grand Eddy, Mo.

$$
\text { © } \frac{26}{2}
$$

Mississippi River Commission, 1888. (Chart No. 8.)
Latitude $37^{\circ} 45^{\prime} 16^{\prime \prime} .01$; meters $+494,-1,356$.
Longitude $89^{\circ} 39^{\prime} 31^{\prime \prime} .68$; meters $+776,-693$.
Elevation: 366.38 .
To@26/1, azimuth $211^{\circ} 56^{\prime}$, distance 910 meters.
Stone post, in Illinois, and near head of old Wilkinson Island; 450 meters from left bank of river; one-half mile northeast of Red Rock Landing, Mo.; in cultivated field on first ridge from river; 300 meters west from road and board fence around large field of William Wilkinson; and 350 moters north of a levee. (Not found in 1908.)

\triangle SIMPSON 209.

United States engineer office, St. Iouis, Mo., 1878; redetermined, 1893. (Chart No. 8 , station not plotied.)
Latitude $37^{\circ} 45^{\prime} 07^{\prime \prime} .87$; meters $+243,-1,607$.
Longitude $89^{\circ} 40^{\prime} 30^{\prime \prime} .95$; meters $+905,-564$.
To \triangle Simpsen 211 , azimuth $292^{\circ} 01^{\prime} 01^{\prime \prime}$, distance $1,060.7$ meters.
Hole in rock, about 10 feet above low water; 260 meters below upper end of the first bluff below Grand Eddy, Mo. (Covered in 1908.)

A) FlA(1 3.

Mississippi River Commission, 1880-81. (Chart No. 8.)
Latitude $37^{\circ} 45^{\prime} 02^{\prime \prime} .55$; meters $+79,-1,771$.
Longitude $89^{\circ} 38^{\prime} 54^{\prime \prime} .83$; meters $+1,342,-127$.
Elevation: 369.37.
To © Backbone, azimuth $73^{\circ} 23^{\prime} 39^{\prime \prime}$, distance $1,488.4$ meters.
To 6 Fountain Bluff, azimuth $295^{\circ} 48^{\prime} 13^{\prime \prime}$, distanco $14,550.1$ moters.
Stone post on left bank, 1,200 meters above upper Wilkinson Landing, 111 ; 6 meters inside of fence at road; between houses belonging to Wilkinson and 15 meters below the one occupied by II. (. Hemning; and about 2 F meters from edge of old river bank (200 meters from present bank) at foot of cottonwood bar opposite Devils Backbone.
\triangle simpson $2 l 1$.
United States engineer office, St. Louis, Mo., 1878; redetermined, 1893. (Chart No.8.)
Latitude $37^{\circ} 44^{\prime} 54^{\prime \prime} .98$; meters $+1,695,-155$.
Longitude $89^{\circ} 39^{\prime} 56^{\prime \prime} .78$; meters $+1,300,-79$.
To SSimpson 209, azimuth $112^{\circ} 01^{\prime} 26^{\prime \prime}$, distance $1,060.7$ meters.
Hole in rock, on Nissouri shore; at upstream end of Devils Backbone; about 12 feet above low water; and 340 meters below Red Rock landing, Mo.
(6) BAOKBONE $=$

- $\frac{20}{4}$

Mississippi River Commission, 1880-81. (Chart No. 8.)
Latitude $37^{\circ} 44^{\prime} 48^{\prime \prime} .74$; meters $+1,503,-347$.
Longitude $89^{\circ} 39^{\prime} 53^{\prime \prime} .09$; meters $+1,300,-169$.
Elevation: 668.13.
To@ 0^{\prime} 'Harrah, azimuth $191^{\circ} 45^{\prime} 14^{\prime \prime} 79$, distance $8,587.07$ meters.
To@ Fountain Bluff, azimuth $292^{\circ} 07^{\prime} 23^{\prime \prime} .96$, distance $15,681.23$ meters.
To(3) Worthen, azimuth $261^{\circ} 08^{\prime} 21^{\prime \prime} .34$, distance $17,066.90$ meters.
To(a) Killion, azimuth $119^{\circ} 16^{\prime} 20^{\prime \prime} .87$, distance $12,750,39$ meters.
To \triangle Illinois, azimuth $178^{\circ} 03^{\prime} 51^{\prime \prime}$, distance $6,403.9$ meters.
To \triangle Levee ' 99 , azimuth $177^{\circ} 53^{\prime} 58^{\prime \prime}$, distance $0,492.9$ meters.
To \triangle Flag 38, naimuth $280^{\circ} 09^{\prime} 49^{\prime \prime}$, distance $10,511.2$ meters.
To \triangle Flag 37, azimuth $297^{\circ} 35^{\prime} 41^{\prime \prime}$, distance 10,852 meters.
To \triangle Flag 34, azimuth $253^{\circ} 23^{\prime} 04^{\prime \prime}$, distance $1,488.4$ meters.
Stone post, on top of hill in Missouri; directly back of rock ledge known as Devils Backbone; three-eighths of a mile below Red Rock, Mo. Stone stands on river side of an oak tree, the top of which was sawed off.

$$
\text { (1) } 49 \mathrm{II} .
$$

Board on Examination and Survey of Mississippi River, 190s. (Chart No. 9.)
Latitude $37^{\circ} 47^{\prime} 15^{\prime \prime} .29$; meters $+471,-1,379$.
Longitude $80^{\circ} 36^{\prime} 13^{\prime \prime} .87$; meters $+339,-1,129$.
Elevation: 373.55.
To $₫ 48$ II, azimuth $307^{\circ} 46^{\prime}$, distanco 2,358 meters.
Two-inch iron pipe, in Illinois bottom land; three-quarters mile above Raddle railroad station; 9.5 feet west of center of track of St. Louis, Iron Montain and Southern Railway (Illinois Division); 30 feet south of a road crossing; 900 feet below milepowt 76; 550 feet below bridge No. 111 .
(4) WORTMEN.

Mississippi River Commission, 1880-81. (Chart No. 9.)
Latitude $37^{\circ} 46^{\prime} 13^{\prime \prime} .45$; moters $+415,-1,435$.
Longitude $89^{\circ} 28^{\prime} 24^{\prime \prime} .07$; meters $+589,-880$.
To (3) Fountain Blufi, azimuth $15^{\circ} 25^{\prime} 42^{\prime \prime} .99$, distanco 8, 848.50 meters.
To Backbone, azimuth $81^{\circ} 15^{\prime} 23^{\prime \prime} .25$, distance 17,066.09 meters.
To $\otimes O^{\prime}$ 'Harrah, azimuth $111^{\circ} 02^{\prime} 21^{\prime \prime} .04$, distance $16,180.86$ moters.
To@swallow Rock, azimuth $325^{\circ} 27^{\prime} 30^{\prime \prime}$. 14 , distance $10,560.40$ meters.
To \triangle Flag 37, azimuth $43^{\circ} 32^{\prime} 23^{\prime \prime}$, distance 10,541 meters.
To(44 II, azimuth $44^{\circ} 33^{\prime}$, distance 5,600 moters.
Tord 46 II, azimuth $72^{\circ} 47^{\prime}$, distance (0,770 meters.

Center of stone post (top broken off) on a high point of Illinois bluffs about 19 miles above point where bluffs turn back forming upper boundary of Big Muddy River bottom; about 32 miles above Sand Ridge, Ill., on the Illinois Central Railroad; 2 miles northwest of Crimsby on the St. Jouis, Iron Mountain and Southern Railway (Illinois Division). A road turning up bluffs one-half mile abovo Kinkaid Bridge leads past the station about $1 \frac{1}{2}$ miles farther on. Land is owned by Worthen heirs and station is a few rods from line between their properiy and the railroad lands. In 1908 the station was found in a low chicken house, the last remnant of an old homestead in small clearing.

(J) 48 II .

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 9.)
Latitude $37^{\circ} 46^{\prime} 28^{\prime \prime} .43$; meters $+877,-973$.
Longitude $89^{\circ} 34^{\prime} 57^{\prime \prime} .69$; meters $+1,412$, -57 .
Elevation: 373.92.
To(1)47 II, ázimuth $308^{\circ} 06^{\prime}$, distance 2,243 meters.
Two-inch iron pipe, in Illinois bottom land; 9.5 feet east of center of track of St. Louis, Iron Mountain and Southern Railway (Illinois Division); one-half mile below Raddle station, and 350 feet above telegraph pole 77/20.

$$
\text { (1) } 47 \mathrm{H}
$$

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 9.)
Latitude $37^{\circ} 45^{\prime} 43^{\prime \prime} .53$; meters $+1,342,-508$.
Longitude $89^{\circ} 33^{\prime} 45^{\prime \prime} .58$; meters $+1,116,-353$.
Elevation: 372.37.
To $\oplus 46 \mathrm{H}$, azimuth $307^{\circ} 39^{\prime}$, distance 1,773 meters.
Two-inch iron pipe, in Illinois bottom land; between Jacob and Raddle, and 17 miles from each; 15 feet north of mile post 79; and southwest of abandoned sawmill on Laith's spur.

(1) JONES IT.

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 9.)
Latitude $37^{\circ} 45^{\prime} 32^{\prime \prime} .26$; meters $\left.+995,-85\right)^{\circ}$.
Longitude $89^{\circ} 26^{\prime} 32^{\prime \prime} .55$; meters $+797,-672$.
Elevation: 549 (stadia).
To(1) Wye II, azimuth $38^{\circ} 17^{\prime}$, distance 6,053 meters.
Two-inch iron pipe, on Illinois blulis between Kinkaid Creek and Big Mucldy River; on prolongation of tangent from Gorham to Grimsby, on Herrin Branch of St. Louis, Iron Mountain and Southern Railway (Illinois Division); 18 feet south of black oak; 50 feet north of white oak; 10 feet west of fence; 20 feet from intersection of fences; west of orchard and 100 feet northwest of Jones's house.

(1) 40 II .

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 9.)
Latitude $37^{\circ} 45^{\prime} 08^{\prime \prime} .39$; meters $+259,-1,591$.
Longitude $89^{\circ} 32^{\prime} 48^{\prime \prime} .25$; meters $+1,181,-238$.
Elevation: 370.66.
To (4) Fountain Bluff, azimuth $327^{\circ} 44^{\prime}$, distance 7,713 meters.
Two-inch iron pipe, in Illinois bottom land; seven-eighths mile above Jacob railroad station; 9.7 feet east of center of track of St. Louis, Iron Mountain and Southern Railway (Illinois Divison); 55 feet south of milepost 80; 270 feet north of beginning of timber on west side of track. A small clump of scrub timber is on flat ground directly east.

\triangle WILKINSON.

United States engineer office, St. Louis, Mo., 1899. (Chart No. 9.)
Latitude $37^{\circ} 44^{\prime} 55^{\prime \prime} .92$; meters $+1,724,-126$.
Longitude $89^{\circ} 38^{\prime} 21^{\prime \prime} .99$; meters, $+538,-931$.
Slevation: 369.17.
To Fountain Bluff, azimuth $2960^{\circ} 30^{\prime} 10^{\prime \prime}$, distance 13,738.3 meters.
Toaseventy-six, azimuth $326^{\circ} 08^{\prime} 40^{\prime}$, distance $3,835.8$ meters.
Iron pipe, about 330 feet above Wilkinson Upper Landing, 111 ., and 100 feet from high bank.

$$
\text { [] } \frac{25}{1}
$$

Mississippi River Commission, 1888. (Chart No.9.)
Latitude $37^{\circ} 44^{\prime} 50^{\prime \prime} .72$; meters $+1,564,-236$.
Longitude $89^{\circ} 35^{\prime} 54^{\prime \prime} .90$; meters $+1,344,-125$.
Elevation: Stone, 363.96; pipe, 369.05.
To@ $25 / 2$, azimuth $38^{\circ} 25^{\prime}$, distance 740 meters.
Flat stone and iron pipe, in cultivated field in Illinois, and about 2 miles below Lower Wilkinson landing; 30 meters northeast oi a northwest-southeast fence; and 240 meters nearly due north of northeast corner of orchard. This stone line intersects the left bank about 180 meters below Iower Wilkinson Landing.

$$
\text { (丁) } 45 \mathrm{II}
$$

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 9.)
Latitude $37^{\circ} 44^{\prime} 47^{\prime \prime} .93$; meters $+1,478,-372$.
Longitude $89^{\circ} 32^{\prime} 15^{\prime \prime} .17$; meters $+371,-1,098$.
Elevation: 369.46.
To 944 H , aximuth $308^{\circ} 04^{\prime}$, distance 2,196 meters.
To $\oplus 46 \mathrm{H}$, azimuth $127^{\circ} 55^{\prime}$, distance 1,026 meters.
Two-inch iron pipe, in Illinois bottom land; 9.6 feet east of cenier of track of St. Louis, Iron Mountain and Sonthern Railway (Illinois I)ivision); 30 feet south of bridge No. 118; 515 feet north of wagon road crossing track about 200 feet north of depot at Jacob, Ill.

(1) 44 II .

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 9.)
Latitude $37^{\circ} 44^{\prime} 03^{\prime \prime} .99$; meters $+123,-1,727$.
Longitude $89^{\circ} 31^{\prime} 04^{\prime \prime} .56$; meters $+112,-1,357$.
Elevation: 370.03.
To Fountain Bluff, azimuth $340^{\circ} 50^{\prime}$, distance 4,804 meters.
To (6) Worthen, azimuth $224^{\circ} 32^{\prime}$, distance 5,600 meters.
To $\oplus 43 \mathrm{II}$, azimuth $307^{\circ} 49^{\prime}$, distance 3,039 meters.
Two inch iron pipe, in Illinois bottom land; 9.5 feet west of center of track of St. Louis, Iron Mountain and Southern Railway (Illinois Division); 60 feet south of road crossing; 40 feet southeast of signboard "One mile to Jacob;" 200 feet north of bridge No. 120. A large two-story white house in cultivated field on east side of track is about 1,100 feet from pipe.

$$
\text { 时 } \frac{25}{3}
$$

Mississippi River Commission, 1888; redetermined, United States engineer oflice, St. Louis, Mo., 1899. (Chart No. 9.)

Latitude $37^{\circ} 43^{\prime} 30^{\prime \prime} .51$; meters $+941,-909$.
Longitude $89^{\circ} 37^{\prime} 18^{\prime \prime} .20$; meters $+446,-1,023$.
Elevation: 393.24.
To@25/2, azimuth $213^{\circ} 51^{\prime}$, distance 2,464 meters.
Stone post, 1 foot above surface of ground on east side of Missouri bluffs; in timber about 15 meters west of its eastern edge and 15 meters back of railroad fence; 900 meters above Seventysix, Mo., and 1,100 meters below Linnhoff Landing near first creek above Seventysix. Eight-inch blazed hickory tree stands northwest 4 meters.

$$
\text { [0] } \frac{24}{1}
$$

Mississippi River Commission, 1888. (Chart No. 9.)
Latitude $37^{\circ} 43^{\prime} 29^{\prime \prime} .43$, meters $+907,-943$.
Longitude $89^{\circ} 33^{\prime} 53^{\prime \prime} .02$; meters $+1,298,-172$.
Elevation: Stone, 358.89 ; pipe, 363.98.
To $24 / 2$, azimuth $00^{\circ} 04^{\prime}$, distance 816 meters.
Flat stone and iron pipe, in woods, 1 mile due north from river bank, at a point 000 meters above Estell Landing, Ill. It is 400 meters west of the middle of the west side of field belouging to Robert Moekel.
\triangle PINNACLE.
United States engineer oflice, St. Louis, Mo., 1899. (Chart No. 9, station not plotted.)

Latilude $37^{\circ} 43^{\prime} 12^{\prime \prime} .88$; meters $+397,-1,453$.
Longitude $89^{\circ} 36^{\prime} 56^{\prime \prime} .99$; meters $+1,396,-74$.
Highest piont of roof of house belonging to Mr. Hatch, on hill just above Seventysix, Mo., and 56 meters west of SSeventysix.

\triangle SEVENTYSIX.

United States engineer office, St. Louis, Mo., 1899. (Chart No. 9, station not plotted.)

Latitude $37^{\circ} 43^{\prime} 12^{\prime \prime} .59$; meters $+388,-1,462$.
Longitude $89^{\circ} 36^{\prime \prime} 54^{\prime \prime} .73$; meters $+1,340,-120$.
To © Fountain Bluff, azimuth $286^{\circ} 11^{\prime} 02^{\prime \prime}$, distance 10,576 meters.
To ()ㅇ'Harrah, azimuth $167^{\circ} 03^{\prime} 33^{\prime \prime}$, distance 11,607.8 meters.
To \triangle Wilkinson, azimuth $146^{\circ} 09^{\prime} 33^{\prime \prime}$, distance $3,835.9$ meters.
To \triangle Pinnacle, azimuth $99^{\circ} 02^{\prime} 16^{\prime \prime}$, distance 55.9 meters.
Iron pipe, set on Missouri bluff above Seventysix, Mo.; at south end of orchard, on land of Mr. Hatch; and 175 feet from his house.

(1) 43 II.

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 9.)
Latitude $37^{\circ} 43^{\prime} 03^{\prime \prime} .44$; meters $+106,-1,744$.
Longitude $89^{\circ} 29^{\prime} 26^{\prime \prime} .47$; meters $+648,-822$.
Elevation: 369.91.
To $\left(142 \mathrm{H}\right.$, azimuth $308^{\circ} 03^{\prime}$, distance 1,830 meters.
Two-inch iron pipe, in Illinois bottom land; 9.5 feet east of center of track of St. Louis, Iron Mountain and Southern Railway (Illinois Division); 210 feet above north end of bridge No. 123; and 360 feet above pumping station at Gorham, III.

$$
\square \frac{2!}{2}
$$

Mississippi River Commission, 1888. (Chart No. 9.)
Latitude $37^{\circ} 43^{\prime} 02^{\prime \prime} 96 ;$ meters $+91,-1,759$.
Longitude $89^{\circ} 33^{\prime} 53^{\prime \prime} .06$; meters $+1,300,-170$.
Elevation: 363.92.
To@24/1, azimuth $180^{\circ} 04^{\prime}$, distance 816 meters.
Stone post, in woods on leit bank; 800 meters from river and opposite a point about $\frac{1}{2}$ mile above Saw Mill Hollow in Missouri; 120 meters back of dry chute; 400 meters below foot of small towhead; midway between foot of Lacour Island and Estell Landing; and opposite a point 1 mile below Star Landing, Mo.
(1) WYE H.

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 9.)
Latitude $37^{\circ} 42^{\prime} 58^{\prime \prime} .11$; meters $+1,792,-58$.
Longitude $89^{\circ} 29^{\prime} 05^{\prime \prime} .67$; meters $+139,-1,331$.
Elevation: 371.17.
To \oplus Jones $\mathrm{H}_{\text {, , }}$ 'azimuth $218^{\circ} 15^{\prime}$, distance 6,053 meters.
A stake, in Illinois bottom land; at angle of "Y," at west end oi tangent between Gorham and Grimsby, of Herrin Branch oi St. Louis, Iron Mountain and Southern Railway (Illinois Division).

\triangle FLAG 38.

Mississippi River Commission, 1880-81. (Chart No. 9.)
Latitude $37^{\circ} 42^{\prime} 56^{\prime \prime} .63$; meters $+1,746,-104$.
Longitude $89^{\circ} 33^{\prime} 07^{\prime \prime} .71$; meters $+189,-1,281$.
Elevation: 360.65 .
To Fountain Bluff, azimuth $289^{\circ} 10^{\prime} 08^{\prime \prime}$, distance $5,212.4$ meters.
'To \otimes Backbone, azmuth $109^{\circ} 13^{\prime} 57^{\prime \prime}$, distance 10,511.2 meters.

Stone post, on left bank behind Hat Island (old location); about 1 mile above foot of the same and 2 miles above Cape Cinque Hommes, in Missouri; timber has been partly cut and a space of about 1 acre around stone is comparatively open; all around it is thick underbrush and brier vines. Stone is 1 meter west of an 18 -inch gum tree; 900 meters from river bank; and 5 meters east of a road.

$$
\text { [] } \frac{24}{3}
$$

Mississippi River Commission, 1888. (Chart No. 9.)
Latitude $37^{\circ} 42^{\prime} 13^{\prime \prime} .18$; meters $+406,-1,444$.
Longitude $89^{\circ} 33^{\prime} 53^{\prime \prime} .34$; meters $+1,307,-163$.
Elevation: 383.73.
To \triangle Simpson 233, azimuth $271^{\circ} 37^{\prime}$, distance 287 meters.
Stone post, on front slope of Missouri bluffs; 60 meters from river bank; about 290 meters upstream from the Cumberland Rocks; and 800 meters above Saw Mill Hollow.
(U, S. B. M. 33.
United States engineer office, St. Louis, Mo., 1872; redetermined, Mississippi River Commission, 1888. (Chart No. 9.)

Latitude $37^{\circ} 42^{\prime} 12^{\prime \prime} .34$; meters $+380,-1,470$.
Longitude $89^{\circ} 33^{\prime} 39^{\prime \prime} .92$; meters +978 , -492 .
Elevation: 350.77.
To \triangle Simpson 233 , azimuth $113^{\circ} 16^{\prime}$, distance 45 meters.
Raised square, cut on top corner of shelf of a large bowlder (Cumberland Rocks), on Missouri shore; 830 meters above Saw Mill Hollow; 6 meters from water surface at low water; and back of second large bowlder below \triangle Simpson 233. "B. M. 33" is cut near the square, established by Smith in 1872.

\triangle SIMPSON 233.

United States engineer office, St. Louis, Mo., 1878; redetermined, Mississippi River Commission, 1888. (Chart No. 9, station not plotted.)

Latitude $37^{\circ} 42^{\prime} 12^{\prime \prime} .92$; meters $+398,-1,452$.
Longitude $89^{\circ} 33^{\prime} 41^{\prime \prime} .61$; meters $+1,019,-451$.
Elevation: 354.28.
To \triangle Flag 37, azimuth $293^{\circ} 49^{\prime}$, distance 566 meters.
To回U is. B. M. 33, azimuth $293^{\circ} 16^{\prime}$, distance 45 meters.
To回 $24, \therefore$, aimuth $91^{\circ} 37^{\prime}$, distance 287 meters.
Center of hole in large bowlder (one of three known as Cumberland Rocks), on Missouri shore; 2 miles above Cape Cinque Hommes; 800 meters above Saw Mill Hollow; and 200 meters below bridge $98-4$, on the "Frisco" railroad. "U.S. 33 " is cut on bowlder near hole. (Elevation given for lowest point of rock surrounding hole).

\triangle FLAO 37

Mississippi River Commission, 1880-81. (Chart No. 9, station not plotted.)
Latitude $37^{\circ} 42^{\prime} 05^{\prime \prime} .51$; meters $+170,-1,680$.
Longiturle $83^{\circ} 33^{\prime} 20^{\prime} .49$; meters +502 , -968 .
Elevation: 386.14.
To (6) 0^{\prime} Harrah, azimuth $149^{\circ} 42^{\prime} 35^{\prime \prime}$, distance $15,568.5$ meters.
To Fountain Bluff, azimuth $280^{\circ} 12^{\prime} 38^{\prime \prime}$, distance 4,987.1 meters.
To \otimes Backbone, azimuth $117^{\circ} 39^{\prime} 41^{\prime \prime}$, distance 10,852 meters.
To ${ }^{*}$ Worthen, azimuth $223^{\prime \prime} 29^{\prime} 22^{\prime \prime}$, distance 10,541 meters.
To \triangle Simpson 233 , azimuth $113^{\circ} 49^{\prime}$, distance 566 meters.
Stone post, on right bank; in Saw Mill Hollow, about 17 miles above Cape Cinque Hommes; 30 meters below creek; about 200 meters bolow point of very large detached rocks; 35 meters northeast of point where creek jumps ledge; 2 moters northeast of 24 -inch burr-oak tree, on point of hill 27 meters from river bank; and about 300 meters above grassy valley, orchard and old \log cabin.
$\oplus 42 \mathrm{H}$.
Board on Examination and Survey of Mississippi River, 1908. (Chart No. 10.)
Latitude $37^{\circ} 47^{\prime} 26^{\prime \prime} .83$; meters $+827,-1,023$.
Longitude $89^{\circ} 28^{\prime} 27^{\prime \prime} .62$; meters $+676,-792$.
Elevation: 367.58.
To $\oplus 41 \mathrm{H}$, azimuth $345^{\circ} 57^{\prime}$, distance 2,060 meters.

A stake, in cultivated field in Illinois bottom land, and near extreme northeast point of Fountain Bluif; 161.5 feet east of center of track of St. Louis, Iron Mountain and Southern Railway (Illinois Division), and almost at point of intersection of tangents; 2,000 feet below "Jron Mountain" and "Mlinois Central" railroad crossing, which is 2,000 feet northeast of Leo Rock station, on Illinois Central Railroad.

$$
\left[\frac{23}{1}\right.
$$

Mississippi River Commission, 1888. (Chart No. 10.)
Latitude $37^{\circ} 42^{\prime} 01^{\prime \prime} .45$; meters $+45,-1,805$.
Longitude $89^{\circ} 29^{\prime} 53^{\prime \prime} .76$; meters $+1,317$, -153 .
Elevation: Stone, 372.75; pipe, 377.77.
To®23/2, azimuth $60^{\circ} 40^{\prime}$, distance 799 meters.
Flat stone and iron pipe, 100 meters above Illinois Central railroad station at Fountain Blufi, Ill.; 16 meters northwest of railroad; in fence corner of field; 42 meters south of ruins of burned house: 21 meters west of blazed locust tree; and about 1,100 meters from river bank.

$$
\text { [] } \frac{23}{2}
$$

Mississippi River Commission, 1888. (Chart No. 10.)
Latitude $37^{\circ} 41^{\prime} 48^{\prime \prime} .76$; meters $+1,503,-347$.
Longitude $89^{\circ} 30^{\prime} 22^{\prime \prime} .17$; meters $+543,-927$.
Elevation: 365.57 .
To \triangle Simpson 246, azimuth 3°. 17^{\prime}, distance 1,169 meters.
To@23/1, azimuth $240^{\circ} 40^{\prime}$, distance 799 meters.
To $\square 23 / 3$, azimuth $60^{\circ} 33^{\prime}$, distance 1,852 meters.
Stone post, in fence corner of field on land owned by F. Wells; between Fountain Bluff (Ill.) railroad station and the river; 700 meters from the former and 325 meters from the latter; on west side of Mill Ditch and 170 meters south of bridge across it; and 2 meters from a walnut tree.

(6) FOUNTAIN BLUFF.

Miesissippi River Commission, 1880-81. (Chart No. 10.)
Latitude $37^{\circ} 41^{\prime} 36^{\prime \prime} .77$; meters $+1,134,-716$.
Longitude $89^{\circ} 30^{\prime} 00^{\prime \prime}$. 16 ; meters $+4,-1,466$.
Elevation: 781.46.
To \rightarrow Backbone, azimuth $112^{\circ} 13^{\prime} 26^{\prime \prime} .72$, distance $15,681.23$ meters.
To © SWallow Rock, azimuth $271^{\circ} 08^{\prime} 43^{\prime \prime} .28$, distance $8,343.58$ meters.
To(*)Silica, azimuth $10^{\circ} 49^{\prime} 50^{\prime \prime} .45$, distance $9,261.35$ meters.
To ${ }^{*}$ Worthen, azimuth $195^{\circ} 24^{\prime} 44^{\prime \prime} .19$, distance $8,848.50$ meters.
To \otimes Big Muddy, azimuth $336^{\circ} 29^{\prime} 59^{\prime \prime} .48$, distance $14,245.30$ meters.
To © O^{\prime} Harrah, azimuth $138^{\circ} 20^{\prime} 39^{\prime \prime}$, distance 19,186.2 meters.
To \triangle Flag 34, azimuth $115^{\circ} 53^{\prime} 40^{\prime \prime}$, distance $14,550.1$ meters.
To A Flag 37, azimuth $100^{\circ} 14^{\prime} 40^{\prime \prime}$, distance $4,987.1$ meters.
To A Flag 38, azimuth $118^{\circ} 12^{\prime} 03^{\prime \prime}$, distanco $5,212.4$ meters.
To \triangle Wilkinson, azimuth $116^{\circ} 35^{\prime} 17^{\prime \prime}$, distance $13,738.3$ meters.
To \triangle Seventysix, azimuth $106^{\circ} 15^{\prime} 10^{\prime \prime}$, distance 10,570 meters.
Center of hole in top of stone post, on the highest part of Fountain Bluff in Illinois; about one-half mile south of the lllinois Central railroad station at Fountain Bluff; and in the center of a woods road following top of ridge. Stone post is broken off about 8 inches under ground. The top has been fitted and placed over old part of stone in ground and referenced by two United States Engineer Department iron pipes, about 1 foot above surface of ground set 3 meters due north and due south of center of s^{2} one, respectively. To reach station, enter Fountain Bluff Hollow (at railroad station) turn up bluff to right and follow ridge until reaching highest point. A small knoll toward river is a little higher than the ground at the station.
(1) 41 II .

Board on Fxamination and Survey of Mississippi River, 1908. (Chart No. 10.)
Latitude $37^{\circ} 41^{\prime} 22^{\prime \prime} .12$; meters $+682,-1,168$.
Longitude $89^{\circ} 28^{\prime} 06^{\prime \prime} .74$; meters $+165,-1,305$.
Elevation: 374.79.
To 940 HI , azimuth $356^{\circ} 47^{\prime}$, distance 971.4 meters.
Wooden stake, in Illinois bottom land; 3 miles above Cave Valley, Ill.; 500 meters above railroad culvert for drainage ditch; 7 feet inside of right-of-way fence and 32.3 feet east of center of track of St. Louis, Iron Mountain and Southern Railway (Illinois Division); near second point of intersection of tangents below Gorham, III.

(4) SWALIOW ROCK.

Mississlppi River Commission, 1880-81. (Chart No. 10.)
Latitude $37^{\circ} 41^{\prime} 31^{\prime \prime} .23$; meters $+963,-887$.
Longitude $89^{\circ} 24^{\prime} 19^{\prime \prime} .67$; meters +482,-988.
To(A) Big Muddy, azimuth $11^{\circ} 43^{\prime} 05^{\prime \prime} .90$, distance $13,108.78$ meters.
To (大) Worthen, azimuth $145^{\circ} 29^{\prime} 59^{\prime \prime} .70$, distanco $10,560.40$ meters.
To@ Fountain 131 fff, azimuth $91^{\circ} 12^{\prime} 11^{\prime \prime} .40$ distance $8,343.08$ meters.
Conter of stone post, in Illinois; on top of high bluff known as Swallow Rock; nearly east and 4 miles from upper end of Fountain Bluff; and $1 \frac{1}{2}$ miles north of Cedar Creek flowing into Big Muddy River, To reach station, cross Blg Muddy Miver near lower end of Swallow Rock Cllff, and go up valley of Big Run Creek to a point where a stieam leaves the cliff, then follow cliff to the highest point of hill where station is situated. Top part of stone is, broken off.

$$
\text { [古 } \frac{23}{3}
$$

Mississippi Rlver Commission, 1888. (Chart No. 10.)
Latitude $37^{\circ} 41^{\prime} 18^{\prime \prime} .23$; meters $+593,-1,257$.
Longitude $89^{\circ} 31^{\prime} 27^{\prime \prime} .98$; meters $+686,-784$.
Elevation: 386.11.
To \triangle Simpson 246 , azimuth $279^{\circ} 25^{\prime}$, distance 1,507 meters.
To(23/2, azimuth $240^{\circ} 33^{\prime}$, distance 1,852 moters.
Stone post, on side of Missouri bluffis at Capo Cinquo Hommes; 21 miles above Wittenberg, Mo.; on land of Estell and Weinhold, 1 meter west of a north-and-south fence; 250 meters from river bank; and 500 meters abovo mouth of Owl Creek.

\triangle SIMISON 246.

United States engineer office, St. Louls, Mo., 1878; redetermined, Missiwippi River Commission, 1880-81. (Chart No. 10.)

Latitude $37^{\circ} 41^{\prime} 10^{\prime \prime} .91$; meters $+336,-1,514$.
Longitude $89^{\circ} 30^{\prime} 24^{\prime \prime} .90$; meters $+610,-860$.
Elevation: 346.90.
To Δ Simpson 248 , azimuth $19^{\circ} 56^{\prime} 17^{\prime \prime}$, distance $1,467.1$ meters.
To@23/2, azimuth $183^{\circ} 17^{\prime}$, distance 1,169 meters.
To $03 / 3$, azimuth $99^{\circ} 25^{\prime}$, distance 1,507 meters.
Center of hole in large bowlder, on lllinois shore, on west side of Fountain Bluff; nearly opposite the mouth of Owl Creek in Missourl; a short diatance below where the Illinois Central Railroad leaves the river; 105 moters below upper end of large bow ders on left bank; 45 meters below railroad post marked "G. M, 91-56," and 115 meters below post marked "(. M. 91-49;" 35 meters upstream from a large bowlder close to railroad track on river side, the only one near railroad in this vieinity; and about 20 feet above low water. "U.S. 46 " is cut in rock 2 feet north of hole.
(1) 40 II.

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 10.)
Latitude $37^{\circ} 40^{\prime} 50^{\prime \prime} .66$, meters $+1,562,-288$.
Longitude $89^{\circ} 28^{\prime} 04^{\prime \prime} .51$; meters $+111,-1,360$.
Elevation: 375.51.
To $\oplus 39 \mathrm{~L}$, azimuth $357^{\circ} 15^{\prime}$, distance 1,487 meters.
Two-inch iron pipe, in Illinois bottom land; $2 \frac{1}{2}$ miles above Cave Valley, Ill.; 450 meters above drainage ditch and open railroad culvert; 10 feet east of center of track of St. Louis, Iron Mountain and Southern Railway (Illinois division); 20 meters south of road crossing; about 20 meters southwest of barn, and 10 meters southeast of milepost 87.
\triangle SIMPSON 248.
United States engineer office, St. Louis, Mo., 1878; redetermined, Mississippi River Commission, 1880-81. (Charl No. 10.)

Latitude $37^{\circ} 40^{\prime} 26^{\prime \prime} .18$; meters $+807,-1,043$.
Longitude $89^{\circ} 30^{\prime} 45^{\prime \prime} .31$, meters $+1,110,-361$.
Elevation: 371.28.
To \triangle Simpson 246 , azimuth $199^{\circ} 56^{\prime} 05^{\prime \prime}$, distanco $1,467.1$ meters.

One and one-half inch hole, 4 inches deep, in ridge of largest rock on west side of Fountain Bluff, Illinois shore; 3 miles above Illinois Central railroad station at Grand Tower, III; 500 meters above Trestle IIollow; 30 meters west of Illinois Central Railroad; 6 meters south of railroad post, on east side of track, marked G. M. 92-43; and about two-thirds distance along ridge ot rock from the lower end. "U. S.' 48 " is cut in rock 3 feet south of hole. The bench mark is point of rock 2 inches upstream from the hole, elevation therefor on chart boing 0.20 foot too high.
(1) 39 H.

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 10.)
Latitude $37^{\circ} 40^{\prime} 02^{\prime \prime} .47$; meters $+76,-1,774$.
Longitude $89^{\circ} 28^{\prime} 01^{\prime \prime} .59$; moters $+39,-1,432$.
Elevation: 306.55.
To (938 II, azimuth $3600^{\circ} 53^{\prime}$, distance 2,366 meters.
A stake, in Illinois bottom land; $1 \frac{1}{2}$ miles above Cave Valloy, Ill.; 9.5 feet west of center of track of St. Louis, Iron Mountain and Southorn Railway (Illinois division); 2,230 feet south of headblock to Johns Spur; 2,000 feet south of sawmill; and 300 feet north of milepost 88.

A SIMPSON 250.

United States engineer office, St. Louis, Mo., 1878; redetermined, 1899. (Chart No. 10.)

Latitude $37^{\circ} 39^{\prime} 56^{\prime \prime} .09$; meters $+1,729,-121$.
Longitude $80^{\circ} 30^{\prime} 49^{\prime \prime} .22$; meters $+1,206,-264$.
Elevation: 369.65.
To \triangle Bakeoven, azimuth $1^{\circ} 18^{\prime} 25^{\prime \prime}$, distance 2,556.8 meters.
To A Simpson 249 , azimuth $15^{\circ} 52^{\prime}$ ' $1^{\prime \prime \prime}$, distance $2,025.5$ metors.
To $\triangle \mathrm{Road}$ azimuth $60^{\circ} 18^{\prime} 42^{\prime \prime}$, distance 885.9 metors.
One-inch hole, 3 iniches deep, 1 meter north of south end of large sand bowlder on left bank of river where it beglns to leave Fountain Bluff; about 120 meters above ruins of old dry dock; $2 \frac{1}{2}$ miles abovo rallroad station at Grand Tower, 111 ; 450 meters below Trostlo Hollow, in Fountain Blulf; and 30 meters west of Illinois Central Railroad. "U.S. 00 " is cut, in the rock $1 \frac{1}{2}$ meters northeast of the hole. There are two iron ring bolts in this same bowlder, and the elevation of the lower or downstream one, 3 meters north of the triangulation station, is 368.79 .

A ROAD.
United States engineer office, St. Louis, Mo., 1899. (Chart No. 10.)
Latitude $37^{\circ} 39^{\prime} 41^{\prime \prime} .85$; meters $+1,290,-560$.
Longitude $89^{\circ} 31^{\prime} 20^{\prime \prime}$. 62 ; meters $+50 \mathrm{j},-967$.
To \triangle Fairview, azimuth $321^{\circ} 50^{\prime} 51^{\prime \prime}$, distance $4,021.7$ meters.
To \triangle Tower, azimuth $348^{\circ} 47^{\prime} 57^{\prime \prime}$, distance $3,554,0$ meters.
To \triangle Simpson 249, azimuth $351^{\circ} 51^{\prime} 51^{\prime \prime}$, distance $1,524.9$ meters.
To \triangle Simpson 250 , azimuth $240^{\circ}, 18^{\prime} 23^{\prime \prime}$, distance 885.9 meters.
To \triangle Bluff, azimuth $285^{\circ} 15^{\prime} 55^{\prime \prime}$, distance $1,421.6$ meters.
To ${ }^{2} 22 / 3$, azimuth $353^{\circ} 49^{\prime} 21^{\prime \prime}$, distance $1,516.3$ meters.
Iron pipe, in Missouri, set in middle of farm road running south of east and directly toward Δ Bluff, in Illinois; 500 meters above "Frisco" railroad station at Wittenbery, Mo.; on first ridge or terrace, 150 meters from river; a large lone tree is 75 meters sonth of the road at a point 110 meters west from the station. (Station is incorrectly plotted on chart.)

\triangle BLUFF.

United States engineer office, St. Louis, Mo., 1899. (Chart No. 10.)
Latitude $37^{\circ} 39^{\prime} 29^{\prime \prime} .71$; meters $+916,-934$.
Longitude $89^{\circ} 30^{\prime} 24^{\prime \prime} .67$; meters $+605,-866$.
To \triangle Fairview, azimuth $338^{\circ} 14^{\prime \prime} 55^{\prime \prime}$, distance $3,002.2$ meters.
To \triangle Tower, azimuth $12^{\circ} 20^{\prime} 51^{\prime \prime}$, distance 3, 186.5 meters.
To \triangle Road, azimuth $105^{\circ} 16^{\prime} 29^{\prime \prime}$, distance $1,421.6$ meters.
To \triangle Simpson 249, azimuth $45^{\circ} 31^{\prime} 11^{\prime \prime}$, distance 1,620 meters.
To@ $22 / 3$, azimuth $46^{\circ} 50^{\prime} 46^{\prime \prime}$, distance $1,656.5$ meters.
One-half inch hoo surrounded by triangle in high ledge on south end of Fountain Bluff, on left bank of river; 2 miles above Illinois Central Railroad station at Grand

Tower, Ill., a littlo west of prolongation of line of rallroad tangent, running through cut in bluff and out to river. To reach station from river, land at small creek at lower end of Fountain Bluff and follow road southeast to farmhouse, a little more than onequarter mile from river; then take path which leads up the bliff, and walk along edge of bluff toward river until on line with railroad tangent through cut in bluff above Grand Tower.

(1) CRAWSIIAW II.

Board on Examination and Survoy of Mlasissippi River, 1908. (Chart No. 10.)
Latitude $37^{\circ} 39^{\prime} 06^{\prime \prime} .61$; metors $+204,-1,646$.
Longitudo $87^{\circ} 29^{\prime} 37^{\prime \prime} .97$; motors $+931,-540$.
To A Fairviow, azimuth $00^{\circ} 54^{\prime}$, distance 2,076 meters.
To \triangle Grand, azimuth $31^{\circ} 40^{\prime}$, distance 2,331 metere.
Two-inch iron pipe, on oxtreme southwest point of Fountain Bluff; about 2 miles, along public rond, above Grand Tower, 111; 1 i miles west of Cave Valley, 111.; on top, of high pointior.knoll on land of Mrr. Minnie Crawshaw; about 150 feet north of edge oi of sharp break in the slope of the hill; 450 feot north of smaller point or knoll which is due north of house occupled by Wm. South; also nearly on line with two houses in cultivated field and Δ Grand on bluff immediately above Grand rower; a wagon road from South's barnyard to top of ridge passes 6 feet south of pipe.

$$
\text { [0 } \frac{22}{3}
$$

Mississippi River Commission, 1884; redetormined, United States engineer office St. Loulis Mo., 1890. (Chart No. 10.)

Latitude $37^{\circ} 38^{\prime} 52^{\prime \prime} .96$; moters $+1,633,-217$.
Longitude $89^{\circ} 31^{\prime} 13^{\prime \prime} .96$; meters $+342,-1,120$.
Elevation: 430.30.
To \triangle Bluff, azimuth $228^{\circ} 50^{\prime} 16^{\prime \prime}$, distance $1,656,5$ meters.
To \triangle Road, azimuth $173^{\circ} 49^{\prime} 25^{\prime \prime}$, distanco $1,516.3$ meters.
To \triangle Simpson 249, azimuth $272^{\circ} 00^{\prime}$, distance 53 meters.
Top of stone post, 15 inches above surface of ground, on eastern slope of Missouri bluffs; 500 meters below Wittenberg, Mo.; about 5 meters back from sliding bank, due to railroad cut; 60 meters southwest of Government light and 60 meters from right bank of river. A 10 -inch walnut tree stands 5 meters west and an 8 -inch oak 5 meters south, each blazed with a triangle facing stone.

A SIMPSON 240.

United States engineer office, St. Louis, Mo., 1878; redetermined, 1899, also by Mississippi River Commission, 1880-81: (Chart No. 10.)

Latitude $37^{\circ} 38^{\prime} 52^{\prime \prime} .89$; meters $+1,631,-219(1899)$.
Longitude $89^{\circ} 31^{\prime} 11^{\prime \prime} .82$; meters $+290,-1,181(1899)$.
Latitude $37^{\circ} 38^{\prime} 52^{\prime \prime} .95$; meters $+1,632,-218$ ($1880-81$).
Longitude $89^{\circ} 31^{\prime} 11^{\prime \prime} .75$; meters $+288,-1,183(1880-81)$.
Elevation: 350.43.
To \triangle Bake Oven, azimuth $320^{\circ} 48^{\prime} 01^{\prime \prime}$, distance 784.3 meters (1899).
To \triangle I 1 luff, azimuth $225^{\circ} 30^{\prime} 42^{\prime \prime}$, distance 1,620 meters (1890).
To \triangle Road, azimuth $171^{\circ} 51^{\prime} 56^{\prime \prime}$, distanco 1,524.9 metors (1899).
To \triangle Simpson 250 , azimuth $195^{\circ} 52^{\prime} 05^{\prime \prime}$, distance $2,025.5$ meters (1899).
To \triangle Simpson 250, azimuth $195^{\circ} 51^{\prime} 44^{\prime \prime}$, distance 2,023.8 meters (1880-81).
To \triangle Flag 40, azimuth $309^{\circ} 59^{\prime} 35^{\prime \prime}$, distance. 903.2 meters (1880-81).
To (22/2, azimuth $272^{\circ} 12^{\prime}$, distance 1,063 meters (1884).
To $22 / 3$, azimuth $92^{\circ} 06^{\prime}$, distance 53 meters (1884).
One and one-half inch hole, 3 inches deep, in smooth ledge of rock sloping toward the river on first prominent point below and 500 meters from Wittenberg, Mo.; 1 meter east of high edge of ledge and about 20 meters from water's edge at low water. "U.S. 49 " is cut in rock $2 \frac{1}{2}$ feet northwest of holo.
© 1. B. M. 45.

[^48]Mississlppt River Commission, 1884. (Chart No. 10.)
Latitude $37^{\circ} 38^{\prime} 51^{\prime \prime} .63$; meters $+1,592,-258$.
Longitude $89^{\circ} 30^{\prime} 28^{\prime \prime} .41$; meters $+696,-795$.
Elevation: 373.64,
To Δ Flag 40, azimuth $34^{\circ} 27^{\prime}$, distance 655 meters.
To \triangle Simpson 249 , azimuth $92^{\circ} 12^{\prime}$, distance 1,063 meters.
Stone post, in echoolhouse yard, on loft bank of river; 1,850 meters above Grand Tower, III; 800) meters above Devils Bake Oven; 250 meters from river bank; 73 meters cast from railroad track; 16 meters from northeast corner of schoolhouse; and 3 meters from northeast corner of yard.

(1) 38 II .

13oard on Examination and Survey of Miskissippi River, 1908. ((hart No. 10.)
Latitude $37^{\circ} 38^{\prime} 45^{\prime \prime} .83$; meters $+1,413,-437$.
Longitude $89^{\circ} 27^{\prime} 56^{\prime \prime} .33$; meters $+1,381,-90$.
Elevation: 366.87.
ТоФ 37 II, azimuth $357^{\circ} 12^{\prime}$, distance 1,857 meters.
A stake, in 111 inois bottom land; 10 fect east of center of track of St. Louls, Iron Mountain and Southern Railway (Illinols Division); 150 meters south of sawmill at Cave Valley, III.; about 17 meters west of spur track; and 150 meters south of headblock.

\triangle FLAQ 40 .

Mississippi River Commission, 1880-81. (Chart No. 10.)
Latitude $37^{\circ} 38^{\prime} 34^{\prime \prime}$. 12 ; meters $+1,052,-798$.
Longitude $89^{\circ} 30^{\prime} 43^{\prime \prime} .52$; meters $+1,067,-404$.
Elevation: 374,33.
To \triangle Simpson 249 , azimuth $129^{\circ} 59^{\prime} 52^{\prime \prime}$, distance 903.2 meters.
To (22/2, azimuth $214^{\circ} 27^{\prime}$, distance 655 meters.
Stone post, on leit bank; 1 mile above railroad station at Grand Tower, Ill.: 200 meters east of Devils Bake ()veh; 70 meters from river bank; 80.5 meters northeast from the northeast corner of Mrs. Howard Oliphant's house; 58.7 meters from fence running parallel with river; 41.1 meters northwest of fence corner; and. 2 meters from an east-and-west fence.

\triangle BAKE OVEN.

United States engineer office, St. Louis, Mo., 1899. (Chart No. 10.)
Latitude $37^{\circ} 38^{\prime} 33^{\prime \prime} .17$; meters $+1,023,-827$.
Longitude $89^{\circ} 30^{\prime} 51^{\prime \prime} .60$; meters $+1,205,-206$.
Elevation: 368.89.
To \triangle Simpson 249, azimuth $140^{\circ} 48^{\prime} 14^{\prime \prime}$, distance 784.3 meters.
To \triangle Simpeon 250 , "azimuth $181^{\circ} 18^{\prime} 23^{\prime \prime \prime}$, distance $2,556.8$ meters.
Iron pipe, about 10 feet from left high bank; 1 mile above railroad station at Grand Tower, III.; directly back of and about 150 feet upstream from Devils Bake Oven; 80 feet downstream from large walnut tree; 50 feet north of blazed sycamore; and 8 feet from oak post in barbed-wire fence.

\triangle GRAND ' 9 .

United States engineer office, St. Louis, Mo., 1899. (Chart No. 10.)
Latitude $37^{\circ} 38^{\prime} 02^{\prime \prime} .25$; meters $+69,-1,781$.
Longitude $89^{\circ} 30^{\prime} 27^{\prime \prime} .88$; meters $+684,-787$.
Elevation: 522.80.
To © Big Muddy, azimuth $315^{\circ} 23^{\prime} 52^{\prime \prime}$, distance $9,058.2$ meters.
To ©Silica, azimuth $23^{\circ} 07^{\prime} 45^{\prime \prime}$, distance $2,699.7$ meters.
To \triangle Mc Lean, azimuth $327^{\circ} 29^{\prime} 22^{\prime \prime}$, distance $2,040.6$ meters.
To \triangle Mouth, azimuth $15^{\circ} 26^{\prime} 24^{\prime \prime}$, distanco $5,044.5$ meters.
To \triangle Church Spire, azimuth $316^{\circ} 03^{\prime} 49^{\prime \prime}$, distance 978 meters.
To Δ Fairview, azimuth $274^{\circ} 25^{\prime} 13^{\prime \prime}$, distance $1,194.8$ metens.
To \triangle Flag, azimuth $337^{\circ} 51^{\prime} 55^{\prime \prime}$, distance 4, 184.4 meters.
To \triangle 'Tower, azimuth $55^{\circ} 21^{\prime} 39^{\prime \prime}$, distance 732.6 meters.
Iron pipe, set on highest point of hill immediately norih of the coal dump and the main part of Grand Tower, Ill.

\triangle FAIRVIEW.

United States engineer office, St. Louis, Mo., 1899. (Chart No. 10.)
Latitude $37^{\circ} 37^{\prime} 59^{\prime \prime} .26$; meters $+1,827,-23$.
Longitude $89^{\circ} 29^{\prime} 39^{\prime \prime} .29$; meters $+964,-508$.
Elevation: 472.40.
To (*) Silica, azimuth $43^{\circ} 17^{\prime} 38^{\prime \prime}$, distance 3,284 meters.
To © Big Muddy, azimuth $320^{\circ} 53^{\prime} 35^{\prime \prime}$, distance $8,193.8$ meters.
To \triangle Grind ' 99 , azimuth $94^{\circ}{ }^{\circ} 25^{\prime} 43^{\prime \prime}$ ', distance $1,194.8$ meters.
To \triangle Bluff, azimuth $158^{\circ} 15^{\prime} 23^{\prime \prime}$, distancu $3,002,2$ meters.
To \triangle Tower, azimuth $79^{\circ} 45^{\prime} 35^{\prime \prime}$, distance $1,823,1$ meters.
To \triangle Church Splre, azimuth $39^{\circ} 57^{\prime} 10^{\prime \prime}$, distance 798.5 meters.
To \triangle Flag, azimuth $354^{\circ} .11^{\prime} 31^{\prime \prime}$, distance $3,803.5$ meters.
To \triangle Mouth, azimuth $26^{\circ} 44^{\prime} 27^{\prime \prime}$, distance $5,988.8$ meters.
To \triangle Road, azimuth $141^{\circ} 51^{\prime} 53^{\prime \prime}$, distance $4,021.7$ meters.
Iron pipe, on east end of ridge of Grand Tower, Ill., and southeast of graveyard; at point of timber and under large white-oak tree.

\triangle TOWER.

United States engineor office, St, Louis, Mo., 1899. (Chart No. 10.)
Latitude $37^{\circ} 37^{\prime} 48^{\prime \prime} .74$; meters $+1,503,-347$.
Longitude $89^{\circ} 30^{\prime} 52^{\prime \prime} .46$; meters $+1,286,-185$.
To \triangle Fairview, azimuth $259^{\circ} 44^{\prime} 50^{\prime \prime}$, distance $1,823.1$ meters.
To \triangle Grand ' 99 , azimuth $235^{\circ} 21^{\prime} 24^{\prime \prime}$, distance 732.0 meters.
To \triangle Mc Lean, azimuth $307^{\circ} 30^{\prime} 08^{\prime \prime}$, distance 2, 142.3 meters.
To \triangle Bluff, azimuth $192^{\circ} 20^{\prime} 34^{\prime \prime}$, distance $3,186.5$ meters.
To \triangle Road, azimuth $168^{\circ} 48^{\prime} 14^{\prime \prime}$, distance $3, b 54.9$ meters.
Iron pipe, in Missouri; on west side of highest point of hili south of Tower Rock and opposite Grand Tower, Ill.; about 15 feeet east of a blazed oak tree, the only tree on crest of hill. (Not found in 1908.)

Ф 37 H.

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 10.)
Latitude $37^{\circ} 37^{\prime} 45^{\prime \prime} .66$; meters $+1,408,-442$.
Longitüde $89^{\circ} 27^{\prime} 52^{\prime \prime} .64$; meters $+1,291,-181$.
Elevation: 305.77.
To $\oplus \ngtr 36 \mathrm{H}$, azimuth $357^{\circ} 03^{\prime}$, distance 2,215 meters.
A stake, in Illinois bottom land; 9.5 feet west of center of track of St. Louis, Iron Mountain and Southern Railway (Illinois Division); 40 meters south of southeast corner of depot at Howardton, Ill.; 4 meters south of cattle guard; and 13 meters south of road crossing.

\triangle CHURCI SPIRE.

United States engineer office, St. Louis, Mo., 1899. (Chart No. 10.)
Latitude $37^{\circ} 37^{\prime} 39^{\prime \prime} .41$; meters $+1,215,-635$.
Longitude $89^{\circ} 30^{\prime} 00^{\prime \prime} .20$; meters $+5,-1,467$.
Center of tall white church spire in Grand Tower, IIl.

\triangle MC LEAN.

United States engineer office, St. Louis, Mo., 1899. (Chart No. 10.)
Latitude $37^{\circ} 37^{\prime} 06^{\prime \prime} .43$; meters $+198,-1,652$.
Longitude $89^{\circ} 29^{\prime} 43^{\prime \prime} .16$; meters $+1,059,-413$.
Elevation: 301.48.
To \triangle Tower, azimuth $127^{\circ} 30^{\prime} 50^{\prime \prime}$, distance $2,142.3$ meters.
To \triangle Grand ' 99 , azimuth $147^{\circ} 29^{\prime} 49^{\prime \prime}$, distance 2,040.6 meters.
Iron pipe, in field, owned by George Wolf, one-half mile south from old furnace dump at Grand Tower, III.; 160 feet from river bank; 4 feet east of fence on east side of road to Grand Tower; and about 200 feet upstream from Wolf's house.
(4) SILICA.

Mississippi River Commission, 1880-81. (Chart No. 10.)
Latitude $37^{\circ} 36^{\prime} 41^{\prime \prime} .72$; meters $+1,286,-564$.
Longitude $89^{\circ} 31^{\prime} 11^{\prime \prime} .11$; meters $+273,-1,199$.

To © Big Muddy, azimuth $298^{\circ} 07^{\prime} 08^{\prime \prime} .58$, distance $8,414.61$ meters.
To \odot Rich, azimuth $325^{\circ} 37^{\prime} 11^{\prime \prime}, 79$ distance $13,603,45$ meters.
To © Indian Creek, azimuth $353^{\circ} 44^{\prime} 54^{\prime \prime} .04$, distance $10,609.97$ meters.
To © Fountain Bluff, azimuth $190^{\circ} 49^{\prime} 07^{\prime \prime} ; 10$, distance $9,261.35$ meters.
To \triangle Fairview, azimuth $223^{\circ} 16^{\prime} 42^{\prime \prime}$, distance 3,284 meters.
To \triangle Grand ' 99 , azinuth $203^{\circ} 07^{\prime} 18^{\prime \prime}$, distance $2,699.7$ meters.
Stone post, on a prominent peak on Missouri bluffs; about one-quarter mile below head of Grand Tower Island; one-quarter mile below railroad trestle over Pattons Creek; and directly back of silica banks.

$$
\oplus 36 \mathrm{H}
$$

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 10.)
Latitude $37^{\circ} 36^{\prime} 33^{\prime \prime} .91$; meters $+1,045,-805$.
Longitude $89^{\circ} 27^{\prime} 47^{\prime \prime} .98$; meters $+1,177,-295$.
Elovation: 363.07.
To $\oplus 35$ H, azimuth $357^{\circ} 01^{\prime}$, distance 1,643 meters.
To \oplus Cemetery H , azimuth $282^{\circ} 51^{\prime}$, distance 2,297 meters.
To \oplus River Blufi H, azimuth $252^{\circ} 32^{\prime}$, distance 2,784 meters.
Two-inch iron pipe, in Illinois bottom land; 1.4 miles below railroad station at Howardton, Ill.; 11.3 feet west of center of track of St. Louis, Iron Mountain and Southern Railway (Illinois division); 265 feet above milepost 92, and 725 feet south of bridge No. 127.

$$
\text { [] } \frac{21}{1}
$$

Mississippi River Commission, 1884. (Chart No. 10.)
Latitude $37^{\circ} 36^{\prime} 33^{\prime \prime} .76$; meters $+1,041,-809$.
Longitude $89^{\circ} 28^{\prime} 34^{\prime \prime} .23$; meters $+840,-632$.
Elevation: 363.25.
To 9 21/2, azimuth $58^{\circ} 13^{\prime}$, distance 746 meters.
Stone post, at edge of cultivated field and small timber in low ground; 400 meters east of Illinois Central Raillroad tracks, at a point 2 miles south from the station at Grand Tower, Ill.; 800 meters back from left bank of river, at head of Big Muddy Island; 136 meters south of fence, and 175 meters north of road.
㕸

Mississippi River Commission, 1884. (Chart No. 10.)
Latitude $37^{\circ} 30^{\prime} 21^{\prime \prime} .02$; meters $+648,-1,202$.
Longitude $89^{\circ} 29^{\prime} 00^{\prime \prime} .08$; meters $+2,-1,470$.
Elevation: 363.90.
To $21 / 1$, azimuth $238^{\circ} 13^{\prime}$, distance 746 meters.
To $21 / 3$, azimuth $58^{\circ} 12^{\prime}$ distance 1,318 meters.
Stone post, on land of Gilbert Gay, in Illinois bottom land; 2 miles below Grand Tower, M1:; 325 meters west from Illinois Central Railroad; 215 meters above old chute behind Big Muddy Island; on northeast side of Grand Tower road; one-half meter north of fence at southwest edge of orchard; and 5 meters above a large elm tree on land of Wilson, on opposite side of road.

$$
\square \frac{21}{3}
$$

Missiseippi River Commission, 1884. (Chart No. 10.)
Latitude $37^{\circ} 35^{\prime} 58^{\prime \prime} .50$; meters $+1,804,-46$.
Longitude $89^{\circ} 29^{\prime} 45^{\prime \prime} .75$; meters $+1,122,-350$.
Elevation: 360,05 .
To ${ }^{\circ} 21 / 2$, azimuth $238^{\circ} 12^{\prime}$, distance 1,318 meters.
Stone post, on small ridge on east side of Grand Tower Island; 1,500 meters below head of island; and 25 meters from the main high bank; three blazed, 12 -inch cottonwood trees face the stone.

$$
\triangle \text { FLAG. }
$$

United States engineer office, St. Louis, Mo., 1899. (Chart No. 10.)
Latitude $37^{\circ} 35^{\prime} 56^{\prime \prime} .52$; meters $+1,743,-107$
Longitude $89^{\circ} 29^{\prime} 23^{\prime \prime} .60$; meters $+579,-893$.
H, Doc. 50, 61-1——30*

To($)$ Big Muddy, azimuth $298^{\circ} 17^{\prime} 20^{\prime \prime}$, distance $5,432.1$ meters.
To \triangle Grand ' 09 , azimuth $157^{\circ} 52^{\prime} 35^{\prime \prime}$, distance 4, 884.4 meters.
To \triangle Fairview, azimuth $174^{\circ} 11^{\prime} 41^{\prime \prime}$, distance $3 ; 803.5$ meters.
Iron pipe, on east side and 1 mile below the head of Grand Tower Island; about 80 feet north from bend in wire fence where line of cottonwood timber commences; 4 feet east from fence and between two posts marked with triangles.

\triangle LINE NO. 2.

United States engineer office, St. Louis, Mo., 1899. (Chart No. 10.)
Latitude $37^{\circ} 35^{\prime} 23^{\prime \prime} .14$; meters $+713,-1,137$.
Longitude $89^{\circ} 31^{\prime} 25^{\prime \prime} .99$; meters $+638,-734$.
Elevation: 371:08,
To(A) Indian Croek, azimuth $340^{\circ} 23^{\prime} 35^{\prime \prime}$, distance 8,265 meters.
To(*) Big Muddy, azimuth $281^{\circ} 12^{\prime} 34^{\prime \prime}$, distance 7,038 meters.
Iron pipe, on high river bank; in Missouri, opposite timber line on lower end of Grand Tower Island; 125 feet zouth of John Oleary's house; and 3 feet east of wire fence near the river.

A POINT No. 2.

United States engineer office, St. Louls, Mo., 1899. (Chart No. 10.)
Latitude $37^{\circ} 35^{\prime} 00^{\prime \prime} .00$; meters $+0,-1,850$.
Lor situde $89^{\circ} 30^{\prime} 53^{\prime \prime} .74$; meters $+1,319,-153$.
To \triangle Mouth, azimuth $101^{\circ} 33^{\prime} 44^{\prime \prime}$ distance 880.4 meters.
Iron pipe, in cultivated field in Illinolis on lower point of old Big Muddy Ialand, at mouth of Tower Bend Chute and opposite the lower end of Grand Tower Island. Station is in line with and between a large pecan tree in fleld and a blazed cottonwood tree in edge of timber about 135 feet west of the station. (Not found in 1008.)

(1) RIVER BLUFF 11

Board on Examination and Survey of Miseissippi River, 1908. (Chart No. 11.)
Latitude $37^{\circ} 37^{\prime} 01^{\prime \prime} .01$; meters $+31,-1,819$.
Longitude $89^{\circ} 25^{\prime} 59^{\prime \prime} .69$; meters $+1,464,-8$.
To $\oplus 36 \mathrm{H}$, azimuth $72^{\circ} 33^{\prime}$; distance 2,784 meters.
To \oplus Cemetery H_{1}, azimuth $17^{\circ} 13^{\prime}$, distance 1,409 meters.
A stake, on center of knoll on Illinois bluffs, 4 miles east of Grand Tower, Ill.; about 2 miles southeast of Howardton, 111 .; 14 miles above line between Jackson and Union counties and 1 of a mile below Rattlesnake Ferry on the Big Muddy River; 60 feet from edge of bluff, 50 feet from Big Muddy River; 15 feet north of burnt white oak snag; 10 feet east of white oak; and 6 feet west of hickory tree blazed on bluff side. A small log cabin is on the river bank just below the station.

\oplus OEMETERY H.

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 11.)
Latitude $37^{\circ} 36^{\prime} 17^{\prime \prime} .33$; meters $+534,-1,316$.
Longitude $80^{\circ} 26^{\prime} 16^{\prime \prime} .71$; meters $+410,-1,062$.
Elevation: 615.5 (stadia).
To © Big Muddy, azimuth $356^{\circ} 30^{\prime}$, distance 3,222 meters.
To $\oplus 34 \mathrm{H}$, azimuth $41^{\circ} 24^{\prime}$, distance 3,159 meters.
To $\oplus 36 \mathrm{H}$, azimuth $102^{\circ} 52^{\prime}$, distance 2,297 meters.
A stake, on highest point of Illinois bluffs along the Big Muddy River; 4 miles southeast of Grand 'f'ower, IIl: 2 miles south of Howardton, Ill.; one-half mile above large hollow or ravine, due east; 1 miles from a point where the wagon road, between Jackann and Union countios; and leading to sawmill in same hollow, crosses the St. Louis, Iron Mountain and Southern Railway (Illinois division). The station is directly above a cemetery on hillside, and 10 feet southwest of black-oak tree blazed with symbol " ©."
$\oplus{ }^{5} 5 \mathrm{H}$.
Boảrd on Examination and Survey of Miseissippi River, 1908. (Chart No. 11.)
Latitude $37^{\circ} 35^{\prime} 40^{\prime \prime} .69$; meters $+1,254,-596$.
Longitude $89^{\circ} 27^{\prime} 44^{\prime \prime} .50$; meters $+1,092,-380$.
Elevation: 361.59.
ToÐ34 II, azimuth $357^{\circ} 02^{\prime}$, distance 1,243 meters.

Two-inch fron pipe, in Illinois bottom land; 24 miles below Howardion, 1ll; 10 feet weat of center of track of St. Louis, Iron Mountain and Southern Railw'ay (Illinois division); 150 meters above milepost $93 ; 320$ feet above ond of first cut abovo Big Muddy River; and northwest of house cecupied by II. B. Henson, 200 feet east of track.

A MOUTH.

United States engineer office, St. Iouis, Mo., 1899. (Ohart No. 11.)
Latitude $37^{\circ} 35^{\prime} 05^{\prime \prime} .76 ;$ meters $+178,-1,672$.
Iongitude $89^{\circ} 31^{\prime} 29^{\prime \prime} .13$; meters $+715,-757$.
Elevation: 369.48.
To \triangle Grand ' 99 , azimuth $195^{\circ} 25^{\prime} 46^{\prime \prime}$, distance $5,644.5$ meters.
To \triangle Point No. 2, azimuth $281^{\circ} 33^{\prime} 23^{\prime \prime}$, distance 886.4 meters.
To \triangle Fairview, azimuth $20 f^{\circ} 43^{\prime} 20^{\prime \prime}$, distance 5, 988.8 meters.
Iron pipe, on high bank in Missouri, opposite mouth of chute in Tower Island Bend; $1 \frac{1}{2}$ miles above railroad trestle over Apple Creek; above flat shelving rock on shore; and about 30 feet below small ravine.

(1) 34 HI

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 11.)
Latitude $37^{\circ} 35^{\prime}\left(W^{\prime \prime} .43\right.$; meters $+13,-1,837$.
Longitude $89^{\circ} 27^{\prime} 41^{\prime \prime} .87$; meters $+1,027,-445$.
Elevation: 361.88.
To © Big Muddy, azimuth $290^{\circ} 18^{\prime}$, distance 2,438 meters.
To 133 II, azimuth $331^{\circ} 42^{\prime}$, distance 1,674 meters.
Two-inch iron pipe, in Illinols bottom land; $3 t$ miles below Howardton Ill.; 10.1 feet west of center of track of St. Louis, Iron Mountain and Southern Railway (Illinois division); 340 feet south of telegraph pole $93 / 20$; near upper point of first curve above Big Muddy River; 800 feet south of road crossing; and opposite ! !eg cabin and shed in cultivated field.
(4) BIO MUDDY.

Missisel ppi River Commisaion, 1880-81. (Chart No. 11.)
Latitudo $37^{\circ} 34^{\prime} 32^{\prime \prime} .97$; meters $+1,016,-834$.
longitude $89^{\circ} 26^{\prime} 08^{\prime \prime} 67$; meters $+213,-1,260$.
To(ASHlica, azimuth $118^{\circ} 10^{\prime} 13^{\prime \prime} .09$, distance $8,414.61$ meters.
To Fountain Bluff, azimuth $150^{\circ} 32^{\prime} 20^{\prime \prime} .83$, distance $14,245,30$ meters.
To (4) Indian Creek, azimuth $43^{\circ} 38^{\prime} 48^{\prime \prime} .47$, distance $0,08 B .99$ meters.
To \Leftrightarrow Swallow Rock, azimuth $101^{\circ} 41^{\prime} 50^{\prime \prime} .43$, distance $13,168.78$ meters.
To \triangle Grand ' 99 , azimuth $135^{\circ} 26^{\prime} 31^{\prime \prime}$, distance $9,058.2$ meters.
To \triangle Flag, azimuth $118^{\circ} 19^{\prime} 19^{\prime \prime}$, distance $5,432.1$ meters.
To \triangle Flag 43 , azimuth $80^{\circ} 50^{\prime} 47^{\prime \prime \prime}$, distance $8,168.3$ meters (1880-81).
To \triangle Flag 43, szimuth $80^{\circ} 50^{\prime} 54^{\prime \prime}$, distance 8, 168.9 meters (1809).
To Δ Fairview, azimuth $140^{\circ} 55^{\prime} 43^{\prime \prime}$, distance 8, 193.8 meters.
$T 0 \oplus 33 \mathrm{H}$, azimuth $67^{\circ} 13^{\prime}$, distance 1,620 meters.
Stone post, on high bluff in Illinois; about 5 miles southeast of Grand Tower, Ill; due east from bridge of the St. Louis, Iron Mountain and Southern Railway (Illinois division) over Big Muddy River; and about $1 \frac{1}{2}$ miles down the bluffs from Kings Ferry. To reach station from Mississippi River, go via Big Muddy River to a ferry and road about 4 mile above "Iron Mountain"" bridge; take road to bluffis, thence south about $\frac{1}{2}$ mile to a point where road turns into a valley, just above a white frame house; from this point go southeast, up northwest slope of bluff, directly to station on prominent point of highest ridge.

$\oplus 33 \mathrm{H}$.

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 11.)
Latitude $37^{\circ} 34^{\prime} 12^{\prime \prime} .51 ;$ meters $+386,-1,464$.
Longitude $89^{\circ} 27^{\prime} 09^{\prime} .45$; meters +232 , $-1,241$.
Elevation: 362.21.
To © Big Muddy, azimuth $247^{\circ} 12^{\prime}$, distance 1,620 meters.
To \oplus Aldridge H , azimuth $285^{\circ} 40^{\prime}$, distance 1,294 meters.
$T o \oplus 32 \mathrm{H}$, azimuth $1^{\circ}{ }^{3} 6^{\prime}$, distance 2,525 meters.
Two-inch iron pipe, in Illinois bottom land; if miles above La Rue; 7 feet east of center of track of St. Louis, Iron Mountain and Southern Railway (Illinois Division); 2,400 feet below "Iron Mountain" bridge over Big Muddy River; 3 feet south of road crossing and near lower end of first curve south of the Big Muddy River.

(9) ALDRIDGE H.

Board on Dxamination and Survey of Missisilppi River, 1908. (Chart No. 11.)
Latitudo $87^{\circ} 34^{\prime} 01^{\prime \prime} .27$; meters $+39,-1,811$.
Longitude $80^{\circ} 20^{\prime} 18^{\prime \prime} .73$; meters $+480,-1,013$.
Elovation: 823.0 (stadia).
To* Big Muddy, azimuth $104^{\circ} 10^{\prime}$, distanco 1,008 meters.
A stake, on first prominent polit of lillnols bluffo below Blo Muddy; northeastwardly and 2 miles from Aldridge, 111 . In line with a 10 -acre feld, surrounded by
 feet in front of a large white oak tree. The Aldridge rond, on the east bank of the Big. Muddy River, croseses the St. Louis, Iron Mountaln and Southern Rallway (Illinois Division) if miles above Ja Rue and leads to a small farmhouse about one-quarter of a mile below the station.

$$
\triangle \text { STRAW. }
$$

United States engineer oftice, St. Loula, Mo., 1890. (Chart No. 11.)
Latitude $37^{\circ} 33^{\prime} 6 f^{\prime \prime} .38$; moters $+1,738,-112$.
Longitude $89^{\circ} 30^{\prime} 53^{\prime \prime} .17$; meters $+1,305,-168$.
Elevation: 358.98.
To (A) Indian Creok, azimuth $352^{\circ} 31^{\prime} 40^{\prime \prime}$, distanco b, 406.7 moters.
To \triangle Flag 43, azimuth $80^{\circ} 48^{\prime} 00^{\prime \prime}$, distance 1, 090.7 meters.
To \triangle Simpson 271 , azimuth $40^{\circ} 57^{\prime} 17^{\prime \prime}$, distance $1,352,7$ meters.
Iron pipe, on left bank and 60 feet from Missisisippi River; on the line Blig MuddyFlay 43; on west bank of slough bearing toward Crawford Landing; 1,000 meters south of the Big Muddy River and opposite the mouth of Apple Creek in Missouri.

\triangle FLAO 43.

Mississippi River Commission, 1880-81; redetermined, United Statew engineer office, St. Louis, Mo., 1899. (Chart No. 11.)
Latitude $37^{\circ} 33^{\prime} 50^{\prime \prime} .70$; meters $+1,563,-287$.
Longitude $89^{\circ} 31^{\prime} 377^{\prime \prime} .28$; meters +915 , - 558 .
Elevation: 366.64.
To © Silica, azimuth $186^{\circ} 56^{\prime} 04^{\prime \prime}$, distance $5,311.4$ meters ($1880-81$),
To © Big Muddy, azimuth $260^{\circ} 47^{\prime} 27^{\prime \prime}$, distance 8, 168.3 meters ($1880-81$).
To © Big Muddy, azimuth $260^{\circ} 47^{\prime} 33^{\prime \prime}$ distance $8,168.9$ meters (1899).
To © Indian Creek, azimuth $341^{\circ} 10^{\circ} 33^{\prime \prime}$, distance $5,572,2$ meters (1880-81).
To © Indian Creek, azimuth $341^{\circ} 10^{\prime} 30^{\prime \prime \prime}$, distance $5,572.5$ meters (1840).
To \triangle Straw, azimuth $260^{\circ} 47^{\prime} 34^{\prime \prime}$, distance $1,096.7$ meters (1899).
To \triangle Crawford, azimuth $346^{\circ} 18^{\prime} 2^{\prime \prime}$, distance $3,840.4$ meters (1899).
Stone piest, on high right bank and rocky point just bolow mouth of Apple Creek and one-half mile below lifmingham, Mo.; 3 feet south of stump of poplar tree; and 70 feet toward river from triangle of three spikes driven in tie, between rails, in cut of "Frisco" railroad and 425 feet below bridge over Apple Creek.

$$
\text { 回 } \frac{20}{1}
$$

Miesiesippi River Commiseion, 1884. (Chart No. 11.)
Latitude $37^{\circ} 33^{\prime} 47^{\prime \prime} .41$; meters $+1,462,-388$.
Longitude $89^{\circ} 30^{\prime} 25^{\prime \prime} .55$; meters $+627,-846$.
Elevation: 357.63.
To 10 20/2, azimuth $74^{\circ} 59^{\prime}$, distance 490 meters.
Stone post, 630 meters east from left river bank and 1,200 meters below the mouth of Big Muddy River; in woods on land of C. S. Freeman and 170 meters back from north-and-south fence at west edge bf timber; 175 meters southeast of fence corner at end of north-and \rightarrow outh lane. Trees adjacent to stone are blazed. ?

$$
\text { 『 } \frac{20}{2}
$$

Mississippi River Commission, 1884. (Chart No. 11.)
Latitude $37^{\circ} 33^{\prime} 43^{\prime \prime} .29$; meters $+1,335,-515$.
Longitude $89^{\circ} 30^{\prime} 44^{\prime \prime} .83$; meters $+1,100,-373$.
Elevation: 359.62 .
To $020 / 1$, azimuth $254^{\circ} 59^{\prime}$, distance 490 meters.
Stone post, 150 meters from left river bank and 1,400 meters below the mouth of the Big Muddy River; on top of ridge; and at back edge of patch of timber on land of 8 . Spring. An 18 -inch hickory stands 4 meters below the stone.

\oplus GOUTH BASE H.

Board on Examination and Survey of Mississippi River, 1008. (Chart No. 11.)
Latitude $37^{\circ} 333^{\prime} 41^{\prime \prime} .48$; meters $+1,279,-57$ f.
Longitude $89^{\circ} 27^{\prime} 10^{\prime} .56$; meteri $+259,-1,214$.
Elevation: 381.92 .
To \oplus Aldridge 11, azimuth $244^{\wedge} 22^{\prime}$, distance 1,411 meters.
To 933 H, azimuth $181^{\circ} 32^{\prime}$, distance 960 meters.
Two-inch iron pipe, in Illinoin bottom land; if miles above la Ruo, III.; 7 feet east of center of Track of St. Louis, Iron Mountain and Southern Railway (Illinois Division); and 75 meters north of a railroad bridge.

A SIMPSON 271 .

United States engineer office, St. Louis, Mo., 1878; redetermined, 1899. (Chart No. 11.)
Latitude $37^{\circ} 33^{\prime} 26^{\prime \prime} .43$, meters $+815,-1,0355^{\prime}$.
Longitude $89^{\circ} 31^{\prime} 33^{\prime \prime} .45$; meters $+821,-652$.
Elevation: 348.17.
To SStraw, azimuth $226^{\circ} 56^{\prime} 52^{\prime \prime}$, distance $1,352.7$ meters.
Hole surrounded by triangle in rock, on Missouri shore; 900 meters below mouth of Apple Creek; 100 leet below house at Hines Landing, Mo.; about 20 feet out and a little upstream from a 30 -inch elm tree with roots exposed; on highest shelf, and expowed at a 25 -foot stage, St. Louis gauge.

$$
\oplus 32 \mathrm{H}
$$

13 nayd on Examination and Survey of Mississippi River, 1908. (Chart No. 11.)
Latitude $37^{\circ} 32^{\prime} 50^{\prime} .69 ;$ meters $+1,563,-287$.
Iongitude $89^{\circ} 27^{\prime} 12^{\prime \prime} .26$; meters $+301,-1,172$.
Elevation: 362.7 (stadia).
To $\oplus 31 \mathrm{II}$, azimuth $359^{\circ} 04^{\prime}$, distance 316 meters.
A stake, in Illinois bottom land; 9.5 feet east of center of track of St. Touis, Iron Mountain and Southern Railway (Illinois Division); about 100 feet north of bridge above La Rue and over Running. Lake; and 1,000 feet north of road crowsing at la Rue.
$\oplus 31 \mathrm{H}$.
Board on Examination and Survey of Miseiseippi River, 1908. (Chart No. 11.)
Latitude $37^{\circ} 32^{\prime} 40^{\prime} .45$; meters $+1,247,-603$.
Longitude $89^{\circ} 27^{\prime} 12^{\prime \prime} .05$; meters $+296,-1,177$.
Elevation: 361.44.
$T 0 \oplus 30 \mathrm{H}$, azimuth $345^{\circ} 47^{\prime}$, distance 1,570 meters.
Two-inch iron pipe, in Illinois bottom land; 20 meters south of post-office at La Rue; 6 meters north of bridge No. 134; and near a 26 -inch hickory tree in southwest angle of intersection of main track and switch of log tramway. (Elevation on chart 0.12 too low.)

\oplus wolf lake h.

Board on Examination and Survey of Miexissippi River, 1908. (Chart No. 11.)
Latitude $37^{\circ} 32^{\prime} 16^{\prime \prime} .84$; meters $+519,-1,331$.
Longitude $89^{\circ} 26^{\prime} 10^{\prime} 86$; meters $+267,-1,206$.
Elevation: 702 (stadia).
To $\oplus 29 \mathrm{H}$, azimuth $21^{\circ} 41^{\prime}$, distance 2, 181 meters.
A stake, on Illinois bluffs; opposite widest part of Wolf Lake; and three-quarters of a mile below quarry at end of ofd spuir that leaves main track of St. Louis, Iron Mountain and Southern Railway (Illinois divieion) about three-quarters of a mile above La Ruestation.

$$
\oplus 30 \mathrm{H} .
$$

Board on Examination and Survey of Missiwsippi River, 1908. (Chart No. 11.)
Latitude $37^{\circ} 31^{\prime} 51^{\prime \prime} .05$; meters $+1,574,-276$.
Longitude $89^{\circ}{ }^{\circ} 26^{\prime} 56^{\prime \prime} .34$; meters $+1,383,-90$.
Elevation: 364.68.
To $\oplus 29$ H, azimuth $345^{\circ} 51^{\prime}$, distance 1,270 meters.
A stake, in Illinois bottom land; 9.5 feet east of center of track of St. Louis, Iron Mountain and Southern Railway (Illinois division); about 1,500 meters below bridge
No. 1S4; and 1,100 meters above first roud crossing south of La Rue, 111 .

\triangle ORAWFORD.

United States engineer office, St. Louis, Mo., 1899. (Chart No. 11, station not plotted.)

Latitude $37^{\circ} 31^{\prime} 49^{\prime \prime} .66$; meters $+1,531,-319$.
Longitude $89^{\circ} 31^{\prime} 00^{\prime} .25$; meters $+6,-1,467$.
To \triangle Flag 43, azimuth $166^{\circ} 18^{\prime} 45^{\prime \prime}$, distance $8,840.4$ meters.
Iron pipe, 2t miles above "Frisco" railroad station at Neely Landing, Mo.; 400 meters below railroad trestle over Crawford Creek; on west side of knoll, outside of railroad and 2.85 feet due west from iron pipe (Δ Crawford No. 2). The knoll it the result of the only through railroad cut in the vicinity. The others are side-hill cuts.

\triangle ORAWFORD No. 2.

United States engineer office, St. Louis, Mo., 1906 (Chart No. 11, station not plotted.)

Latitude $37^{\circ} 31^{\prime} 49^{\prime \prime} .66$; meters $+1,531,-319$.
Longitude $89^{\circ} 31^{\prime} 00^{\prime \prime} 21$; meters $4 \cdot 5,-1,468$.
Iron pipe, $2 \frac{1}{2}$ miles above "Frisco" rallroad station at Neely Landing, Mo.; 400 meters below railroad trestle over Crawford Croek; on knoll, outside of railroad and 2.85 feet due east from iron pipe (Δ Crawford). The knoll is the result of the only through railroad cut in this vicinity. The others are side-hill cuis.

$$
\text { (0) } \frac{10}{1}
$$

Mississippi River Commission, 1884. (Chart No. 11.)
Latitude $37^{\circ} 31^{\prime} 33^{\prime \prime} .72$; meters $+1,040,-810$.
Longitude $89^{\circ} 29^{\prime} 22^{\prime \prime} .57$; meters +554 , -920 .
Elevation: 357.20.
To@19/2, azimuth $55^{\circ} 05^{\prime}$, distance 608 meters.
Stone post, about one-quarter mile above Hanging Dog Island; 1,550 meters below Spring Landing, 111 ; 800 meters from river bank; 220 meters southeast of fence corner of cultivated field; 180 meters northeast of northeast corner of another field; and 50 meters west of an old slough. The station is in woods and surrounded by blazed trees.

$\triangle \mathrm{Fl}, \mathrm{AO} 44$.

Mississippi River Commission, 1884; redetermined, United States engineer offlce, St. Louis, Mo., 1899. (Chart No. 11.)

Latitude $37^{\circ} 31^{\prime} 25^{\prime \prime} .67$; meters $+791,-1,059$ (1884).
Longitude $89^{\circ} 29^{\prime} 48^{\prime \prime} .37$; meters $+1,188,-286$ (1884).
Latitude $37^{\circ} 31^{\prime} 25^{\prime \prime} .58$; moters $+789,-1,061$ (1899).
Longitude $89^{\circ} 29^{\prime} 48^{\prime \prime} .28$; meters $+1,186,-288$ (1899).
Elevation: 355.06.
To © Indian Creek, azimuth $47^{\circ} 38^{\prime} 55^{\prime \prime}$, distance $1,188.2$ meters (1884).
To © Indian Creek, azimuth $47^{\circ} 38^{\prime} 22^{\prime \prime}$, distance 1,189 meters (1809).
To 18/2, azimuth $305^{\circ} 55^{\prime}$, distance 165 meters (1884).
Stone post, on land of George Andrews, in Illinols and about three-oighths mile above head of Hanging Dog Island; opposite Hanging Dog Rock in Miasouri; 100 meters from top of bank; and $5 \frac{1}{2}$ feet north of 18 -inch sycamore stump with triangle cut in top and pointing toward stone which is flush with surface of ground:

$$
\square \frac{19}{2}
$$

Mississippi River Cómmission, 1884. (Chart No. 11.)
Latitude $37^{\circ} 31^{\prime} 22^{\prime \prime} .43$; meters $+692,-1,158$.
Longitude $89^{\circ} 29^{\prime} 42^{\prime \prime} .87$; meters $+1,053,-421$.
Elevation: Stone, 355.25 ; pipe, 360.34 .
To Δ Flag 44, azimuth $125^{\circ} 55^{\prime}$, distance 165 meters.
To回19/1, azimuth $235^{\circ} 05^{\prime}$, distance 608 meters.
To $19 / 3$, azimuth $57^{\circ} 51^{\prime}$, distance 1,172 meters.
Flat stone and iron pipe, in cultivated fiold in Illinoia; 200 meters back' from river bank; on left bank of slough behind Hanging Dog Island and about one-quarter of a mile above heavy timber on island; $1 \frac{1}{2}$ meters from fence, on weat side of road; 100 meters below a house on west side of road and about 200 meters from river bank. Pipe is 3 feet out of ground (1807).

Board on Examination and Survey of Miseiselppi River, 1008. (Chart No. 11.)
Latitude $37^{\circ} 31^{\prime} 11^{\prime \prime} .09$; meters $+342,-1,508$.
Longitude $89^{\circ} 26^{\prime} 43^{\prime \prime} .60$; meters $+1,073,-401$.
Elevation: 364.94.
To $\oplus 28 \mathrm{H}$, azimuth $346^{\circ} 00^{\circ}$, distance 589 meters.
Two-inch iron pipe, in Illinols bottom land; about 060 feet below a road crossing is miles north of Wolf Lake, III. ; and 9.5 feet east of center of track of St. Louis, Iron Mountain and Southern Railway (Illinois division).

$$
\text { 回 } \frac{19}{3}
$$

Missiseippi River Commission, 1884. (Chart No. 11.)
Latitude $37^{\circ} 31^{\prime} 02^{\prime \prime} .21$; meters $+68,-1,782$.
Longitude $89^{\circ} 30^{\circ} 23^{\prime \prime \prime} .27$; melers +572, -902.
Elevation: 352,82.
To © Indian Creek, azimuth $13^{\circ} 30^{\prime}$, distance 83 meters.
To 0 19/2, azimuth $237^{\circ} 51^{\prime}$, distance 1,172 meters.
Hole drilled vertically into ledge of rock, at junction with the soil, on the same bluff as © $(1$ Indian Creek; 1,900 meters above Neely Landing, Mo.; and 700 meters below Hanging Dog Creek.

$$
\text { () P. B. M. } 4 \theta
$$

Miseissippi River Commission, 1880. (Chart No. 11.)
Latitude $37^{\circ} 31^{\prime} 52^{\prime \prime} .87$; meters $+1,630,-220$ (scaled from map).
Longitude $89^{\circ} 31^{\prime} 03^{\prime \prime} .22$; meters $+79,-1,395$ (scaled from map).
Elevation: 348.42.
Top of copper bolt, leaded vertically in bluff rock in Missouri; 22 miles below mouth of Apple Creek; and about 260 meters below Crawford Creek. Three latge partly detached rocks are in front of the bench mark.

(4) INDIAN CRERK.

Miseiseippi River Commission, 1880-81. (Chart No. 11.)
Latitude $37^{\circ} 30^{\prime} 59^{\prime \prime} .60 ;$ meters $+1,837,-13$.
Longitude $89^{\circ} 30^{\circ} 24^{\prime \prime} .06$; meters $+591,-883$
Elevation: 481.92.
To (4) Rich, azimuth $275^{\circ} 57^{\prime} 29^{\prime \prime}$. 33 , distance 0,561.56 meters,
To © Moccasin Springs, azimuth $330^{\circ} 43^{\prime} 52^{\prime \prime} .75$, distance $9,577.75$ metors.
To ©Silica, azimuth $173^{\circ} 45^{\prime} 22^{\prime \prime} .72$, distance $10,609.97$ meters.
To \odot Big Muddy, azimuth $223^{\circ} 36^{\prime} 12^{\prime \prime} .83$, distance $2,086.99$ meters.
To \triangle Flag 44, azimuth $227^{\circ} 38^{\prime} 00^{\prime \prime}$, distance 1,189 meters (1899).
To \triangle Flag 44, azimuth $227^{\circ} 38^{\prime} 33^{\prime \prime \prime}$ distance $1,188.2$ meters (1884).
To \triangle Flag 43, azimuth $161^{\circ} 11^{\prime} 15^{\prime \prime}$; distance 5,572.5 meters (1899)
To \triangle Flag 43, aximuth $161^{\circ} 11^{\prime} 18^{\prime \prime}$, distance $5,572.2$ meters (1880).
To \triangle Line No. 2, azimuth $169^{\circ} 24^{\prime} 12^{\prime \prime}$, distance 8,265 meters (1899).
To Δ Straw, azimuth $172^{\circ} 31^{\prime} 58^{\prime \prime}$, distance 5,496.7 meters (1899).
Stone pont, on top of prominent bluff, on right bank; 1f miles above Neely Landing,
Mo.; one-half mile below Hanging Dog Creek; and 60 meters west of "Frisco" railroad.

$$
\oplus 28 \mathrm{II} .
$$

Board on Examination and Survey of Missisxippi River, 1908. (Chart No. 11.)
Iatitude $37^{\circ} 30^{\prime} 52^{\prime \prime} 56$; meters $+1,620,-230$.
Longitude $89^{\circ} 26^{\prime} 37^{\prime \prime} 89$; meters +931 , -543 .
Elevation: 362.2 (stadia).
To $\oplus 27$ H, azimuth $335^{\circ} 27^{\prime}$, distance 640 meters.
A stake; in Illinois bottom land; 41 feet west of center of track of St. Louis, Iron Mountain and Southern Railway (Illinois division);, 4,300 feet above lower road croesing at Wolf Lake, III.; 2,600 feet below another road croseing; and near the northerm end of a tangent ("Iron Mountain") about 1,700 feet in length and paralleling the Illinois Central Railroad.

A SIMPSON 279.

United States engineer office, St. Louis, Mo., 1878; redetermined, 1899. (Chart No. 11, station not, plotted.)
Latitude $37^{\circ} 30^{\prime} 45^{\prime \prime} .71$; meters $+1,409,-441$.
Longitude $89^{\circ} 30^{\prime} 16^{\prime \prime} .38$; meters $+402,-1,072$.
Iron pin in rock shelf, on right bank; 25 feet above low water, and 1,350 meters above Neely Landing, Mo.

(4) RICH.

Missiseippi Riyer Commission, 1880-81. (Chart No. 11.)
Latitude $37^{\circ} 30^{\prime} 37^{\prime \prime} .42$; meters $+1,154,-696$.
Longitude $89^{\circ} 25^{\prime} 58^{\prime \prime} .33$; meters $+1,433,-41$.
Elevation: 491 (stadia).
To © Bluff Lake, azimuth $321^{\circ} 42^{\prime} 29^{\prime \prime} ; 64$, distance $12,544,38$ meters.
To © Indian Creek, azimuth $96^{\circ} 00^{\circ} 11^{\prime \prime}, 14$, distance $6,561.56$ meters.
To (大) Silica, azimuth $145^{\circ} 40^{\circ} 22^{\prime \prime} .45$, distance $13,603.45$ meters.
To © Moccasin Springs, azimuth $13^{\circ} 33^{\prime} 11^{\prime \prime} .09$, distance 7,892.25 meters.
To \triangle Vancill, azimuth $44^{\circ} 25^{\prime} 52^{\prime \prime}$, distance $5,982: 7$ meters.
To \triangle Bee Bluff, azimuth $13^{\circ} 27^{\prime} 53^{\prime \prime}$, distance 7,419.6 meters.
To $\oplus 26 \mathrm{H}$, azimuth $352^{\circ} 00^{\prime}$, distance 1,409 meters.
Six-inch square stone, on slope of prominent weatern spur of Illinois bluffe; due east from a pöint on St. Louis, Iron Mountain and Southern Railway (Illinois division) that is one-half mile above Wolf Lake, Ill.; about 1,800 feet northwest of house belonging to Carl Rich; 12 inches above surface of ground, on edge of bluff and about halfway from top.

$$
\oplus 27 \mathrm{H} .
$$

Board on Examination and Survey of Missiseippi River, 1908. (Chart No. 11.)
Latitude $37^{\circ} 30^{\prime} 33^{\prime \prime}$. 67 ; meters $+1,038,-812$.
Longitude $89^{\circ} 26^{\prime} 27^{\prime \prime} .08$; meters $+665,-809$.
Elevation: 363.05,
To * Rich, azimuth $260^{\circ} 41^{\prime}$, distance 715 meters.
To $\oplus 26 \mathrm{H}$, azimuth $324^{\circ} 49^{\prime}$, distance 1,566 meters.
Two-inch iron pipe, in Illinois bottom land on west side of track of St. Iouis, Iron Mountain and Southern Railway (Illinois division); 22 feet above lower road crossing at Wolf Lake, Ill., and near the soüthern end of a tangent ("Iron Mountain") about $-1,700$ feet in length and paralleling the Illinois Central Railroad.

$$
\oplus 28 \mathrm{H} .
$$

Board on Examination and Survey of Mississippi River, 1008. (Chart No. 11.)
Latitude $37^{\circ} 29^{\prime} 52^{\prime \prime} .15$; meters $+1,608,-242$.
Longitude $89^{\circ} 25^{\prime} 50^{\prime} .33$; meters $+1,236,-238$.
Elevation: 359.30 .
To $\oplus 25 \mathrm{H}$, azimuth $324^{\circ} 53^{\prime}$, distance 1,767 meters.
Two-inch iron pipe, in Illinois bottom land 11,7 feet east of center of track of St. Louis, Iron Mountain and Southern Railway (Illinois division); 3,000 feet below lower road crossing at Wolf Lake, Ill., and 800 feet below St. Louis, Iron Mountain and Southern Railway atation; 1,000 feet above small creek; and 200 feet below milepost 100. (Elevation on chart 0.33 too high.)

\triangle STUMP.

United States engineer office, St. Louis, Mo., 1899.. (Chart No. 11.)
Latitude $37^{\circ} 29^{\prime} 24^{\prime \prime} .02$; meters $+741,-1,109$.
Longitude $80^{\circ} 28^{\prime} 41^{\prime \prime} .03$; meters $+1,008,-466$.
Elevation: 360.47.
To \triangle Dutch, azimuth $88^{\circ} 27^{\prime} 40^{\prime \prime}$, distance 1,645.1 meters.
Iron pipe, on old high river bank in Illinois; near foot of Hanging Dog Ieland; 10 feet west of road in front of house; 10 feet south of path; about 180 feet upstream from sycamore tree blazed with triangles; and 25 feet from stump, near dooryard gate.
\triangle DUTOH.
United States ongineer office, St. Louis, Mo., 1899. (Chart No. 11.)
Latitude $37^{\circ} 29^{\prime} 22^{\prime \prime}$. 58 ; meters $+696,-1,154$.
Longitude $89^{\circ} 20^{\prime} 47^{\prime \prime} .97$; meters $+1,179,-296$.

Elevation: 357.70,
To \triangle Stump, azimuth $268^{\circ} 27^{\prime} 00^{\prime \prime}$, distance $1,645.1$ meters.
Iron pipe, in Missouri, about 4,000 feet below Neely Landing, Mo.; 3 feet north of east-and-weet rail fence; on land of Wagner; between the "Friseo" Rallroad and the river; about in line with outer point of Neely Landing and highest trees on top of bluff below Hanging Dog Rock; 45 feet east of lower headblock of Neely siding; and 115 feet north of cattle guard.
这

Miselesippi River Commission, 1884, (Chart No. 11.)
Latitude $37^{\circ} 29^{\prime} 21^{\prime \prime} .39$; meters $+059,-1,191$.
Longitude $89^{\circ} 28^{\prime} 01^{\prime \prime} ; 90$; meters $+47,-1,427$.
Flevation: 361.23.
T'o (18/2, azimuth $59^{\circ} 37^{\prime}$, distance 547 meters.
Stone poet, on land of O. Moury, in Illinois; nearly opposite Devils Tea Table in Missouri; 700 meters from main river bank and 1,450 meters above Illinois end of hurdle dam behind Vancill Towhead; 1 meter south of eabt-and-west fence at north end of cultivated field; 25 meters from the northeast corner of field. Immediately north of field is low ground covered with bushes and vines.

$$
\text { [i] } \frac{18}{2}
$$

Mississippi Rivor Commission, 1884. (Chart No. 11.)
Latitude $37^{\circ} 29^{\prime} 12^{\prime \prime} 42$; meters $+383,-1,467$.
Longitude $89^{\circ} 28^{\prime} 21^{\prime \prime} .09$; meters +518 , - 956 .
Elevation: Stone, 352.85; pipe, 357.93.
To ${ }^{\text {Q }} 18 / 1$, azimuth $239^{\circ} 37^{\prime}$, distance 547 meters,
To (18/3, azimuth $59^{\circ} 41^{\prime}$, distance 1,485 meters.
Flat stone and iron pipe, 200 meters back from left bank of river and 1,420 meters above Illinois end of hurdle dam behind Vancill Towhead; 1 meter back of rail fence at edge of timber and on east side of road; on the west edge of same field that ${ }^{[0} 18 / 1$ is in; 75 meters north of bend in fence; and about 140 meters north of 0 . Moury's house.

\triangle (AATE 3.

United States engineer office, St. Louis, Mo., 1903. (Chart No. 11.)
Latitude $37^{\circ} 29^{\prime} 05^{\prime \prime} .38$; meters $+168,-1,684$.
Longitude $89^{\circ} 28^{\prime} 22^{\prime \prime} .47$; meters +552 , -922 .
Elevation: 353.65.
To \triangle Vancill, azimuth $24^{\circ} 14^{\prime} 04^{\prime \prime}$, distance $1,574,3$ meters.
Iron pipe, in Illinois; 12 meters back from edge of secondary bank; 104 meters from southwest corner of C. Moury's house and 102 meters from southwest corner of barn on high bank; about 1,280 meters above Illinois end of hurdle dam behind Vancill Towhead; 1 foot from fallen sycamore tree; 15 meters downstream from blazed elm tree near the bank; and 21 meters south of blazed sycamore tree.

(9) 25 H

Board on Examination and Survey of Mistissippi River, 1908. (Chart No. 11.)
Latitude $37^{\circ} 29^{\prime} 05^{\prime \prime} .21$; meters $+161,-1,689$.
Longitude $89^{\circ} 25^{\prime} 08^{\prime \prime} .94$; meters $+220,-1,254$.
Elevation: 357.29.
To $\oplus 24 \mathrm{H}$, azimuth $324^{\circ} 47^{\prime}$, distance 1,357 meters.
A stake, in Illinois bottom land; about if miles below railroad station at Wolf Lake, Ill. 9.8 feet east of center of track of St. Louis, Iron Mountain and Southern Railway (IIlinois division); and 60 feet above telegraph pole $101 / 5$.

$$
\text { 『 } \frac{18}{3}
$$

Mississippi River Commission, 1884. (Chart No. 11:)
Latitude $37^{\circ} 28^{\prime} 48^{\prime \prime} .11$; meters $+1,483$, -367 .
Longitude $89^{\circ} 20^{\prime} 13^{\prime \prime} .25$; meters $+326 ;-1,148$.
Elevation: 362,99.
To $18 / 2$, azimuth $239^{\circ} 41^{\prime}$, distance 1,485 meters.
Stone post, set in ground near foot of Missouri bluffs; 260 meters below Devils Tea Table; 10 meters from river bank; 75 meters above where bluff rock juts out from hillside; and 5 metera above a large blazed black oak tree.

(1) MILLER H.

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 11.)
Latitude $37^{\circ} 28^{\prime} 43^{\prime \prime} .08 ;$ meters $+1,328,-522$.
Longitude $89^{\circ} 22^{\prime} 45^{\prime \prime} 21$; meters $+1,111,-363$.
Elevation: 549.8 (etadia).
To $\oplus 22 \mathrm{H}$, azimuth $51^{\circ} 12^{\prime}$, distance 2,542 meters.
A stake, on top of Illinois Eluffs; about $1 \frac{1}{2}$ miles upstream from Ware, Ill.; immediately back (southeast) from a point where Clear Creek, crossed by a wagon bridge leaves the foot of the bluffs.

$$
\odot \text { Р. В. М. } 50 .
$$

Mississippi River Commission, 1881. (Chart No. 11.)
Latitude $37^{\circ} 28^{\prime} 36^{\prime \prime} .75$; meters $+1,133,-717$.
Longitude $89^{\circ} 29^{\prime} 02^{\prime \prime} .09$; meters $+51,-1,423$.
Elevation: 348.51.
Center of copper bolt, léaded horizontally in natural rock in Miseouri bluffs; 2,250 feet, below rock called "Devils Tea Table" (destroyed), just below Indian Creek in Cape Girardeau County, Mo.

$\oplus 24 \mathrm{H}$.

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 11.)
Latitude $37^{\circ} 28^{\prime} 29^{\prime \prime} .14$; meters $+898,-952$.
Longitude $89^{\circ} 24^{\prime} 37^{\prime \prime} .10$; meters +912 , -562 .
Elevation: 358.19.
To $\oplus 23 \mathrm{H}$, azimuth $324^{\circ} 43^{\prime}$, distance 988 meters.
Two-inch iron pipe, in Illinois bottom land; 15 feet east of center of track of St. Louis, Iron Mountain and Southern Railway (Illinois Division); 500 feet above bridge in dike between Goodwin and Miller lakes; 3,800 feet above road crossing; and 2 miles above Ware, Ill. (Elevation given on chart is 0.11 foot too high.)

- \triangle VANCILL.

United States engineer office, St. Louis, Mo., 1897. (Chart No. 11.)
Latitude $37^{\circ} 28^{\prime} 18^{\prime \prime} 81$; meters $+580,-1,270$.
Longitude $89^{\circ} 28^{\prime} 48^{\prime \prime} .77$; meters $+1,198,-276$.
To © Bluff Lake, azimuth $294^{\circ} 57^{\prime} 16^{\prime \prime}$, distance $13,196.3$ meters.
To \otimes Rich, azimuth $224^{\circ} 24^{\prime} 08^{\prime \prime}$ distance $5,982.7$ meters.
To \triangle Bee Bluff, azimuth $320^{\circ} 04^{\prime} 41^{\prime \prime}$, distance $3,836.5$ meters.
To \triangle Gate 3, azimuth $204^{\circ} 13^{\prime} 48^{\prime \prime}$, distance $1,574.3$ meters.
Iron pipe, on top of prominent stone-faced bluff, 1,400 meters above Vancill Landing, Mo.; 300 meters above hollow above Sublett Hollow; 1,300 meters below Indian Creek; 50 feet west of face of bluff; 25 feet east of a 14 -inch oak, blazed with a triangle.
(1) 23 H.

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 11.)
Latitude $37^{\circ} 28^{\prime} 02^{\prime \prime} .87$; meters $+89,-1,761$.
Longitude $89^{\circ} 24^{\prime} 13^{\prime \prime} .87$; meters $+341,-1,133$.
Elevation: 363.49 .
To $\oplus 22 \mathrm{H}$, azimuth $330^{\circ} 49^{\prime}$, distance 406 meters.
A stake, in Illinois bottom land; 26 feet east of center of track of St. Louis, Iron Mountain \& Southern Railway (Illinois Division); 600 feet above road crossing; and about $1 \frac{1}{2}$ miles above Ware, III.

$$
\oplus 22 \mathrm{M}
$$

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 11.)
Latitude $37^{\circ} 27^{\prime} 51^{\prime \prime} .38$; meters $+1,584,-266$.
Longitude $89^{\circ} 24^{\prime} 05^{\prime \prime} .82$; meters $+143,-1,331$.
Elevation: 359.
To $\oplus 21 \mathrm{H}$, azimuth $341^{\circ} 00^{\prime}$, distance 1,316 meters.
Two-inch iron pipe, in Illinois bottom land; 3.3 feet east of center of track of St. Louis, Iron Mountain \& Southern Mailway (Illinois Division); 800 feet below road crossing; and about 11 miles above Ware, Ill.

$$
\text { 回 } \frac{17}{1}
$$

Mississippi River Commission, 1884. (Chart No. 11.)
Latitude $37^{\circ} 27^{\prime} 40^{\prime} 36$, meters $+1,244,-606$.
Longitude $89^{\circ} 26^{\prime} 26^{\prime \prime} 13$; meters $+642,-833$.
Elevation: Stone, 350.38 , pipe, 355.48.
To ${ }^{\text {O }} 17 / 2$, azimuth $45^{\circ} 15$, distance 623 meters.
Flat stone and iron pipe, one-half mile from river bank at Willard Landing, Ill.; 5 feet in front of fence on northeast side of "long field," which belongs to Willard heirs; and 550 feet above eastern corner of field.

$$
\text { ه } \frac{17}{2}
$$

Mississippi River Commission, 1884. (Chart No. 11.)
Latitude $37^{\circ} 27^{\prime} 26^{\prime \prime} .13$; meters $+806,-1,044$.
Longitude $89^{\circ} 26^{\prime} 44^{\prime \prime} .14$; meters $+1,085,-390$.
Elevation: 353:60.
To © Moccasin Springs, azimuth $22^{\circ} 10$, distance 1,917 meters.
To $\square 17 / 1$, azimuth $225^{\circ} 15^{\prime}$, distance 623 meters,
Stone post, in cultivated field of Willard estate, at Willard Landing, Ill.; 400 feet from river bank; 80 feet back of fence; 500 feet above log cabin; and 100 feet east of farmhouse.

$\oplus 21 \mathrm{H}$.

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 11.)
Latitude $37^{\circ} 27^{\prime} 11^{\prime \prime} .02$; meters $+340,-1,510$.
Longitude $89^{\circ} 23^{\prime} 48^{\prime \prime} .39$; meters $+1,189,-286$.
Elevation: 358.62.
To $\oplus 20 \mathrm{H}$, azimuth $350^{\circ} 20$, distance 1,478 meters.
Two-inch iron pipe, in Illinois bottom land; west of the St. Louis, Iron Motintain and Southern Railway (Illinois Division); 600 meters above road crossing at Ware, IIl.; and 170 meters below northern end of siding.

\triangle SIMPSON 297.

United States engineer office, St. Louis, Mo., 1878; redetermined, 1897. (Chart No. 11, station not plotted.)
Latitude $37^{\circ} 26^{\prime} 44^{\prime \prime}, 37$; meters $+1,368,-482$.
Longitude $89^{\circ} 27^{\prime} 05^{\prime \prime} .03$; meters $+124,-1,351$.
To \triangle Simpson 299, azimuth $328^{\circ} 45^{\prime} 49^{\prime \prime}$, distance $1,443.8$ meters.
Iron pin in rock, below high bank; on second point below Moccasin Springs, Mo.; 920 meters below river gauge; and in front of \triangle Bee Bluff.

$\triangle \mathrm{BEE}$ BLUFF.

United States engineer office, St. Louis, Mo., 1897. (Chart No. 11.)
Latitude $37^{\circ} 26^{\prime} 43^{\prime \prime} 36$; meters $+1,337,-513$.
Longitude $89^{\circ} 27^{\prime} 08^{\prime \prime} .62$; meters $+212,-1,263$.
To © Rich, azimuth $193^{\circ} 27^{\prime} 10^{\prime \prime}$, distance $7,419.6$ meters.
To \triangle Vancill, azimuth $140^{\circ} 05^{\prime} 42^{\prime \prime}$, distance $3,836.5$ meters.
Iron pipe, on highest part of Bee Bluff, Mo. (first bluff below and 3,200 feet from
Moccasin Springs); 25 feet west of face of bluff; and 45 feet south of 20 -inch oak tree blazed with triangle.

(4) MOCCASIN SPRINGS.

Mississippi River Commission, 1880-81. (Chart No. 11.)
Latitude $37^{\circ} 26^{\prime} 28^{\prime \prime} .54$; meters $+880,-970$.
Longitude $89^{\circ} 27^{\prime} 13^{\prime \prime} .57$; meters $+334,-1,141$.
To@ Bluff Lake, azimuth $282^{\circ} 42^{\prime} 47^{\prime \prime} .70$, distance $9,865.18$ meters.
To \odot Rich, azimuth $193^{\circ} 32^{\prime} 25^{\prime \prime} .31$, distance $7,892.25$ meters.
To © Olear Creek, azimuth $331^{\circ} 17^{\prime} 03^{\prime \prime} .42$, distance $13,769.21$ meters.
To © Indian Creek, azimuth $150^{\circ} 45^{\prime} 48^{\prime \prime} .65$, distance $9,577.75$ meters.
To $\square 17 / 2$, azimuth $202^{\circ} 10$, distance 1,917 meters.
Stone marking post (top broken off), on highest point of Missouri bluffs; about seven-eighths mile below Moccasin Springs, Mo.; about $2 \frac{1}{2}$ miles above Bainbridge, Mo.; and 1,000 feet from river. Main ridge from small waterfall leads direct to station. Scattering timber in vicinity of station.

United States engineer office, St. Louis, Mo., 1878; redetermined 1897. (Chart No. 12, station not plotted.)

Latitude $37^{\circ} 26^{\prime} 04^{\prime \prime} 33$, meters $+134,-1,716$.
Longitude $89^{\circ} 26^{\prime} 34^{\prime \prime} .58$; metere $+850,-625$.
To \triangle Simpson 297, azimuth $148^{\circ} 46^{\prime} 07^{\prime \prime}$, distance $1,443.8$ meters.
Iron pin in rock, on Missouri shore; downstream from Bee Bluff and 3,750 feet upstream from house at Sheppard Point. The rock is exposed at a 7 -foot stage, St. Louis gauge.

\oplus WARE H.

Board on Examination and Survey of Mississippi River, 1908. (Chart No, 12.)
Latitude $37^{\circ} 26^{\prime} 46^{\prime \prime} 25$; meters $+1,426,-424$.
Longitude $89^{\circ} 21^{\prime} 19^{\prime \prime} 08$; meters $+469,-1,006$.
Elevation: 567.1 (stadia).
To $\oplus 20 \mathrm{H}$, azimuth $78^{\circ} 34^{\prime}$, distance 3,491 meters.
A stake, on south west slope of highest part of Illinois bluffs, due east of Ware, Ill., on St. Louis, Iron Mountain and Southern Railway (Illinois Division). The road that runs east from Ware turns southwardly along the bluffs, 600 meters above the station.

$\oplus 20 \mathrm{H}$.

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 12.)
Latitude $37^{\circ} 26^{\prime} 23^{\prime \prime} .75$; meters $+732,-1,118$.
Longitude $89^{\circ} 23^{\prime} 38^{\prime \prime} .28$; meters $+941,-534$.
Elevation: 356.57.
To $\oplus 19 \mathrm{H}$, azimuth $350^{\circ} 18^{\prime}$, distance 894 meters.
A stake, in Illinois bottom land; 14.8 feet west of center of track of St. Louis, Iron Mountain and Southern Railway (Illinois Division); and 870 meters below road crossing at Ware, Ill.

$$
\oplus 19 \mathrm{H} .
$$

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 12.)
Latitude $37^{\circ} 25^{\prime} 55^{\prime \prime} .18$; meters $+1,701,-149$.
Longitude $89^{\circ} 23^{\prime} 32^{\prime \prime} .14$; meters $+790,-685$.
Elevation: 354.27.
To $\oplus 18$ H, azimuth $350^{\circ} 17^{\prime}$, distance 1,878 meters.
Two-inch iron pipe, in Illinois bottom land; 14.8 feet west of center of track of St. Louis, Iron Mountain and Southern Railway (Illinois Division); 1,780 meters below road crossing at Ware, Ill.; and 183 meters below signpost "One mile to Ware."

\triangle SHEPPARD.

United States engineer office, St. Louis, Mo., 1897. (Chart No. 12.)
Latitude $37^{\circ} 25^{\prime} 49^{\prime \prime} .95$; meters $+1 ; 540 ;-310$.
Longitude $89^{\circ} 26^{\prime} 28^{\prime \prime} .02$; meters $+689,-786$.
To \triangle Hurdle 5, '99, azimuth $265^{\circ} 15^{\prime} 02^{\prime}$, distance $1,772.4$ meters.
Iron pipe, on brow of the southernmost stone-faced bluff, above Sheppard Point, Mo.; 2,600 meters above Bainbridge Creek; 18 meters west of face of bluff, and 253 meters north of rail fence between timber and field.

$$
\odot \text { P. B. M. } 51 .
$$

Mississippi River Commission, 1881 and 1889; redetermined, United States engineer office, St. Louis, Mo., 1897. (Chart No. 12.)

Latitude $37^{\circ} 25^{\prime} 44^{\prime \prime} .98$; meters $+1,387,-463$.
Longitude $89^{\circ} 26^{\prime} 23^{\prime \prime} .36$; meters $+574,-901$.
Elevation: 344.92.
Center of copper bolt, leaded in the steeply inclined face of the last reliable ledge of rocks of the chain extending south from Moccasin Springs, Mo.; just above Sheppard Point where the bluffe begin to recede from the river; 2,400 meters above Bainbridge Creek; and 350 meters above railroad trestle above Widow Sheppard's house. The letters "U. S." are cut in the rock.

$\triangle 8 \mathrm{~F}$.

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 12.)
Latitude $37^{\circ} 25^{\prime} 42^{\prime \prime} \% 49$; meters $+1,310,-540$.
Longitude $89^{\circ} 26^{\prime} 23^{\prime \prime} 17$; meters $+570,-905$,
To $\triangle 10 \mathrm{~F}$, azimuth $353^{\circ} 47^{\prime}$, distance 926 meters.
Iron pipe, at Sheppard Point, Mo.; on slope of hill 9 meters back from "Frisco" railroad; $58 \frac{1}{2}$ meters above cattle guard at road crossing; 280 meters above railroad trestle above Sheppard's house; $16 \frac{1}{2}$ meters below telegraph pole 120/25; and 20 meters and 58 meters, reapectively, above fences joining west right-of-way fence.

* BLUFF LAKF.

Mississippi River Commission, 1880-81. (Chart No. 12.)
Latitude $37^{\circ} 25^{\prime} 17^{\prime \prime} .94 ;$ meters $+553,-1,297$.
Longitude $89^{\circ} 20^{\prime} 42^{\prime \prime} .20$; meters $+1,038,-437$.
To © Clear Oreek, azimuth $16^{\circ} 57^{\prime} 27^{\prime \prime} .73$, distance $10,351.34$ meters.
To © Rich, azimuth $141^{\circ} 45^{\prime} 41^{\prime \prime}, 94$, distance $12,544.38$ meters.
To ${ }^{\circ}$ Floral, azimuth $54^{\circ} 22^{\prime} 49^{\prime \prime} .55$, distance $14,149.53$ meters:
To © Moccasin Springs, azimuth $102^{\circ} 46^{\prime} 45^{\prime \prime} .58$, distance $9,865.18$ meters.
To \triangle Vancill, azimuth $115^{\circ} 02^{\prime} 12^{\prime \prime}$, distance $13,196.3$ meters.
To \triangle Flag 52 , azimuth $46^{\circ} 19^{\prime} 49^{\prime \prime}$, distance 13,783 ,3 meters.
To \oplus Lower Base H, azimuth $38^{\circ} 04^{\prime}$, distance 6,260 meters.
To \oplus Upper Base H, azimuth $68^{\circ} 15^{\prime}$, distance 4,157 meters.
A 6 -inch square stone post, broken off 2 inches below the ground, with small hole drilled in center of stone; 1,300 meters below the Hamburg and Jonesboro road; upon a grassy knob, about halfway down the slope from a long, narrow orchard on top of high bluff. Old burnt stump bears north 11° east $8 \frac{1}{2}$ leet; 18 -inch white-oak blazed with triangle, north 88° east $24 \frac{1}{2}$ feet; blazed 12 -inch hickory, south $25 \frac{1}{2}^{\circ}$ west 34 feet; black oak north 20.4 feet.

$$
\triangle 10 \mathrm{~F}
$$

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 12.)
Latitude $37^{\circ} 25^{\prime} 12^{\prime \prime} 64$; meters $+390,-1,460$.
Longitude $89^{\circ} 26^{\prime} 19^{\prime} .07$; meters $+469,-1,006$.
'To $\triangle 12 \mathrm{~F}$, azimuth $350^{\circ} 10^{\prime}$, distanco 961 meters.
Iron pipe, on highest point of knoll, opposite railroad cut halfway between Bowman, Mo., post-office (Bainbridge station) and Sheppard Point; 8 meters east of "Frisco" railroad; and 135 meters above upper end of Bainbridge siding.

$$
\oplus 18 \mathrm{H}
$$

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 12.)
Latitude $37^{\circ} 24^{\prime} 55^{\prime \prime} .26$; meters $+1,704,-146$.
Longitude $89^{\circ} 23^{\prime} 1 \underline{w}^{\prime \prime} .22$; meters $+473,-1,003$.
Elevation: 349.37.
To \oplus Upper Baso ${ }^{\circ}$, azimuth $00^{\circ} 00^{\prime}$, distance 842 meters.
Tî̀o-inch iron pipe, in Illinois bottom land; 21 miles below Ware, Ill.; on St. Louis, Iron Mountain and Southern Railway (Illinois Division) and 1,300 meters above
Illinois Central railroad station, Vineland; 13.1 feet west of center of track and about halfway down the embankment; about 600 meters above road crossing above Vineland; and 30 meters above trestle No. 141.

$$
\triangle 12 \mathrm{~F}
$$

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 12.)
Latitude $37^{\circ} 24^{\prime} 41^{\prime \prime} .94$; meters $+1,293,-557$.
Longitude $89^{\circ} 26^{\prime} 12^{\prime \prime} .39$; meters $+305,-1,171$.
Iron pipe, at Bainbridge, Mo. (Bowman post-ofice); 29 meters east from center of
"Frisco" railroad and opposite the upper end of house track; 5 meters south of upper end of a revetment; 50 meters from milepost 122; 118 meters sibove road crossing; and 168 meters above northeast corner of railroad station.

$$
\text { ロ } \frac{16}{1}
$$

Mississippi River Commission, 1884. (Chart No. 12.)
Latitude $37^{\circ} 24^{\prime} 35^{\prime \prime} .26$; meters $+1,087,-763$.

Longitude $89^{\circ} 24^{\prime} 12^{\prime \prime} .98$; meters $+319,-1,157$.
Elevation: Stone, $344.02 ;$ pipe, 350.00 .

Flat stone and iron pipe, in lllinols; mile from left liank of river (foot of Hamburg Island); 1 meter west of rail fence which divides cultivated fields; and $\mathbf{3 5 0}$) meters north of fence comer at road.

$$
\text { [这 } \frac{10}{2}
$$

Miseissippi River Commiesion, 1884. (Chart No. 12.)
Latitude $37^{\circ} 24^{\prime} 28^{\prime \prime} .00$; meters $+863,-987$.
Longitude $89^{\circ} 24^{\prime} 44^{\prime \prime} .12$; meters $+1,085,-391$.
Elevation: 349.34.
To[016/1, azimuth $253^{\circ} 57^{\prime}$, distance 797 meters.
Stone post, one-halk mile back of foot of Hamburg Island, Ill. 1 meter from lack fence in orchard; 68 meters south of fence corner; 150 meters horth of fence corner at road; and 110 meters from log house.

$\triangle 14 F$.

Board on Examination and Survey of Misslasippi River, 1008. (Chart No. 12.)
Latitude $37^{\circ} 23^{\prime} 30^{\prime \prime} .19$, meters $+931,-919$.
Longitude $89^{\circ} 20^{\prime} 03^{\prime \prime} .41$, meters $+84,-1,302$.
To $\triangle 12 \mathrm{~F}$, azimuth $174^{\circ} 17^{\prime}$, diatance 2,222 meters.
Iron pipe, at Schenimann, Mo., $1+$ miles below Balnbrldge, Mo. (Bownain poatoffice); 2 meters back from edge of projecting rock bluff, just west of "Frisco" railroad; at end of field where rock-ficed bluff begins; and 178 meters below road croasing.

\oplus UPPER BASE. H.

Board on Examination and Survey of Misaissippi River, 1808. (Chart No. 12،)
Latitude $37^{\circ}\left(24^{\prime} 27^{\prime \prime} .94\right.$; meters $+862,-988$.
Longitude $89^{\circ} 23^{\prime} 19^{\prime \prime} .21$; meters $+473,-1,003$.
Elevation: 349.03.
To(*) Bluff Lake, azimuth $248^{\circ} 13^{\prime}$, distance 4,157 meters.
To \oplus Lower Base H, azimuth $359^{\circ} 58^{\prime}$, distance 3,387 meters.
To $\oplus 18 \mathrm{H}$, azimuth $180^{\circ} 00^{\prime}$; distance 842 meters.
A stake, 10 feet west of St. Louis, Iron Mountain and Southern Railway (Iifinois Division); about 3 miles above Reynoldsville, 111 ; 250 meters below romd croseing and about one-fourth of a mile above Vineland on the "Illinois Central."

$$
\odot \text { P. B. M. } \delta 2 .
$$

Mississippi River Commission, 1881 and 1884. (Chart No. 12.)
Latitude $37^{\circ} 23^{\prime} 14^{\prime \prime} .88$; meters $+459,-1,391$.
Longitude $89^{\circ} 26^{\prime} 03^{\prime \prime} .42$; meters $+84,-1,392$.
Elevation: 349.65 .
Center of copper bolt, leaded horizontally in vertical face of rock bluff in Miseouri; about $1 \frac{1}{2}$ miles below Bainbridge Landing; directly back of "Frisco" railroad; on land of Sheppard heirs; 220 meters from right bank of river; 775 meters below Henry Schenimann's house; and 565 meters above the lower end of the bluff. The bolt is 1.2 meters above the ground and in a rock stratum 35 centimeters in thickness.

(7) 17 H.

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 12.)
Latitude $37^{\circ} 23^{\prime} 07^{\prime \prime} .75$; meters $+239,-1,611$.
Longitude $89^{\circ} 23^{\prime} 19^{\prime \prime} .17$; meters $+472,-1,004$.
Elevation: 352.23.
$T b \oplus 16 \mathrm{H}$, azimuth $5^{\circ} 10^{\circ}$, distance 1,028 meters.
Two-inch iron pipe, 1 miles above Reynoldsville, Ill.; 9.3 feet west of center of track of St. Louis, Iron Mountain and Southern Railway (Illinois Division); and 10 feet north of road crossing.
\oplus REYNOLDS II.
Board on Examination and Survey of Mississippi River, 1908. (Chart No. 12.)
Latitude $37^{\circ} 22^{\prime} 38^{\prime \prime} .36$; meters $+1,183$, -307 .
Longitude $89^{\circ} 21^{\prime} 04^{\prime \prime} .79$; meters $+118,-1,358$.
Elevation: 582.0 (stadia).
To Clear Creek, azimuth $20^{\circ} 19^{\prime}$, distance 5,558 meters.
A stake, on first prominent point of Illinois bluffs abovo valley or ravine where the Reynoldeville and bluff roads join, and about 900 meters thorofrom,

(f) 1,OWER BASE FI.

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 12.)
Latltude $37^{\circ} 22^{\prime} 37^{\prime \prime} .99 ;$ meters $+1,171,-679$.
Longltude $89^{\circ} 23^{\prime} 19^{\prime \prime} .19$; meters $+472,-1,004$.
Elevation: 351.83.
$T 0 \oplus 16$ H, azimuth $41^{\circ} 31^{\prime}$, distance 142 metors.
To \oplus Upper Base 11 , azimuth, $179^{\circ} 58^{\prime}$, distance 3,387 meters.
A stake, 7 feet west of St. Louis, Iron Mountain and Southern Railway (Illinois division); three-quarters of a mite above Reynoldsville, IIl.; and 350 feet below road crossing.

$$
\oplus 16 \mathrm{H} .
$$

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 12.)
Latitude $37^{\circ} 22^{\prime} 34^{\prime \prime} .55 ;$ meters $+1,065,-785$.
Longitude $89^{\circ} 23^{\prime} 23^{\prime \prime} .01$; meters $+566,-910$.
Elevation: 352,61.
To $\oplus 15 \mathrm{H}$, azimuth $12^{\circ} 57^{\prime}$, distance 1,294 meters.
To \oplus Reynolds H, gimuth $268^{\circ} 00^{\circ}$, diatance 3,402 meters.
To $\oplus 17 \mathrm{H}$, azimuth $185^{\circ} 11^{\prime}$, distance 1,028 meters.
Iron pipe, 1,100 meters above Reynoldsville, III.; east of Illinois Central Railroad near wagon road paralleling same railroad and making slight turn near the pipe; 215 meters below angle in road; and in a fence corner.

$\oplus 15 \mathrm{H}$.

Board on Examination and Survey of Mississippi Rives, 1908. (Chart No. 12.)
Latitude $37^{\circ} 21^{\prime} 53^{\prime \prime} .59$; meters $+1,652,-198$.
Longitude $89^{\circ} 23^{\prime} 34^{\prime \prime} .80$; meters $+856,-621$.
Elevation: 348.81.
To $\oplus 14$ II, azimuth $22^{\circ} 48^{\prime}$, distance 2,269 meters
A stake, 500 feèt below railroad station at Reynoldsville, Ill.; 750 feet below road crossing; and 7 feet east of track of St. Louis, Iron Mountain and Southern Railway (lllinois division).

$$
\text { 回 } \frac{15}{3}
$$

Miesissippi River Commission, 1884. (Chart No. 12.)
Iatitude $37^{\circ} 21^{\prime} 51^{\prime \prime} 19$; meters $+1,578,-272$.
Iongitude $89^{\circ} 26^{\prime} 00^{\prime} .35$; meters $+9,-1,468$.
Elevation: 350.38 .
To $15 / 4$, azimuth $109^{\circ} 19^{\prime}$, distance 1,049 meters.
Stone post, on Kinney Point, Mo.; on top of ridge in cultivated field of W. A. Minton; 87 meters north of fence; 270 meters back from river; 1,100 meters below Poe Landing; and 350 meters above Taylor Landing, Mo.

\triangle FLAG 50,

Miseiseippi River Commission, 1884. (Chart No. 12.)
Latitude $37^{\circ} 21^{\prime} 17^{\prime \prime} .53$; meters $+540,-1,310$.
Longitude $89^{\circ} 24^{\prime} 33^{\prime \prime} .02$; meters $+813,-684$.
Flevation: 352.14 .
Stone post, in Illinois; back of Swift Sure Towhead; 14 miles above head of Devils Island; $\mathbf{7 0 0}$ meters from bank of chute back of towhead; beside road running down old river bank; in front of first barn below a schoolhouse; 2 feet south of a blazed cottonwood tree, on land of J. K. Walton; 3 feet west of fence; and 120 meters from echoolhouse. (Stone found leaning in 1908.)

$$
\square \frac{15}{1}
$$

Miesiesippi River Commiesion, 1884. (Chart No. 12.)
Latitude $37^{\circ} 21^{\prime} 17^{\prime \prime} .52$; meters $+540,-1,310$.
Longitude $89^{\circ} 23^{\prime} 59^{\prime \prime} .82$; meters $+1,472,-5$.
Elevation: Stone, 348.45 ; pipe, 353.54 .
Flat stone and iron pipe, in Illinois; 1 miles above head of Devils Island; about 70 meters west of Illinois Central Railroad and 1,500 meters below Reynoldsville; 1 meter from a rail fence on eastern side of a wide and deep elough; in edge of cultivated field; 60 meters south of corner of stableyard; and 120 meters south of house on land of J. K. Walton.

\triangle SWIFTSURE.

United States engineer office, St. Louis, Mo., 1899. (Chart No. 12.)
Latilude $37^{\circ} 21^{\prime} 00^{\prime} .34$; meters $+11,-1,839$.
Longitude $89^{\circ} 25^{\prime} 18^{\prime \prime} .69$; meters $+460,-1,017$.
To \triangle Devile ' 99 , azimuth $45^{\circ} 48^{\prime} 40^{\prime}$, distance $1,014.7$ meters.
Iron pipe, in llinois; \& mile above head of Devils Island; 10 meters back from top and about 1,800 meters below head of the Swift Sure revetment; directly in front of and 13.5 feet from blazed 6 -inch cottonwood tree and 13.9 feet from another blazed cottonwood.

(5) FLORAL.

Mississippi River Commission, 1880-81. (Chart No. 12.)
Latitude $37^{\circ} 20^{\prime} 50^{\prime}$.38; meters $+1,553,-297$.
Longitude $89^{\circ} 28^{\prime} 29^{\prime \prime} .53$; meters $+727,-750$.
Elevation: 453.0 .
To © Sextons, azimuth $346^{\circ} 08^{\prime} 41^{\prime \prime} 71$, distance $10,963,46$ meters.
To (8)Cape La Croix, azimuth $356^{\circ} 57^{\prime} 08^{\prime \prime} 36$ d distance 11 , 016.98 meters.
To(8) Clear Creek, azimuth $280^{\circ} 59^{\prime} 48^{\prime \prime} 75$, distance $8,644.05$ meters.
To (a) Bluff Lake, azimuth $234^{\circ} 18^{\prime} 05^{\prime \prime} .81$, distance $14,149.53$ meters.
To \triangle Cape Girardeau, azimuth $41^{\circ} 36^{\prime} 26^{\prime \prime}$, distance $5,909.5$ meters.
To \triangle Flag 52 , azimuth $309^{\circ} 43^{\prime} 20^{\prime \prime}$, distance $1,094.3$ meters.
Stone post, on right bank of river; about 4 miles above Cape Girardeau, Mo.; on top of highest bluff and directly back from mouth of Flora Creek; on land owned by Doyle Brothers; in heavy timber; close to river face of bluff and 4 inches above surface of ground. A timber road passes along the ridge 4 meters back of the station; and a 30 -inch white oak tree blazed with triangle facing stone is $125^{\circ}, 4$ meters distant.

$$
y_{1}^{\prime} \quad \text { (} 14 \mathrm{H}
$$

Board on Examination and Survey of Missiseippi River, 1908. (Chart No. 12.)
Latitude $37^{\circ} 20^{\prime} 45^{\prime \prime} .73$; meters $+1,410,-440$.
Longitude $89^{\circ} 24^{\prime} 10^{\prime \prime} .53$; meters $+259,-1,218$.
Elevation: 351.47.
To © Clear Creek, azimuth $305^{\circ} 35^{\prime}$, distance 2,594 meters.
Iron pipe, on Illinois Central Railroad right of way near point of intersection of curve, $1 \frac{1}{2}$ miles below Reynoldsville, 111 ., and 15 feet east of track; between said railroad and St. Louis, Iron Mountain and Southern Railway (Illinois Division); 80 feet west of the latter and 1,200 meters below a road crossing both railroads.

\triangle DEVILS '99.

United States engineer office, St. Louis, Mo., 1899. (Chart No. 12.)
Latitude $37^{\circ} 20^{\prime} 37^{\prime \prime} .40$; meters $+1,153,-697$.
Longitude $89^{\circ} 25^{\prime} 48^{\prime \prime} .25$; meters $+1,188,-289$.
To \triangle Hurdle 11, azimuth $75^{\circ} 08^{\prime} 22^{\prime \prime}$, distance 3,384 meters.
To \triangle Swiftsure, azimuth $225^{\circ} 48^{\prime} 22^{\prime \prime}$, distance $1,014.7$ meters.
Iron pipe, head of Devils Island, Ill.; at top of revetment and near its upstream end; 22.5 feet from 15 -inch blazed elm stump, in revetment; and 11.1 feet out from 12 -inch blazed hackberry tree.

$$
\text { [0] } \frac{14}{3}
$$

Miesissippi River Commissiou, 1884. (Chart No. 12.)
Latitude $37^{\circ} 20^{\prime} 29^{\prime \prime} .11$; meters $+897,-953$.
Longitude $89^{\circ} 29^{\prime} 13^{\prime \prime} 17$; meters $+324,-1,153$.
Elevation: Stone, 390.36 .
To[0 14/2, azimuth $338^{\circ} 17^{\prime}$, distance 1,859 meters.
Flat stone and iron pipe, in Miseouri; on land of Edmond Hubbs; 400 meters from river bank; about 1 mile above Cape Rock; 500 meters below Little Flora Creek; on top of eecond ridge east of a well-traveled road and 1 meter from fence. (Pipe was missing in 1908.)

\triangle HURDLE 11 .

United.States engineer office, St. Louis, Mo., 1899. (Chart No. 12.)
Latitude $37^{\circ} 20^{\prime} 09^{\prime \prime} .23$; meters $+285,-1,565$.

Longitude $80^{\circ} 28^{\prime} 01^{\prime \prime} .12$; meters $+28,-1,449$.
To \triangle Devils ' 99 , azimuth $255^{\circ} 07^{\prime} 02^{\prime \prime}$, distance 3,384 meters.
Nail in center of pile, in second row of clumps in hurdle No. 11, near foot of Devils Island and about 730 feet from shore end of hurdle. Five clumps in upper row above station have piles to full height. Station is between fourth and fifth of these clumps from shore end. The pile is marked on downstream side by red-and-white signal pole. Nail is in southwest pile of clump and is surrounded by six other nails.

\triangle FLAG 62

Mississippi River Commission, 1880-81. (Chart No. 12.)
Latitude $37^{\circ} 20^{\prime} 09^{\prime} .04$; meters $+279,-1,571$.
Longitude $80^{\circ} 27^{\prime} 27^{\prime \prime} .21$; meters $+670,-807$.
Elevation: 346.91 .
To Bluff Lake, azimuth $226^{\circ} 15^{\prime} 44^{\prime \prime}$, distance $13,783.3$ meters.
To © Floral, azimuth $129^{\circ} 43^{\prime} 58^{\prime \prime}$, distance $1,994.3$ meters.
Stone post, on Dovils Island, on left bank of river; 1 mile from foot of island; 300 feet from river bank in woods and 30 feet from fence; 300 feet from northeast corner of field, and 650 feet east of hurdle No.9. A 12 -inch blazed elm tree standy 40 feei east; a 10 -inch blazed hackberry 20 feet south. A wooden poststands beside stone.

\triangle DEVILS No. 2.

United States engineer office, St. Louis, Mo., 1897. (Chari No. 12.)
Latitude $37^{\circ} 20^{\circ} 08^{\prime \prime} .59 ;$ meters $+265,-1,585$.
Longitude $89^{\circ} 27^{\prime} 45^{\prime \prime} .83$; meters $+1,128,-349$.
Iron pipe, on Devils Island, Ill.; \ddagger mile above a point opposite mouth of Flora Creek, in Missouri; on north edge of old stone dike, exposed at about a 18 -foot stage, St. Louis gauge; 60 feet west of high bank on which stands a house, and 900 feet south of new hurdle No. 9 .

(4) CLEAR CREEK.

Mississippi River Commission, 1880-81. (Chart No. 12.)
Latitude $37^{\circ} 19^{\prime} 56^{\prime \prime} .75$; meters $+1,750,-100$.
Longitude $89^{\circ} 22^{\prime} 44^{\prime \prime} .84$; meters $+1,104,-373$.
Elevation: 615.2 (stadia).
To © Floral, azimuth $101^{\circ} 03^{\prime} 17^{\prime \prime} .82$, distance $8,644.05$ meters.
To (2) Sextons, azimuth $33^{\circ} 08^{\prime} 21^{\prime \prime} .30$, distance $10,73 \overline{5} .88$ meters.
To © Bluff Lake, azimuth $196^{\circ} 56^{\prime} 13^{\prime \prime} .28$, distance $10,351.34$ meters.
To © Moccasin Springs, azimuth $151^{\circ} 19^{\prime} 46^{\prime \prime} .59$, distance $13,769.21$ meters.
To \triangle Cape Girardeau, azimuth $77^{\circ} 23^{\prime} 35^{\prime \prime}$.
To \triangle Flag 57 , azimuth $56^{\circ} 10^{\prime} 18^{\prime \prime}$, distance 12,354 meters.
To \triangle Flag 54, azimuth $82^{\circ} 24^{\prime} 28^{\prime \prime}$, distance $9,875.7$ meters.
Stone marking post, in Illinois; on bluffs about east of the village of Clear Creek; on land owned by Mr. Cox. To reach the station take the road leading up Clear Creek from Clear Creek Village and follow it about three-quarters of a mile beyond where road comes to bluffs; station stands on high point just above this road. In front oi little ravine leading up to station the road has been cut quite a little below general level of land by water running down it. Geodetic point is hole in top of stone.

$$
\oplus 13 \mathrm{H} .
$$

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 12.)
Latitude $37^{\circ} 19^{\prime} 49^{\prime} .93$; meters $+1,539,-311$.
Longitude $89^{\circ} 24^{\prime} 44^{\prime \prime} .33$; meters $+1,091,-386$.
Elevation: 351.87.
To (4) Clear Creek, azimuth $265^{\circ} 55^{\prime}$, distance 2,949 meters.
To $\oplus 14 \mathrm{H}$, azimuth $205^{\circ} 50^{\circ}$, distance 1,910 meters.
Iron pipe in Illinois; $2 \overline{5}$ feet east of Illinois Central Railroad and 85 feet west of St. Louis, Iron Mountain and Southern Railway (Illinois Division); about three-quarters of a mile above McClure Station and five-eigh the of a mile above bridge at Clear Creek; near point of curve of "Illinois Central," where the latter leaves the "Iron Mountain" and 75 feet west of $\oplus 12 \mathrm{H}$.
H. Doc. 50, 61-1-31
$\oplus 12 \mathrm{H}$.
Board on Examination and Survey of Mississippi River，1908．（Chart No．12．）
Latitudo $37^{\circ} 19^{\prime} 49^{\prime \prime} .60$ ；meters $+1,529,-321$ ．
Longitude $89^{\circ} 24^{\prime} 43^{\prime \prime} .50$ ；meters $+1,071,-406$ ．
Elevation：348．42．
A stake，in lllinois； 9.3 feet west of center of track of St．Louis，Iron Mountain and Southern Railivay（Illinois Division）；about three－quarters of a mile above McClure Station；five－eighths of a mile above Clear Creek；and nearly opposite point of curve of the＂Illinois Central＂where it leaves the＂Iron Mountain．＂
\triangle CAPE ROCK＇04．
United States engineer oflice，St．Louis，Mo．，1904．（Chart No．12．）
Latitude $37^{\circ} 19^{\prime} 41^{\prime \prime} 13$ ；meters $+1,268,-582$ ．
Longitude $89^{\circ} 29^{\prime} 43^{\prime \prime} .68 ;$ meters $+1,075,-402$ ．
To \triangle Minton，azimuth $4^{\circ} 02^{\prime} 10^{\prime \prime}$ ，distance $1,212.1$ meters．
To \triangle Cape Girardeau，azimuth $42^{\circ} 33^{\prime} 12^{\prime \prime}$ ，distance $3,101.8$ meters．
Hole surrounded by triangle in large rock，with surface sloping toward river and in－ clined about 30° from the horizontal；about $2 \frac{1}{2}$ miles above Cape Girardeau，Mo．； on point at Cape Rock；on slope of bank； 140 meters below Cape Creek；and near Gov－ ernment light．

$$
\text { 曰 } \frac{14}{2}
$$

Mississippi River Commission，1884．（Chart No．12．）
Latitude $37^{\circ} 19^{\prime} 33^{\prime \prime} .09$ ；incters $+1,020,-830$ ．
Longitude $89^{\circ} 28^{\prime} 45^{\prime \prime} .23$ ；meters $+1,113,-364$ ．
Elevation： 350.22 ．
To 14 14／1，azimuth $338^{\circ} 21^{\prime}$ ，distance 994 meters．
To［］ $14 / 3$ ，azimuth $158^{\circ} 17^{\prime}$ ，distance 1,8 告 9 meters．
Stone post，on Minton Point，Ill．；in cultivated field； 1 meter from fence and 130 meters above a fence corner； 200 meters from river bank；and 430 meters below mouth of Devils Island chute．There is a well－traveled wagon road just in front of fence and fringe of large timber between the road and river．
（1） 11 H.
Board on Examination and Survey of Mississippi River，1908．（Chart No．12．）
Latitude $37^{\circ} 19^{\prime} 11^{\prime \prime} 31$ ；meters $+349,-1,501$ ．
Longitude $89^{\circ} 25^{\prime} 06^{\prime \prime} .62$ ；meters $+163,-1,314$ ．
Elevation： 350.38 ．
To $\oplus 12 \mathrm{H}$ ，azimuth $205^{\circ} 46^{\prime}$ ，distance 1,310 meters．
Iron pipe，at MeClure Station，Ill．； 8 feet west of St．Louis，Iron Mountain and Southern Railway（Illinois Division）； 250 meters below Clear Creek；and 8 meters south of wagon road crossing，about 100 meters above the depot．It is 1,000 meters east of the town of McClure on the Illinois Central．

\triangle FLAC 54.

Mississippi River Commission，1880－81．（Chart No．13．）
Latitude $37^{\circ} 19^{\prime} 14^{\prime \prime} .24$ ；meters $+439,-1,411$ ．
Longitude $89^{\circ} 29^{\prime} 22^{\prime \prime} .42$ ；meters $+552,-925$ ．
Elevation： 350.30 ．
To \odot Clear Creek，azimuth $262^{\circ} 20^{\circ} 27^{\prime \prime}$ ，distance $9,875.7$ meters．
To（大）Cape La Croix，azimuth $346^{\circ} 46^{\prime} 15^{\prime \prime}$ ，distance 8，256．5 meters．
To（© Sextons，azimuth $332^{\circ} 54^{\prime} 24^{\prime \prime}$ ，distance 8， 627.1 meters．
Stone post，on left bank； 1 mile below Minton Point； 1,300 meters above East Cape Girardeau，Ill．，on land of Jesse Minton； 130 meters from river bank；south side of road leading east from Barney Randall＇s warehouse； 100 meters back of farmhouse； 6 feet northwest of 2 －ioot blazed cottonwood tree；and 2 feet southwest of a 1 －foot blazed sycamore．

$$
\text { ■ } \frac{14}{1}
$$

Mississippi River Commission，1884．（Chart No．13．）
Latitude $37^{\circ} 19^{\prime} 03^{\prime \prime} .12$ ；meters $+96,-1,754$ ．
Longitude $89^{\circ} 28^{\prime} 30^{\prime \prime} .33$ ；meters $+747,-730$ ．
Elevation：Stone 341．70；pipe， 346.80 ．
To $14 / 2$ ，azimuth $158^{\circ} 21^{\prime}$ ，distance 994 meters．

Flat stone and iron pipe, in Illinois and 1,250 meters south from Minton Point; 1,900 meters cast from \triangle Minton, on land of Eliza McGee; 1 meter from rail fence on south side of large field; and 80 meters east of corner of field. A lane runs alone east side of field to river.

\triangle.MINTON.

United States ongineer office, St. Louis, Mo., 1897. (Chart No. 13.)
Latitude $37^{\circ} 19^{\prime} 01^{\prime \prime} .91$; meters $+59,-1,791$.
Longitude $89^{\circ} 29^{\prime} 47^{\prime \prime} .15$; meters $+1,161,-316$.
Elevation: 346.41.
To \triangle Court House, azimuth $57^{\circ} 20^{\prime} 13^{\prime \prime}$, distance 2,521.8 meters.
To \triangle Union Mill, azimuth $58^{\circ} 35^{\prime} 30^{\prime \prime}$, distance $2,237.6$ metors.
To \triangle Cape Rock ' 04 , azimuth $184^{\circ} 02^{\prime} 14^{\prime \prime}$, distance 1,212.1 meters.
To \triangle Cape Girardeau, azimuth $61^{\circ} 52^{\prime} 09^{\prime \prime}$, distance 2,281.8 meters.
To \triangle St. Vincent, azimuth $43^{\circ} 32^{\prime} 16^{\prime \prime}$, distance 3,203.7 meters.
To \triangle Pumping Station, azimuth $80^{\circ} 36^{\prime} 47^{\prime \prime}$ distance 1,702.2 meters.
To \triangle Marble City Mills, azimuth $62^{\circ} 38^{\prime} 37^{\prime \prime}$, distance 2, 153 meters.
Iron pipe, painted white, on left bank and one-half mile above East Capo Girardeau, III.; near group of large trees on river side of road; about 200 feet above Hurdle No. 1; 300 feet south of southwest corner of house; 46 feet west of 36 -inch blazed cottonwood tree and 41 feet north of 30 -inch blazed sycamore tree.

\triangle PUMPING STATION.

United States engineer office, St. Louis, Mo., 1897. (Chart No. 13.)
Latitude $37^{\circ} 18^{\prime} 52^{\prime \prime} .90$; meters $+1,631,-219$.
Longitude $89^{\circ} 30^{\prime} 55^{\prime \prime} .35$; meters $+1,363,-115$.
Iron stack of waterworks above Cape Girardeau, Mo.

\triangle MARBLE CITY MILLS.

United States engineer office, St. Louis, Mo., 1897. (Chart No. 13, station not plotted.).

Latitude $37^{\circ} 18^{\prime} 29^{\prime \prime} .81$; meters $+919,-931$.
Longitude $89^{\circ} 31^{\prime} 04^{\prime \prime} .80$; meters $+118,-1,359$.
Brick chimney of the Marble City mills at Cape Girardeau, Mo.

$$
\triangle \text { CAPE GIRARDEAU }=\square \frac{13}{3}
$$

Mississippi River Commission, 1880-81. (Chart No. 13.)
Latitude $37^{\circ} 18^{\prime} 27^{\prime \prime} .01$; meters $+833,-1,017$.
Longitude $89^{\circ} 31^{\prime} 08^{\prime \prime} .86$; meters $+218,-1,260$.
Elevation: 439.48.
To(A) Floral azimuth' $221^{\circ} 34^{\prime} 50^{\prime \prime}$ distance $5,909.5$ meters.
To (8 Cape la Croix, azimuth $325^{\circ} 33^{\prime} 30^{\prime \prime}$, distance 7,979.4 meters.
To (Alear Creek, azimuth $25^{\circ} 7^{\circ} 23^{\prime} 29^{\prime \prime}$.
To(A)Sextons, azimuth $313^{\circ} 31^{\prime} 20^{\prime \prime}$.
To \triangle Minton, azimuth $241^{\circ} 51^{\prime} 19^{\prime \prime}$, distance $2,281.8$ meters.
To \triangle Cape Rock, azimuth $222^{\circ} 32^{\prime} 20^{\prime \prime}$, distance $3,101.8$ meters.
To \triangle College Point, azimuth $0^{\circ} 30^{\prime} 54^{\prime \prime}$, distance $1,147.5$ meters.
To \triangle Flag 55 , azimuth $308^{\circ} 52^{\prime} 43^{\prime \prime}$, distance $1,515.2$ meters.
To \triangle Flag 57, azimuth $332^{\circ} 21^{\prime} 57^{\prime \prime}$, distance 4,647.1 meters.
To \triangle St. Vincent, azimuth $8^{\circ} 51^{\prime} 18^{\prime \prime}$, distance $1,261.7$ meters.
To¢P. B. M. 54 , azimuth $326^{\circ} 10^{\prime}$, distance 191 meters.
To (13/2, azimuth $281^{\circ} 52^{\prime}$, distance 1,642 meters.
Square stone post, on site of old Fort "A" in Cape Girardeau, Mo.; on high hill near old lime kiln, between Marble City mill and Union flour mill; just north of Belleview street; 3 feet east of fence and 15 feet north of southeast corner of garden.
\triangle UNION MILL (Cape Girardeau.)
United States engineer office, St. Louis, Mo., 1897. (Chart No. 13, station not plotted.)

Latitude $37^{\circ} 18^{\prime} 24^{\prime \prime} .08$; meters $+742,-1,108$.
Longitude $89^{\circ} 31^{\prime} 04^{\prime \prime} .69$; meters $+116,-1,362$.
Brick chimnoy of Union mill at Cape Girardeau, Mo.

\odot 1', B. M. 54.

Mississippi River Commission, 1881 and 1884. (Chart No. 13.)
Latitude $37^{\circ} 18^{\prime} 21^{\prime \prime} .87$; meters $+674,-1,176$.
Longitude $89^{\circ} 31^{\prime} 04^{\prime \prime} 54$; meters $+112,-1,366$.
Elevation: 353.51.
To \triangle Cape Girardeau, azimuth $146^{\circ} 10^{\prime}$, distance 191 meters.
Center of horizontal copper bolt, in the outer vertical face of stone step, which extends under buttress at the northeast corner, second entrance from the north, to Riverview Hotel on Water street, Cape Girardeau, Mo.

\triangle COURT-HOUSE.

United States engineer office, St. Louis, Mo., 1897. (Chart No. 13.)
Latitude $37^{\circ} 18^{\prime} 17^{\prime \prime} .76$; meters $+548,-1,302$.
Longitude $89^{\circ} 31^{\prime} 13^{\prime \prime} .35$; meters $+329,-1,149$.
Center of dome of court-house at Cape Girardeau, Mo.

$$
\square \frac{13}{2}
$$

Mississippi River Commission, 1884, (Chart No. 13.)
Latitude $37^{\circ} 18^{\prime} 16^{\prime \prime} .06$; meters $+495,-1,355$
Longitude $89^{\circ} 30^{\prime} 03^{\prime \prime} .62$; meters $+89 ;-1,389$.
Elevation: 344,23.
To \triangle Cape Girardeau, azimuth $101^{\circ} 52^{\prime}$, distance 1,642 meters.
To \triangle Flag 55, azimuth $34^{\circ} 54^{\prime}$, distance 748 meters.
To@13/i, azimuth $281^{\circ} 48^{\prime}$, distance 609 meters.
Stone post, on the east bank of a prominent slough in Illinois; due east from dome of court-house in Cape Girardeau, Mo.; 400 meters from river bank; 275 meters south of road running east from river; 6 meters southeast of pecan tree; a little south of east from a two-story house, with square, flat roof, east of old railroad incline.

$$
\text { [} \frac{13}{1}
$$

Mississippi River Commission, 1884. (Chart No. 13.)
Latitude $37^{\circ} 18^{\prime} 12^{\prime \prime} .03$; meters $+371,-1,479$.
Longitude $89^{\circ} 29^{\prime} 39^{\prime \prime} .43$; meters +971 , -507.
Elevation: Stone, 343.86; pipe, 350.03.
To (13/2, azimuth $101^{\circ} 48^{\prime}$, distance 609 meters.
Flat stone and iron pipe, 1,000 meters from old "Illinois Central" incline below East Cape Girardeau, Ill.; on land of C. Cherry; 375 meters south of road running east. from river; directly south of log house standing near and on south side of lane; and about 400 meters west of lane running north and south.

A FLAG 55.

Mississippi River Commission, 1880-81. (Chart No. 13.)
Latitude $37^{\circ} 17^{\prime} 56^{\prime \prime} .17$; meters $+1,732,-118$.
Longitude $89^{\circ} 30^{\prime} 20^{\prime} .99$; meters $+517,-961$.
Elevation: 346.94.
To (-6) Sextons, azimuth $314^{\circ} 27^{\prime} 54^{\prime \prime}$, distance $7,527.7$ meters.
To* Cape La Croix, azimuth $329^{\circ} 22^{\prime} 40^{\prime}$, distance 6,543 meters.
To \triangle Cape Girardeau, azimuth $128^{\circ} 53^{\prime} 12^{\prime \prime}$, distance $1,515.2$ meters.
To $13 / 2$, 'azimuth $214^{\circ} 54^{\prime}$, distance 748 meters.
Stone post, in Illinois and opposite Young Ladies' Academy at Cape Girardeau, Mo.; on land of Lawyer Houck; 650 feet from river bank; and 4 feet south of a blazed 2 -foot cottonwood tree.

\triangle COLLEGE POINT.

United States engineer office, St. Louis, Mo., 1899. (Chart No. 13, station not plotted.)

Latitude $37^{\circ} 17^{\prime} 49^{\prime \prime} .79$; meters $+1,535,-315$.
Longitude $89^{\circ} 31^{\prime} 09^{\prime} .28$; meters $+229,-1,249$.
To 0 Cape Girardenu, gzimuth $180^{\circ} 30^{\circ} 64, \prime^{\prime \prime}$ distance $1,147.5$ meters.
Iron pipe, on prominent point on right bank of river; near northern boundary of St. Vincent College in Cape Girardeau, Mo.; on small grassy mound on high rock bank; 1,150 feet below train shed; 850 feet below lower stone dike; and 45 feet on river side of main railroad track. (Not found, 1908.)

\triangle ST. VINCENT.

United States engineer office, St. Louis, Mo., 1897. (Chart No. 13.)
Latitude $37^{\circ} 17^{\prime} 46^{\prime \prime} .57$; meters $+1,436,-414$.
Longitude $89^{\circ} 31^{\prime} 16^{\prime \prime} .75$; meters $+413,-1,065$.
Center of cross on Si. Vincent College at Cape Girardeau, Mo.
(1) 10 H.

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 13.)
Latitude $37^{\circ} 17^{\prime} 44^{\prime \prime} .56$; meters $+1,374,-476$.
Longitude $88^{\circ} 25^{\prime} 59^{\prime \prime} .03$; meters $+1,454,-24$.
Elevation: 346.65 .
To $\oplus 11 \mathrm{H}$, azimuth $205^{\circ} 47^{\prime}$, distance 2,968 meters.
Iron pipe, 8 feet west of St. Louis, Iron Mountain and Southern Railway (Illinois
Division); is miles below station at McClure, Ill.; and 640 feet below trestle No. 143.
\triangle LEMING'S MILI،.
United States engineer office, St. Louis, Mo., 1899. (Chart No. 13.)
Latitude $37^{\circ} 17^{\prime} 29^{\prime \prime} .47$; meters $+909,-941$.
Longitude $89^{\circ} 31^{\prime} 20^{\prime \prime} .17$; meters $+497,-981$.
Round iron stack of Leming's upper sawmill near lower part of Cape Girardeau, Mo.

$\oplus 8 \mathbf{H}$.

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 13.)
Latitude 37 : $17^{\prime} 28^{\prime \prime} .86$; meters $+890,-960$.
Longitude $89^{\circ} 26^{\prime} 05^{\prime \prime} .27$; meters $+130,-1,348$.
Elevation: 345.09.
To 99 H , azimuth $193^{\circ} 14^{\prime}$ distance 252 meters.
Iron pipe, 25 feet west of St. Louis, Iron Mountain and Southern Railway (Illinois Division); about 2 miles below station at McClure, Ill.; 500 feet below trestle No. 144; and near lower point of curve.

$$
\square \frac{\overline{12}}{1}
$$

Mississippi River Commission, 1884. (Chart No. 13.)
Latitude $37^{\circ} 16^{\prime} 21^{\prime \prime} .91$; meters $+676,-1,174$.
Longitude $89^{\circ} 30^{\prime} 07^{\prime \prime} .87$; meters $+194,-1,284$.
Elevation: Stone, 345.04; pipe, 350.13. (Pipe, 348.51, 1908.)
To \triangle Flag 57, azimuth $291^{\circ} 45^{\prime}$, distance 703 meters.
To (12/2, azimuth $58^{\circ} 49^{\prime}$, distance 608 meters.
Flat stone and iron pipe, in Illinois bottom land; 700 meters from river bank and about 1,100 meters below Giboney Island; near edge of timber; and 2 meters from southwest bank of old slough

```
\(\triangle\) FLAG 57.
```

Mississippi River Commission, 1880-81. (Chart No. 13.)
Latitude $37^{\circ} 10^{\prime} 13^{\prime \prime} .46 ;$ meters $+415,-1,435$.
Longitude $89^{\circ} 29^{\prime} 41^{\prime \prime} .36$; meters $+1,019,-459$.
Elevation: 344.35.
To (*) Sexton's, azimuth $295^{\circ} 35^{\prime} 54^{\prime \prime}$, distance $4,873.7$ meters.
To (3) Clear Creek, azimuth $236^{\circ} 06^{\prime} 06^{\prime \prime}$, distance 12,354 meters.
To $*$ Cape La Croix, azimuth $316^{\circ} 16^{\prime} 34^{\prime \prime}$ distance $3,409.8$ meters.
To \triangle Cape Girardealu, azimuth $152^{\circ} 22^{\prime} 50^{\prime \prime}$, distance $4,647.1$ meters.
To@12/1, azimuth $111^{\circ} 45^{\prime}$, distance 703 meters.
Stone post, on left bank; $2 \frac{1}{2}$ miles below East Cape Girardeau, Ill; 300 feet west of county road; 3,300 feet from river bank; 175 feet southwest of A. Weather's house; and 7 feet northwest of a 30-inch blazed cotton-wood tree.

$$
\oplus 7 \mathrm{H}
$$

Board on Examinaton and Survey of Mississippi River, 1908. (Chart No. 13.)
Latitude $37^{\circ} 16^{\prime} 11^{\prime \prime} .78$; meters $+363,-1,487$.
Longitude $89^{\circ} 26^{\prime} 18^{\prime \prime} .54$; meters $+457,-1,021$.
Elevation: 344.59.
「оø 9 H , a aimuth $187^{\circ} 50^{\prime}$, distance 2, 397 meters.

Iron pipe, 10.7 ieet west of St. Louis, Iron Mountain and Southern Railway (Illinois Division); 17 feel east from spur track leading to Illinois Central Railroad; $1 \frac{1}{2}$ miles above Gale, Ill.; 1,200 meters above bridge over Sexton Creok; and at point of nearest approach of creek to railroad in this vicinity.

$$
\text { [0] } \frac{12}{2}
$$

Mississippi River Commission, 1884. (Chart No. 13.)
Latitude $37^{\circ} 10^{\prime} 11^{\prime \prime} .70$; meters $+361,-1,489$.
Longitude $89^{\circ} 30^{\prime} 28^{\prime \prime} .97$; meters $+714,-764$.
Elevation: 344.05 .
To $12 / 1$, azimuth $238^{\circ} 49^{\prime}$, distanco 008 meters.
Stone post, 75 meters from left bank of river; about 1,150 meters below Giboney Islaud; in timber and 600 meters below edge of cultivated field.

$$
\text { [-] } \frac{11}{1}
$$

Mississippi River Commission, 1884. (Chart No. 13.)
Latitude $37^{\circ} 15^{\prime} 39^{\prime \prime} .28$; meters $+1,211,-639$.
Longitude $89^{\circ} 27^{\prime} 20^{\prime \prime} .53$; meters $+506,-973$.
Elevation: Stone, 336.42 ; pipe, 341.61 .
Tob11/2, azimuth $38^{\circ} 21^{\prime \prime}$, distance 658 meters.
Flat stone and iron pipe, 1,300 meters above roundhouse at Gale, Ill.; 1,000 meters from river bank, opposite Grays Point, Mo.; in cultivated field; and 100 meters toward river from edge of timber. (Pipe lying on ground, stone not found, 1907.)

$$
\text { 『 } \frac{12}{3}
$$

Mississippi River Commission, 1884. (Chart No. 13.)
Latitude $37^{\circ} 15^{\prime} 36^{\prime} .48$; meters $+1,124,-726$.
Longitude $89^{\circ} 31^{\prime} 40^{\prime} .78$; meters $+1,005,-474$.
Elevation: 344.63.
To $012 / 4$, azimuth $58^{\circ} 26^{\prime}$, distance 758 meters.
Stone post, on right bank and 3 miles below Cape Girardeau, Mo.; on land of St.
Vincent College; 150 meters from river bank; 10 meters cast of Cape La Croix Creek; 3 meters west of fence running to a large two-story white house; and 75 meters from bend in fence.

$$
\oplus 3 \mathrm{H}
$$

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 13.)
Latitude $37^{\circ} 15^{\prime} 34^{\prime \prime} .24$; meters $+1,056,-794$.
Longitude $89^{\circ} 26^{\prime} 31^{\prime \prime} .45$; meters $+775,-704$.
Elevation: 34067.
Iron pipe, in Illinois bottom land; 22 feet east of main track of Illinois Central Railroad (Carbondale and Cairo Division); directly opposite and west of wagon and railroad bridges over Sexton Creek; mile above Gale, Ill.; and just above upper end of the Illinois Central Railroad yards.

$$
\text { 回 } \frac{12}{4}
$$

Mississippi River Commission, 1884. (Chart, No. 13.)
Latitude $37^{\circ} 15^{\prime} 23^{\prime \prime} .62$; meters $+728,-1,122$.
longitude $89^{\circ} 32^{\prime} 00^{\prime \prime} .97$; meters $+172,-1,307$.
Elevation: Stone, 342.03; pipe, 347.13.
To[$12 / 3$, azimuth $238^{\circ} 26^{\prime}$, distance 758 meters.
Flat stone and iron pipe, on right bank of river and 3 miles below Cape Girardeau, Mo.; 900 meters from river bank and 700 meters baek from Cape Ia Croix Creek; on land of St. Vincent Colloge; 1 meter north of fence, on north sido of field; about 250 meters out from timber; 150 meters from northwest coriner of field; and 2 meters north of a 6 -foot cottou-wood tree.

```
门 \(\frac{11}{2}\)
Mississippi River Commission, 1884. (Chart No. 13.)
Latitudo \(37^{\circ} 155^{\prime} 22^{\prime \prime} .55\); meters \(+695,-1,155\).
Longitude \(89^{\circ} 27^{\prime} 37^{\prime \prime} .10\); meters \(+914,-565\).
Elevation: 340.23.
To © Cape La Croix, azimuth \(38^{\circ} 16^{\prime}\), distance 1,140 meters.
To回 \(11 / 1\), azimuth, \(218^{\circ} 21^{\prime}\), distance 658 meters.
Stone post, in Illinois bottom land and opposite Grays Point, Mo.; 1,050 moters above roundhouse at Gale, Ill.; 300 meters from river bank; in field, and 125 meters back from road along old high river bank.
```


(1) 2 HI

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 13.)
Latitude $37^{\circ} 15^{\prime} 14^{\prime \prime} .14$; neters $+436,-1,414$.
Longitude $89^{\circ} 266^{\prime} 47^{\prime \prime} .16$; meters $+1,162,--317$.
Elevation: 340.22.
To(A)Sextons, ayimuth $339^{\circ} 58^{\prime}$, distanco 298 meters.
To © 3 II, a amuth $211^{\circ} 58^{\prime}$, distance 730 meters.
A stake, on left bank of river; 23 fect, cast of center of track of Illinois C'entral Railroad (Carbondale and Cairo Division); about 880 feet above northern end of (iales railroad station (Illinois Central); and near lower end of the railroad yards.
(9) 1 H .

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 13.)
Latitude $37^{\circ} 15^{\prime} 06^{\prime \prime} .87$; meters $+212,-1,638$.
Longitude $89^{\circ} 26^{\prime} 52^{\prime \prime} .76$; meters $+1,300,-179$.
Elevation: 344.00.
To Sextons, azimuth $283^{\circ} 03^{\prime}$, distance 247 meters.
To 92 H , azimuth $211^{\circ} 48^{\prime}$, distance 264 meters.
Iron pipe, 25 feet east of center of main track of Illinois Central Railroad (Carbondale and Cairo division); at lower end of main side tracks of the Illinois Central Railroadpand 15.8 feet north of northern end of Ciale station.

(4) SEXTONS.

Mississippi River Commission, 1880-81. (Chart No. 13.)
Latitude $37^{\circ} 15^{\prime} 05^{\prime \prime} .07$; meters $+156,-1,694$.
Longitude $89^{\circ} 26^{\prime} 42^{\prime \prime} .99$; meters $+1,059,-420$.
To(6)Cape La Croix, azimuth $80^{\circ} 05^{\prime} 31^{\prime \prime} .57$, distance $2,070.64$ meters.
To* Day, azimuth $21^{\circ} 26^{\prime} 22^{\prime \prime} .24$, distance 2,1 153.77 meters.
To(4) Floral, azimuth $166^{\circ} 09^{\prime} 46^{\prime \prime} .26$, distance $10,983.46$ meters.
To (6) Clear Creek, azintith $213^{\circ} 05^{\prime} 57^{\prime \prime} .00$, distance $10,735,88$ meters.
To \triangle Cape Girardeall, azimuth $133^{\circ} 34^{\prime} 00^{\prime \prime}$.
To\& Flag 55, azimuth $134^{\circ} 30^{\prime} 06^{\prime \prime}$, distance $7,527.7$ meters.
To Δ Flag 57 , azimuth $11^{\circ} 37^{\prime} 42^{\prime \prime}$, distance $4,873.7$ meters.
Hole in center of stone marking post, on Illinois blulits; on second high point of first high bluif above the mouth of Sexton Creek; east from Illinois Central Railroal station at Gale, III.; on land owned by J. N. Gale. To reach the station take road leading back from river bank near the head of Rock Island; follow road across creek and both railroads to signboard "Robinson spur," then turning to the left follow the woods road, beginning at that point, up the bluif; road passes 2 meters west of station.

$$
\square \mathrm{B} . \mathrm{M} . \mathrm{E}=\triangle \mathrm{GRAYS} .
$$

Mississippi Kiver Commission, 1883; redetermined, United States engineer office, St. Louis, Mo., 1899. (Chart No. 13, station not plotted.)

Latitude $37^{\circ} 14^{\prime} 59^{\prime \prime} .21 ;$ meters $+1,825$, - 25 .
Longitude $89^{\circ} 27^{\prime} 53^{\prime \prime} .15 ;$ meters $+1.317,-161$.
Elevation: 3:34.20.
To R Rock hatand, azimuth 3010 of' $31^{\prime \prime}$. distance 1.017 .7 meters.
Iron bolt leaded in solid rock, on right, bank; jo) leet east of (irars Point gange, near bulletin board.

Elovation determined in December, 1908, by precise levels irom precise level bench marks 61 and $08,335.25$.
(*) CAPE LA CROIX $=$ - $\frac{11}{3}$
Mississippi River Commission, 1880-81. (Chart No. 13.)
Latitude $37^{\circ} 1.4^{\prime} 53^{\prime \prime} .51$; meters $+1,650,-200$.
Longitude $89^{\circ} 28^{\prime} 05^{\prime \prime} .76$; meters $+142,-1,337$.
Elevation: 480.67
To(4) Floral, azimuth $176^{\circ} 57^{\prime} 22^{\prime \prime} .76$, distance $11,016.98$ meters.
To(-) Sextons, azimuth $260^{\circ} 04^{\prime} 41^{\prime \prime} .47$, distance $2,070.64$ meters.
To(A) Grand Chain, azimuth $8^{\circ} 57^{\prime} 09^{\prime \prime} .63$, distance $3,461.35$ meters.
To(*) Day, azimuth $322^{\circ} 45^{\prime} 28^{\prime \prime} .89$, distance $2,070.31$ meters.
To \triangle Cape Girardeau, azimuth $145^{\circ} 35^{\prime} 21^{\prime \prime}$, distance $7,979.4$ meters.
To \triangle Flag 57, azimuth $136^{\circ} 17^{\prime} 32^{\prime \prime}$, distance $3,409.8$ meters.
To \triangle Flag 55, azimuth $149^{\circ} 24^{\prime} 02^{\prime \prime}$, distance 6,543 meters.
To $11 / 2$, azimuth $218^{\circ} 16^{\prime}$, distance 1,140 meters.
Stone post, on top of Missouri bluff just above Grays Point, and on land of Capt. Edw. Gray; 1,000 feet from river bank. To reach station land at first little ravine above Grays Point and climb bluff to the left. Stone is on point of ridge and a small cemetery is on low ridge, toward river from stone.

$$
\odot \text { P. B. M. } 57
$$

Mississippi River Commission, 1881 and 1884. (Chart No. 13.)
Latitude $37^{\circ} 14^{\prime} 53^{\prime \prime} .47$; meters $+1,648,-202$.
Longitude $89^{\circ} 29^{\prime} 05^{\prime \prime} .49$; meters $+135,-1,344$.
Elevation: 350.74.
Center of horizontal copper bolt, set in smooth vertical face of Missouri bluff; 350 meters below mouth of Cape La Croix Creek, and about 1,800 meters above Gurays Point gauge, being just in view of the lower part of Cape Girardeau; in ledge rf blue or gray limestone, at its upper or western extremity, on land of the Taylor estate. It is 0.8 meter above the ground; 1 meter below top of vertical part, and 10 meters downstream from point where the ledge disappears under the ground. The letters "U, S. P. B. M." are cut in the face of the rock.

\triangle ROCK ISLAND.

United States engineer office, St. Louis, Mo., 1899. (Chart Mo. 13, station not plotted.)

Latitude $37^{\circ} 1.4^{\prime} 41^{\prime \prime} .78$; meters $+1,288,-562$.
Longitude $89^{\circ} 27^{\prime} 18^{\prime \prime} .38$; meters $+452,-1,027$.
To@B. M. E. $=\triangle$ Grays, azimuth $121^{\circ} 51^{\prime} 53^{\prime \prime}$, distance $1,017.7$ meters.
Wire nail in center of triangle cut in large flat bowlder, on lower side of Rock Island, on left side of channel; about 100 feet from high bank and opposite Grays Point, Mo.; station is about 150 feet downstream from government light tree on the island, and about on line with the tree and the shore end of "Cotton Belt"' incline, just below Graysboro, Mo.

(4) NORTH BASE.

Mississippi River Commission, 1880-81. (Chart No. 13.)
Latitude $37^{\circ} 14^{\prime} 26^{\prime \prime} .69$; meters $+823,-1,027$.
Longitude $89^{\circ} 27^{\prime} 49^{\prime \prime}$. 10 ; meters $+1,210$, -269.
To (6) Day, azimuth $314^{\circ} 17^{\prime} 15^{\prime \prime} .39$, distance $1,176.47$ meters.
To © South Base, azimuth $21^{\circ} 08^{\prime} 51^{\prime \prime} .48$, distance $1,240.22$ meters.
Cross on copper bolt leaded into stone marking post, 1 foot under ground, at the upper end of Graysboro, Mo.; 1,400 meters above mouth of Dorrity Creek; 150 meters northeastwardly from railroad roundhouse; between railroad track to incline and track to roundhouse; on land of Capt. Edw. Gray, and 500 feet above line fence between Gray and Houck.

Magnetic bearing to dome of court-house at Thebes, Ill., south 13° east; to (a) South Base, south 154° west; to © Cape La Croix, north 32° west. Surface mark is a black walnut post 6 inches square branded "U.S." with mound built around it.

(A) DAY.

Mississippi River Commission, 1880-81. (Chart No. 13.)
Latitude $37^{\circ} 14^{\prime} 00^{\prime} .04$; meters $+1,-1,849$.
Longitude $89^{\circ} 27^{\prime} 14^{\prime \prime} .93$; meters $+368,-1,111$.
Elevation: 473.67

To © North Base, azimuth $134^{\circ} 17^{\prime} 32^{\prime \prime} .83$, distance $1,176.47$ meters.
To © South Base, azimuth $75^{\circ} 26^{\prime} 03^{\prime \prime} .12$, distance $1,332.46$ meters.
To © Sextons, azimuth $201^{\circ} 26^{\prime} 02^{\prime \prime} .91$, distance $2,153.77$ meters.
To © Cape La Croix, azimuth $142^{\circ} 45^{\prime} 59^{\prime \prime} .65$, distance $2,070.31$ meters.
To ** Thebes, azimuth $0^{\circ} 19^{\prime} 03^{\prime \prime} .47$, distance 2,747.74 meters.
To © Grand Chain, azimuth $45^{\circ} 20^{\prime} 19^{\prime \prime} .68$, distance $2,519.18$ meters.
Stone post, in cleared spot on Illinois bluffs, about three-quarters of a mile above Thebes and 1,000 feet from the river. It is on land owned by Mr. Day, and directly back from prominent point where rock exposed at low water projects out into river. A small house close to river bank stands at upper end of bluff.

(*) SOUTH BASE.

Mississippi River Commission, 1880-81. (Chart No. 13.)
Latitude $37^{\circ} 13^{\prime} 49^{\prime \prime} .17$; meters $+1,516,-334$.
Longitude $89^{\circ} 28^{\prime} 07^{\prime \prime} .25$; meters $+179,-1,300$.
To © Day, azimuth $255^{\circ} 25^{\prime} 31^{\prime \prime}$. 47 , distance $1,332.46$ meters.
To © Thebes, azimuth $332^{\circ} 08^{\prime} 48^{\prime \prime} .96$, distance 2,728.50 meters.
To(*) North Base, azimuth $201^{\circ} 08^{\prime} 37^{\prime \prime} .27$, distance $1,240.22$ meters.
Cross on copper bolt leaded into stone marking post, 1 foot under ground; on center line, prolonged, of road leading to bluffs from lower end of Graysboro, Mo.; near top of river bank; on land owned by Lawyer Houck; about 100 feet above line fence between Houck and Minman. Magnetic bearing to dome of court-house at Thebes, Ill., south 377° east; to dome on schoolhouse, at Thebes, south 48° east; to © North Base, north 151° east. Surface mark is a black locust post 6 inches s:qquare branded "U. S.,", with a mound built around it.

\triangle THEBA.

United States engineer office, St. Louis, Mo., 1899. (Chart No. 13, station not plotted.)
Latitude $37^{\circ} 13^{\prime} 23^{\prime \prime} 37$; meters $+720,-1,129$.
Longitude $89^{\circ} 27^{\prime} 47^{\prime \prime} .96$; meters $+1,182,-297$.
To \triangle Dorrity, azimuth $84^{\circ} 22^{\prime} 27^{\prime \prime}$, distance 690.9 meters;
To \triangle Chain, azimuth $4^{\circ} 49^{\prime} 02^{\prime \prime}$, distance 936.4 meters.
Hole in large rock or bowlder, below high left bank and nearly in line with north line of schoolhouse at upper end of Thebes, Ill.

\triangle DORRITY.

United States engineer office, St. Louis, Mo., 1899. (Chart No. 13, station not plotted.)
Latitude $37^{\circ} 13^{\prime} 21^{\prime \prime}$.17; meters $+653,-1,197$.
Longitude $89^{\circ} 28^{\prime} 15^{\prime \prime} .85$; meters $+391,-1,088$.
To \triangle 'Theha, azimuth $264^{\circ} 22^{\prime} 10^{\prime \prime}$, distance 690.9 meters.
To \triangle Chain, azimuth $324^{\circ} 51^{\prime} 40^{\prime \prime}$,' distance $1,058.1$ meters.
Hole surrounded by triangle in largest bowlder of first group below Manning Landing, Mo.; 1,000 feet below lower end of warehouse, and 150 feet out from high bank.

\triangle GABLE OF COURT-HOUSE.

United States engineer office, St. Louis, 1899. (Chart No. 13.)
Latitude $37^{\circ} 13^{\prime} 10^{\prime \prime} .23$; meters $+315,-1,535$.
Longitude $89^{\circ} 27^{\prime} 37^{\prime \prime} .50$; meters $+925,-555$.
Front gable of court-house at Thebes, Ill.

Mississippi River Commission, 1880-81. (Chart No. 13.)
Latitude $37^{\circ} 13^{\prime} 02^{\prime \prime} .59$; meters $+80,-1,7^{\prime \prime} 70$.
Longitude $89^{\circ} 28^{\prime} 27^{\prime \prime} .61$; meters $+681,-798$.
Elevation: Stone, 435.08; pipe, 439.03.
To (®) Day, azimuth $225^{\circ} 19^{\prime} 35^{\prime \prime} .71$, distance $2,519.18$ meters.
To © Uncle Joe, azimuth $347^{\circ} 04^{\prime} 48^{\prime \prime}$. 60 , distance 2, 252.82 meters.
To © (Thebes, azimuth $298^{\circ} 47^{\prime} 37^{\prime \prime} .35$, distance 2,027.48 meters.
Toㅁ 10/3, azimuth $272^{\circ} 33^{\prime}$, distance 103 meters.
Tile and iron pipe (originally a stone post), on Missouri bluffs; about 300 feet north of point of curve of west approach of Thebes Bridge; and on edge of cleared ficld.

$$
\text { (1) } \frac{10}{3}
$$

Mississippi River Commission, 1884. (Chart No. 13.)
Latitude $37^{\circ} 13^{\prime} 02^{\prime \prime} .44$; meters $+75,-1,775$.
Longitude $89^{\circ} 28^{\prime} 23^{\prime \prime} .45$; meters $+578,-901$.
Elevation: Stone, 349.05 ; pipe, 353.
To \Leftrightarrow Grand Chain, tzimulh $92^{\circ} 33^{\prime}$, distance 103 meters.
Toral(0/2, amimuth $272^{\circ} 366^{\prime}$, distance 1,088 meters.
Tile and iron pipe, on Missouri bank; in woods and 110 meters back from river; 20 meters east of road; on edge of railroad right of way; about 100 meters north of Thebes Bridge and almost on line with tangent of "Frisco" railroad that passes under the bridge.

$$
\text { 曰u.s. B. M. } 44 .
$$

United States engineer oflice, St. Louis, Mo., 1872. (Chart No. 13.)
Latitudo $37^{\circ} 12^{\prime} 34^{\prime \prime} .86 ;$ meters $+1,075,-775$ (scaled from map).
Longitude $89^{\circ} 28^{\prime} 18^{\prime \prime} .08$; meters $+446,-1,034$ (scalod from map).
Elevation: 325.05. (Precise levels, December, 1908, 325.33.)
Square knob on first large bowlder of "Grand Chain," on Missouri shore; 125 feet below second ereek below Thebes Bridge; 60 feet cast of blayed 8 -inch cottonwood tree; and on line with second bridge pier, from Illinois side, and Thebes Hotel.

$$
\text { [-] } \frac{10}{2}
$$

Mississippi River Commission, 1884. (Chart No. 14.)
Latitude $37^{\circ} 13^{\prime} 00^{\prime \prime} .84$; meters $+26,-1,824$.
Longitude $89^{\circ} 27^{\prime} 39^{\prime \prime} .38$; meters $+971,-508$.
Elevation: 358.27.
To@10/3, azimuth $92^{\circ} 36^{\prime}$, distance 1,088 meters.
Stone post, on front slope of blutfs, in Thebes, Ill. ; about 100 meters below lower house at foot of bluffs; a few meters back of road; and directly in front of a large blazed beech tree. A vertical face of rocks 200 meters from river bank is just back oi station.

\triangle CHAIN.

United States engincer office, St. Louis, Mo., 1896 and 1899. (Chart No. 14.)
Latitude $37^{\circ} 12^{\prime} 53^{\prime \prime} .10$; meters $+1,637,-213$.
Longitude $89^{\circ} 27^{\prime} 51^{\prime \prime} .15$; meters $+1,261,-218$.
Elevation: 321.25.
To \triangle Theba, azimuth $184^{\circ} 49^{\prime} 06^{\prime \prime}$, distance 936.3 meters (1896).
To \triangle Theba, azimuth $184^{\circ} 49^{\prime} 00^{\prime \prime}$, distance 936.4 meters (1899).
To \triangle Hut, azimuth $338^{\circ} 09^{\prime} 50^{\prime \prime}$, distance $1,421.6$ meters (1890).
To \triangle Dorrity, aximuth $144^{\circ} 51^{\prime} 55^{\prime \prime}$, distance $1,058.1$ meters (1899).
To A Grand, azimuth $22^{\circ} 25^{\prime} 50^{\prime \prime}$, distance 928.6 meters (1896).
Hole surrounded by triangle in large bowlder, in outer group of rocks just below Thebes, Ill. Station is nearly opposite the head of Grand Chain and is under water at about a 12 -foot stage, St. Louis gauge.
(4) TIIEBFS.

Mississippi River Commission, 1880-81. (Chart No. 14.)
Latitude $37^{\circ} 12^{\prime} 30^{\prime} .91$; meters $+953,-897$.
Longitude $89^{\circ} 27^{\prime} 15^{\prime \prime} .55$; meters $+383,-1,097$.
To (大) South Base, azimuth $152^{\circ} 09^{\prime} 20^{\prime \prime} .24$, distance $2,728.50$ meters.
To(A) Day, azimuth $180^{\circ} 10^{\prime} 03^{\prime \prime} .10$, distance $2,747.74$ meters.
To \& Grand Chain, azimuth $118^{\circ} 48^{\prime} 20^{\prime \prime} .93$, distance 2, 027.48 meters.
'To (6) Lassar, azimuth $330^{\circ} 52^{\prime} 21^{\prime \prime} .01$, distance $3,002.37$ metera.
To(2) Uncle Joo, azimuth $46^{\circ} 15^{\prime} 00^{\prime \prime} .83$, distance 1,762.76 meters.
Stone post, on highest point of Illinois bluffs, 1 mile below the village of Thebes; one-third of a mile from river bank; on land owned by Rowling and Marchildon; near center of cultivated field with an orchard in northwest corner; and back of timber belt on slope along river. The road in first ravine below Thebes leads to the top of the bluff.

\triangle GRAND.

United States engineer office, St. Louis, Mo., 1896. (Chart No. 14.)
Latitude $37^{\circ} 12^{\prime} 25^{\prime \prime} .26$; meters $+779,-1,071$.

- Longitude $89^{\circ} 28^{\prime} 05^{\prime \prime} .52$; meters $+136,-1,344$.

To \triangle Chain, azimuth $202^{\circ} 25^{\prime} 41^{\prime \prime}$, distance 928.6 meters.
To \triangle Hut, azimuth $297^{\circ} 34^{\prime} 41^{\prime \prime}$, distance 996.3 meters.
To \triangle Joe, azimuth $344^{\circ} 10^{\prime} 45^{\prime \prime}$, distance $1,190.5$ meters.
Hole surrounded by triangle, in top of large flat-topped bowlder, on right bank and near middle of the Grand Chain (Missouri shore); about 1 mile below Thebes, Ill.; about 200 meters out from high bank and fence. Station is on one of three largest bowlders in southern part of the chain.

\triangle HUT.

United States engineer office, St. Louis, Mo., 1896. (Chart No. 14.)
Latitude $37^{\circ} 12^{\prime} 10^{\prime \prime} .30$; meters $+318,-1,532$.
Longitude $80^{\circ} 27^{\prime} 29^{\prime \prime} .70$; meters $+732,-748$.
To \triangle Crand, azimuth $117^{\circ} 35^{\prime} 03^{\prime \prime}$, distance $996: 3$ meters.
To 4 Chain, azimuth $158^{\circ} 10^{\prime} 03^{\prime \prime}$, distance $1,421.6$ meters.
To \triangle Joe, azimuth $39^{\circ} 13^{\prime} 55^{\prime \prime}$, distance 883.2 meters.
Hole surrounded by triangle on large flat rock, on Illinois shore; about 1 mile below Thebes and opposite Counterfeit Rock in Missouri; above old lithograph stone quarry; just below small log house on high bank. It is exposed at a 10 -foot stage, St. Louis gauge.

© 1. B. M. 58.

Mississippi River Commission, 1881 and 1884. (Chart No. 14.)
Latitude $37^{\circ}, 12^{\prime} 01^{\prime \prime} .76$; meters +54, $-1,796$.
Longitude $89^{\circ} 28^{\prime} 00^{\prime \prime} .86$; meters $+21,-1,459$.
Elevation: 349.99.
To (6) Uncle Joe, azimuth $25^{\circ} 56^{\prime}$, distance 357 meters.
Center of horizontal copper bolt, leaded in the vertical face, toward the river, of the middle one of three large rocks, the lowest and largest of which forms a part of the Missouri bank oi the river, and is known as "Counterieit Rock." It is 10 meters from the top of the river bank; 80 meters above the line between Matthew Roe and H. S. Wray; 600 meters above Uncle Joe landing; on land of Matthew Roe; and about 3 miles above Commerce, Mo. It is about 0.8 meter above the ground and the letters "U.S. P, B, M." are cut in the rock.

(6) UNCLE JOE.

Mississippi River Commission, 1880-81. (Chart No. 14.)
Latitude $37^{\circ} 11^{\prime} 51^{\prime \prime} .36$; meters $+1,583,-267$.
Longitude $89^{\circ} 28^{\prime} 07^{\prime \prime} .18$; meters $+177,-1,303$.
To \oplus Hafner, azimuth $335^{\circ} 16^{\prime} 45^{\prime \prime} .95$, distance $3,594.48$ meters.
To \Leftrightarrow Thebes, azimuth $226^{\circ} 14^{\prime} 29^{\prime \prime} .61$, distance $1,762.76$ meters.
To (4) Lassar, azimuth $297^{\circ} 09^{\prime} 43^{\prime \prime} .56$, distance 3,074 meters.
To (A) Grand Chain, azimuth $167^{\circ} 05^{\prime} 00^{\prime} .95$, distance 2, 252.82 meters.
Stone post, on right bank of river; about 3 miles above Commerce, Mo.; about 1,000 feet from river bank and a little above government light near Uncle Joe Landing; near the summit of a partly cleared bluff on land owned by Samuel Wray.

$\triangle \mathrm{JOE}$.

United States engineer office, St. Louis, Mo., 1896. (Chart No. 14, station not plotted.)

Latitude $37^{\circ} 11^{\prime} 48^{\prime \prime} .10$; metars $+1,483,-367$.
Longitude $89^{\circ} 27^{\prime} 52^{\prime \prime} .35$; meters $+1,291,-189$.
To \triangle Hut, azimuth $219^{\circ} 13^{\prime} 41^{\prime \prime}$, distance 883.2 meters.
To \triangle Grand, azimuth $164^{\circ} 10^{\prime} 53^{\prime \prime}$, distance $1,190.5$ meters.
'To \triangle Bowlder, azimuth $342^{\circ} 05^{\prime} 01^{\prime \prime}$, distance $1,672.9$ meters.
Hole surrounded by triangle in top of large bowlder, about 150 meters above Uncle Joe Landiag, Mo.; about 35 feet from government light; under high bank and exposed at a 20 -foot stage, St. Louis gauge.

(*) LASSAR.

Mississippi River Commission, 1880-81. (Chart No. 14.)
Latitude $37^{\circ} 11^{\prime} 05^{\prime \prime} .83$; meters $+180,-1,670$.
Longitude $89^{\circ} 26^{\prime} 16^{\prime \prime} .30$; meters $+402,-1,078$.
To(©) Uncle Joe, azimuth $117^{\circ} 10^{\prime} 50^{\prime \prime} .59$, distance 3,074 meters.
To (6)Santa Fe, azimuth $327^{\circ} 48^{\prime} 51^{\prime \prime} .09$, distanco $2,209.33$ meters.
To © 'Thebes, azimuth $150^{\circ} 52^{\prime} 56^{\prime \prime} .83$, distance $3,002.37$ meters.
To © Hafner, azimuth $33^{\circ} 30^{\prime} 30^{\prime \prime} .68$, distance $2,232.38$ meters.
Stone post, on leit bank of river; about' $1 \frac{1}{2}$ miles above Fayville (Santa Fe), Ill.; 750 meters back from river; on land owned by Mrs. Lassar; in timber and close to a woods road that leaves the county road (ruming along river bank) near an old shanty.
\triangle BOWLDER.
United States engineer office, St. Louis, Mo., 1896. (Chart No. 14, station not plotted.)
Latitude $37^{\circ} 10^{\prime} 56^{\prime \prime} .47$; meters $+1,741,-109$.
Longitude $89^{\circ} 27^{\prime} 31^{\prime \prime} .49$; meters $+777,-703$.
To \triangle Joe, azimuth $162^{\circ} 05^{\prime} 14^{\prime \prime}$, distance $1,072.9$ meters.
To \triangle Muddy Creek, azimuth $274^{\circ} 41^{\prime} 47^{\prime \prime}$, distance 1, 132.1 meters.
To \triangle Simpson 369, azimuth $323^{\circ} 26^{\prime} 31^{\prime \prime}$, distance 1,581.5 meters.
Hole surrounded by triangle in top of bowlder, on right bank and in middle of Hancock Rocks (fourth group above Commerce, Mo.); about 1,000 feet above government light and under water at a 10 -foot stage, St. Louis gauge.

\triangle MUDDY CREEK.

United States engineer office, St. Louis, Mo., 1896. (Chart No. 14, station nol plotted.)
Latitude $37^{\circ} 10^{\prime} 53^{\prime \prime} .46 ;$ meters $+1,648,-202$.
Longitude $89^{\circ} 26^{\prime} 45^{\prime \prime} .75^{\circ}$; meters $+1,129,-351$.
To \triangle Bowlder, azimuth $94^{\circ} 42^{\prime} 14^{\prime \prime}$, distance $1,132.1$ meters.
To \triangle Simpson 369, azimuth $8^{\circ} 59^{\prime} 52^{\prime \prime}$, distance 1,192.3 meters.
Hole surrounded by triangle in shaly rock ledge; on Illinois shore and opposite third group of rocks on right bank and above Commerce, Mo.; 150 feet out from high bank and exposed at a 6 -foot stage, St. Louis gauge.

$$
\square \frac{9}{2}
$$

Mississippi River Commission, 1884. (Chart No. 14.)
Latitude $37^{\circ} 10^{\prime} 27^{\prime \prime} .08$; meters $+835,-1,015$.
Longitude $89^{\circ} 26^{\prime} 14^{\prime \prime} .57$; meters $+359,-1,121$.
Elevation: 367.30.
To © Hafner, azimuth $62^{\circ} 23^{\prime}$, distance 1,439 meters.
To $09 / 3$, azimuth $62^{\circ} 23^{\prime}$, distance 1,150 meters.
Stone post, on left bank of river and 1,300 meters above Fayville (Santa Fe), Ill.; 75 meters above a ravine; 115 meters back from river bank; and 600 meters below trestle of Chicago and Eastern Illinois Railroad; 3 meters west of well defined and traveled road and 1 meter east of fence.

\triangle STONE LINE.

United States engineer office, St. Louis, Mo., 1896. (Chart No. 14.)
Latitude $37^{\circ} 10^{\prime} 25^{\prime \prime} .34$; meters $+781,-1,069$.
Longitude $89^{\circ} 26^{\prime} 18^{\prime \prime} .31$; meters $+452,-1,028$.
Elevation: 331.98.
To © Hainer, azimuth $62^{\circ} 35^{\prime} 23^{\prime \prime}$, distance $1,332.4$ meters.
To \triangle Simpson 369, azimuth $70^{\circ} 12^{\prime} 45^{\prime \prime}$, distance 917.6 meters.
To \triangle Simpson 371, azimuth $17^{\circ} 30^{\prime} 56^{\prime \prime}$, distance $1,510.7$ meters.
To \triangle Brother, azimuth $16^{\circ} 51^{\prime} 14^{\prime \prime}$, distance $1,501.6$ meters.
To \triangle Mill (Commerce), azimuth $15^{\circ} 57^{\prime} 21^{\prime \prime}$, distance 1,596.2 meters.
Iron pipe, in Illinois;' about 1,300 meters above Fayville (Santa Fe) and 3 meters below the Hafner stone line (No. 9); under high bank, on outer edge of timber; 6 feet downstream from an 18 -inch blazed cottonwood tree; 14 feet upstream from a 6 -inch blazed sycamore tree, and nearly in line with them.

\triangle SIMPSON 369.

United States engineer office, St. Louis, Mo., 1878; redetermined, 1896. (Chart No. 14, station not plotted.)

Latitude $37^{\circ} 10^{\prime} 15^{\prime \prime} .26 ;$ meters $+470,-1,379$.
Longitude $89^{\circ} 20^{\prime} 53^{\prime \prime} .31$; meters $+1,315,-165$.
To \triangle Simpson 371 , azimuth $340^{\circ} 06^{\prime} 23^{\prime \prime}$, distance $1,201.6$ meters.
To \triangle Muddy Creek, azimuth $188^{\circ} 59^{\prime} 48^{\prime \prime}$, distance $1,192.3$ meters.
To \triangle Brother, azimuth $339^{\circ} 11^{\prime} 11^{\prime \prime}$, distance 1,205 meters.
To \triangle Bowlder, azimuth $143^{\circ} 26^{\prime} 54^{\prime \prime}$, distance $1,581.5$ meters.
To \triangle Stone Line, azimuth $250^{\circ} 12^{\prime} 24^{\prime \prime}$, distance 917.6 meters.
Hole surrounded by triangle in top of bowlder, on right bank and in first group of rocks above Commerce, Mo. It is almost directly in front of \otimes Hafner on the Missouri bluffs.

$$
\text { [星 } \frac{9}{3}
$$

Mississippi River Commission, 1884, (Chart No. 14.)
Latitude $37^{\circ} 10^{\prime} 09^{\prime \prime} .79$; meters +302 , $-1,548$.
Longitude $89^{\circ} 26^{\prime} 55^{\prime \prime} .87$; meters $+1,378,-102$.
Elevation: Stone, 350.19 ; pipe, 355.27.
To(4) Hafner, azimuth $62^{\circ} 22^{\prime}$, distance 289 meters.
To@9/2, azimuth $242^{\circ} 23^{\prime}$, distance 1,150 meters.
Flat stone and iron pipe on right bank and about 1,200 meters above Commerce, Mo.; on slope of bluffs at edge of timber; in front of (a) Hafner on top of bluffs; 100 meters from river bank; 20 meters above a ravine, and 50 meters above fence at upper edge of field.

$$
\text { (8) } \mathrm{HAFNER}=\square \frac{9}{4}
$$

Mississippi River Commission, 1880-81. (Chart No. 14.)
Latitude $37^{\circ} 10^{\prime} 05^{\prime \prime} .44$; meters $+168,-1,682$.
Longitude $89^{\circ} 27^{\prime} 06^{\prime \prime} .25$; meters $+154,-1,326$.
Elevation: 516.40.
To(A) Commerce, azimuth $336^{\circ} 32^{\prime} 38^{\prime \prime} .83$, distance $3,290.22$ meters.
To(A) Lassar, azimuth $213^{\circ} 30^{\prime} 00^{\prime \prime} .50$, distance $2,232.38$ meters.
To (A) Uncle Joe, azimuth $155^{\circ} 17^{\prime} 22^{\prime \prime} .78$, distance $3,594.48$ meters.
To © Santa Fe, azimuth $270^{\circ} 11^{\prime} 32^{\prime \prime}$.66, distance 2.409 .26 meters.
To \triangle Stone Line, azimuth $242^{\circ} 34^{\prime} 54^{\prime \prime}$, distance 1,332.4 meters.
To $9 / 2$, azimuth $242^{\circ} 23^{\prime}$, distance 1,439 meters.
To@ $9 / 3$, azimuth $242^{\circ} 22^{\prime}$, distance 289 meters.
Stone post on right bank of river; at eastern edge of field on top of hill, three-quarters of a mile above Commerce, Mo.; directly back from chain of large bowlders jutting into the river. Small oak with branches trimmed off near the top, east 35 feet; small oak, south 27 feet. To reach station: Go up the hill (from the chain of bowlders) alongside the fence to a road; follow road up to the field, then turn to the left, and follow a fence about 200 feet.

(4) SANTA FE.

Mississippi River Commission, 1880-81. (Chart No. 14.)
Latitude $37^{\circ} 10^{\prime} 05^{\prime \prime} .16$; meters $+159,-1,691$.
Longitude $89^{\circ} 25^{\prime} 28^{\prime \prime} .60$; meters $+706,-774$.
To © Commerce, azimuth $20^{\circ} 04^{\prime} 58^{\prime \prime} .13$, distance $3,204.80$ meters.
To © Hainer, azimuth $90^{\circ} 12^{\prime} 31^{\prime \prime} .65$, distance 2,409.26 meters.
To* Lassar, azimuth $147^{\circ} 49^{\prime} 19^{\prime \prime} .92$, distance 2,209.33 meters.
To $9 / 2$, azimuth $338^{\circ} 43^{\prime} 29^{\prime \prime}$, distance 3,256 meters.
Iron pipe, on top of Illinois bluffs; directly back of Fayville (Santa Fe), Ill., and about 550 meters from river bank; on land of J. H. Storey, on the highest peak in the vicinity. Pipe set about 3 inches above the surface of the ground.

$$
\oplus 4 \mathrm{H}_{2}
$$

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 14.)
Latitude $37^{\circ} 10^{\prime} 04^{\prime \prime} .80$; meters $+148,-1,702$.
Longitude $89^{\circ} 21^{\prime} 10^{\prime \prime} .79$; meters $+266,-1,214$.
Elevation: 349.67.
Iron pipe, at Olive Branch, Ill., 10 feet east of northeast corner of Chicagn and Eastern Illinois Railroad station and near edge of platform; on line with south rail of tangent below (northeast of) Olive Branch. (Station marked on map thus: ©Target 4-H.)

$\oplus 1 \mathrm{H}_{8}$

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 14.)
Latitude $37^{6} 09^{\prime} 41^{\prime \prime} .32$; meters $+1,274,-576$.
Longitude $89^{\circ} 2 \overline{5}^{\prime} 13^{\prime \prime} .56$; meters $+335,-1,146$.
Elevation: 359.75.
To \triangle Burnham '07, azimuth $29^{\circ} 47^{\prime}$, distance 1,491 meters.
To $08 / 2$, azimuth $340^{\circ} 35^{\prime}$, distanco 2,438 meters.
Iron pipe, about one-half mile below Fayville (IIl.) railroad station, at point where second creek below Fayville was diverted to pass under track at bridge 450 meters above; in line with north rail of tangent (Chicago and Eastern Illinois Railroad) below the point and 210 meters above a road crossing. (Station marked on map thus: \odot Target 1-H.)

\triangle BROTHER.

United States engineer office, St. Louis, Mo., 1896. (Chart No. 14.)
Latitude $37^{\circ} 09^{\prime} 38^{\prime \prime} .72$; meters $+1,194,-656$.
Iongitude $89^{\circ} 26^{\prime} 35^{\prime \prime} .96$; meters $+887,-594$.
Elevation: 319.67.
To \triangle Stoneline, azimuth $196^{\circ} 51^{\prime} 04^{\prime \prime}$, distance $1,501.6$ meters.
To \triangle Simpson 369 , azimuth $159^{\circ} 11^{\prime} 21^{\prime \prime}$, distance 1,205 meters.
Hole surrounded by triangle in rock, on river bank at Commerce, Mo. Sixty-five feet east of \triangle Simpson 371 and 5 feet lower (the 12 -foot stage, St. Louis gauge); and 225 feet above northern part of elevator at Commerce.

© P. B. M. 61.

Mississippi River Commission, 1881. (Chart No. 14.)
Latitude $37^{\circ} 09^{\prime} 38^{\prime \prime} .70$; meters $+1,193,-657$ (scaled from chart).
Longitude $89^{\circ} 26^{\prime} 39^{\prime \prime} .43$; meters +073 , -508 (scaled from chart).
Elevation: 369.52.
Center of horizontal copper bolt, in front or east face of foundation of William Anderson's brick residence at upper end of Commerce, Mo. It is 2 meters north of center of front entrance and 36 centime ters above the ground.

- SIMPSON 371.

United States engineer office, St. Louis, Mo., 1896. (Chart No. 14.)
Latitude $37^{\circ} 09^{\prime} 38^{\prime \prime} .60$; meters $+1,190,-660$.
Longitude $89^{\circ} 26^{\prime} 36^{\prime \prime} .74$; meters $+907,-574$.
Elevation: 327.01.
To \triangle Stoneline, azimuth $197^{\circ} 30^{\prime} 45^{\prime \prime}$, distance 1,510.7 meters.
To \triangle Simpson 369, azimuth $160^{\circ} 06^{\prime} 33^{\prime \prime}$, distance $1,201.6$ meters.
Hole surrounded by triangle on top of bowlder, in a group, on right bank and immediately above Commerce, Mo.; 260 feet above elevator; and 65 feet back from \triangle Brother. Bench mark is lowest edge of hole and elevation given on chart is in error.

A MILL. (Commerce.)

United States engineer office, St. Louis, Mo., 1896. (Chart No. 14.)
Latitude $37^{\circ} 09^{\prime} 35^{\prime \prime} .55$; meters $+1,096,-754$.
Longitude $89^{\circ} 26^{\prime} 36^{\prime \prime} .09$; meters $+890,-590$.
Flagstaff on Anderson's mill or warehouse at Commerce, Mo.

$$
\text { - } \frac{8}{1}
$$

Mississippi River Commission, 1884. (Chart No. 14.)
Latitude $37^{\circ} 08^{\prime} 46^{\prime \prime} .90$; meters $+1,446,-404$.
Longitude $89^{\circ} 24^{\prime} 05^{\prime \prime} .09$; meters $+126,-1,355$.
Elevation: Stone, 333.17; pipe, 338.27.
To $0 / 2$, azimuth $54^{\circ} 45^{\prime}$, distance 1,077 meters.
Flat stone and iron pipe, in Illinois; about 2 miles below Fayville; 400 meters from bank of Santa Fe chute; 180 meters out from line of timber; about 1,400 meters above foot of Burnham Island; on land of William Woods and 25 metërs northeast of fence.

(44) COMMERCE.

Mississippi River Commission, 1880-81. (Chart No. 14.)
Latitude $37^{\circ} 08^{\prime} 27^{\prime \prime} .52$; meters $+848,-1,002$.
Longitude $89^{\circ} 26^{\prime} 13^{\prime \prime} .19$; meters $+326,-1,155$.
Elevation: 336.83.
To (*) Hatiner, azimuth $156^{\circ} 33^{\prime} 10^{\prime \prime} .88$, distance $3,290.22$ meters.
To(大) Powers Island, azimuth $309^{\circ} 11^{\prime} 57^{\prime \prime}$. 11 , distance $2,977.70$ meters.
To © Santa Fe , azimuth $200^{\circ} 04^{\prime} 31^{\prime \prime} .20$, distance $3,204.80$ meters.
To 8 8/2, azimuth $270^{\circ} 36^{\prime} 00^{\prime \prime}$, distance 2,282 meters.
To \triangle Burnham '07, azimuth $210^{\circ} 42^{\prime}$, distance 1,223 meters.
To \triangle Martin, azimuth $173^{\circ} 35^{\prime}$, distance 441.5 meters.
To \triangle Buecher, azimuth $238^{\circ} 02^{\prime}$, distance $1,094.1$ meters.
Stone post, with corners chipped off, in field, near middle of Commerce Island, on right bank of river and 1 mile below Commerce, Mo.; 60 feet west of top of ridge, and 6 inches above surface of ground. References: To large burned pecan stump, 353° $53^{\prime}-225$ feet; to blazed trees: 24 -inch pecan, $11^{\circ} 45^{\prime}-274$ feet, 18 -inch pecan, east side of field, near top of bank, $193^{\circ} 13^{\prime}-490$ feet.

$$
\text { 囚 } \frac{8}{2}
$$

Mississippi River Commission, 1884; redetermined, United States engineer office, St. Louis; Mo., 1903. (Chart No. 14.)

Latitude $37^{\circ} 08^{\prime} 26^{\prime \prime} .73$; meters $+824,-1,026$.
Longitude $89^{\circ} 24^{\prime} 40^{\prime \prime} .73$; meters $+1,005,-476$.
Elevation: 340.47.
To (6) Powers Island, azimuth $359^{\circ} 13^{\prime} 26^{\prime \prime}$, distance $1,858.3$ meters.
To (4) Commerce, azimuth $90^{\circ} 36^{\prime} 56^{\prime \prime}$, distance 2,282 meters.
To(6)Santa Fe , azimuth $158^{\circ} 43^{\prime} 58^{\prime \prime}$, distance 3,256 meters.
To \triangle Burnham '07, azimuth $122^{\circ} 57^{\prime}$, distance 1,848 meters.
ToĐ8/L, azimuth $234^{\circ} 45^{\prime}$, distance 1,077 meters.
Stone post, in lower ficld on Burnham Island, on leit side of main river and 2 miles below Commerce, Mo.; on slope of ridge, 6 meters east of its crest, and 4 inches above surface of ground; 375 meters from main river bank and 200 meters from bank of chute. Blazed trees: 30 -inch pecan, $74^{\circ} 28^{\prime}-145$ meters; 30 -inch pecan, $16^{\circ} 22^{\prime}$ - 104 meters; 36 -inch pecan, $162^{\circ} 47^{\prime}-184$ meters; other references: 36 -inch cottonwood tree, 91° 17^{\prime}; small coffee tree on top of ridge, $134^{\circ} 32^{\prime}-16$ meters; gable of house, on same ridge, $156^{\circ} 27^{\prime}-574$ meters.

\triangle BURNFAM '07.

Board on Examination and Survey of Mississippi River, 1907. (Chart No. 14.)
Latitude $37^{\circ} 08^{\prime} 59^{\prime \prime} .33$; meters $+1,829,-21$.
Longitude $89^{\circ} 25^{\prime} 43^{\prime \prime} .57$; meters $+1,075,-400$.
Elevation: 340.76.
To (8) Commerce, azimuth $36^{\circ} 42^{\prime}$, distance 1,223 meters.
To $8 / 2$, azimuth $302^{\circ} 56^{\prime}$, distance 1,848 meters.
To \triangle Buecher, azimuth $333^{\circ} 49^{\prime}$, distance 447.4 meters.
To \triangle Martin, azimuth $55^{\circ} 13^{\prime}$, distance 949.9 meters.
Iron pije, on high ridge, on western side of Burnham Island, on left side of main river, and about 1 mile below Commerce, Mo.; east from government light, on shoulder of island; about 140 meters from western high bank of island; and 300 meters above barn or outbuilding of house owned by C. I. Anderson, of Commerce.

\triangle BUECHFR.

Board on Examination and Survey of Mississippi River, 1907. (Chart No. 14.)
Latitude $37^{\circ} 08^{\prime} 46^{\prime \prime} .29$; meters $+1,427,-423$.
Longitude $89^{\circ} 25^{\prime} 35^{\prime \prime} .56$; meters +878 , -603 .
To © Commerce, azimuth $58^{\circ} 03^{\prime}$, distance $1,094.1$ meters.
To \triangle Burnham ' 07 , azimuth $153^{\circ} 49^{\prime}$, distance 447.4 meters.
To \triangle Martin, azimuth $81^{\circ} 50^{\prime}$, distance 987.6 meters.
Iron pipe, in cultivated field, on Burnham Island, on left side of main river, and 1 mile below Commerce, Mo.; about 30 meters from western high bank of island; 200 meters below a house; and near middle of clearing on river bank.

\triangle MARTIN.

Board on Examination and Survey of Mississippi River, 1907. (Chart No. 14.)
Latitudo $37^{\circ} 08^{\prime} 41^{\prime \prime} .74$; meters $+1,287,-503$.
Longitude $89^{\circ} 26^{\prime} 15^{\prime \prime} .18$; meters $+375,-1,106$.
To © Commerce, azimuth $353^{\circ} 35^{\prime}$, distanco 441.5 meters.
To A Burnham '07, azimuth $235^{\circ} 13^{\prime}$, distanco 949.9 meters,
To \triangle Buecher, azimuth $261^{\circ} 49^{\prime}$, distanco 987.6 meters.
One-inch iron pipe, on eastern high bank of Commerce Island (right bank of river);
1 mile below Commerce, Mo.; about 800 meters below main line of hurdle at upper end of island; near a wire fence, and 2 meters west from an 8 -inch blazed cottonwood tree.

(4) POWERS ISLAND.

Mississippi River Commission, 1880-81. (Chart No. 14.)
Latitude $37^{\circ} 07^{\prime} 26^{\prime \prime} .46 ;$ meters $+816,-1,034$.
Longitude $89^{\circ} 24^{\prime} 39^{\prime \prime} .71$; meters $+980,-501$.
Elevation: 334.11 (pipe).
To ** A therton, azimuth $271^{\circ} 36^{\prime} 26^{\prime \prime} .57$, distance $2,880.98$ meters.
To* Commerce, azimuth $129^{\circ} 12^{\prime} 53^{\prime \prime} .54$, distance $2,977.70$ meters.
To $98 / 2$, azimuth $179^{\circ} 13^{\prime} 27^{\prime \prime}$, distance $1,858.3$ meters.
Iron pipe, on northeast bank or shoulder of Powers Island (right bank of river); in cultivated field of Doctor Coffman; 130 feet from river bank and opposite lower end of Allen Towhead; just inside limit line of large cottonwood stumps and 280 feet outside of abrupt rise. Original stone post found broken off in 1903, was reset 29 inches below surface of ground and flanged iron pipe with cap was set over it. References: Gablet of small frame dwelling, $318^{\circ} 35^{\prime}-1,378$ feet; two blazed cottonwood trees at top of bauk, $147^{\circ} 44^{\prime}-258$ feet.

$$
\text { 回 } \frac{8}{3}
$$

Mississippi River Commission, 1884. (Chart No. 14.)
Latitude $37^{\circ} 07^{\prime} 17^{\prime \prime} .28$; meters +533, $-1,317$.
Longitude $89^{\circ} 26^{\prime} 42^{\prime \prime} .93$; meters $+1,060,-421$.
Elevation: 339.19.
To © Commerce, azimuth $198^{\circ} 44^{\prime}$, distance 2,286 meters.
To $98 / 4$, azimuth $54^{\circ} 50^{\prime}$, distance 617 meters.
Stone post, in Missouri and $2 \frac{1}{2}$ miles below Commerce; about 600 meters back from Doolan Slough; on land of William Price; 0.5 meter east of fence on west side of road; 235 meters above fence corner; and 200 meters below Price's house.

$\oplus 7 \mathrm{H}_{\mathrm{s}}$

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 15.)
Latitude $37^{\circ} 11^{\prime} 11^{\prime \prime} .93$; meters $+368,-1,482$.
Longitude $89^{\circ} 19^{\prime} 41^{\prime \prime}$. 28 ; meters $+1,018,-4(32$.
Iron pipe, near Clank, Ill.; on the Chicago and Eastern Illinois Railroad; 20 feet westwardly from center of track; and about 1,000 feet below road crossing at station.

$\oplus 8 \mathrm{H}_{2}$

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 15.)
Latitude $37^{\circ} 09^{\prime} 28^{\prime} .43$; meters $+876,-973$.
Longitude $89^{\circ} 19^{\prime} 59^{\prime \prime} .06$, meters $+1,457,-24$.
Elevation: 341.09.
Two-inch iron pipe, in Illinois; about $1 \frac{1}{2}$ miles below Olive Branch, and $5 \frac{3}{8}$ miles above Cache; 9.5 feet northwardly from center of track of the Illinois Central Railroad, and 4,100 feet below a private road crossing; and near point of intersection of curve. (Elevation on map 7 leet too high.)
(1) $10 \mathrm{H}_{2}$.

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 15.)
Latitude $37^{\circ} 08^{\prime} 19^{\prime \prime} .85$; meters $+612,-1,238$.
Longitude $89^{\circ} 18^{\prime} 50^{\prime \prime} .92$; meters $+1,257$, -224 .
Elevation: 338.95.

Two-inch iron pipe, about 4 miles above Cache, III.; 15 feet northwardly from center of track of Illinois Central Railroad; about 225 feet above head block to spur track; 1,350 feet above milepost "Cairo 14 miles," and about 1,400 feet below schoolhouse on eastern side of Horseshoe Lake.

© P. B, M. 64 .

Mississippi River Commission, 1881 and 1884. (Chart No. 15.)
Latitude $37^{\circ} 07^{\prime} 40^{\prime \prime} .42$; meters $+1,246,-604$.
Longitude $89^{\circ} 22^{\prime} 54^{\prime \prime} .58$; meters $+1,347,-134$.
Elevation: 339.70.
To © Atherton, azimuth $330^{\circ} 56^{\prime}$, distance 588 meters.
Copper bolt in top of stone post, in Illinois; 1,100 meters back from river, at Atherton Landing, about 19 miles above Cairo; and 1 meter north of fence, on north side of road leading eastwardly to Goose Island post-office.

\triangle CHMNEY.

United States engineer office, St. Louis, Mo., 1896. (Chart No. 15.)
Latitude $37^{\circ} 07^{\prime} 30^{\prime \prime} 37$; metere $+936,-914$.
Longitude $89^{\circ} 23^{\prime} 30^{\prime \prime} .07$; meters $+742,-739$.
Chimney in middle of Atherton's house; about 210 meters back from Atherton Landing, Ill.

$$
\oplus 11 \mathrm{~F} .
$$

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 15.)
Latitude $37^{\circ} 07^{\prime} 29^{\prime \prime} .62$; meters $+913,-937$.
Longitude $89^{\circ} 17^{\prime} 52^{\prime \prime} .33$; meters $+1,292,-189$.
Elevation: 334.11.
To $\oplus 10 \mathrm{H}_{2}$, azimuth $136^{\circ} 58^{\prime}$, distance 2,118 meters.
Two-inch iron pipe, about $2 \frac{1}{2}$ miles above (westwardly from) Cache, III.; 16.6 feet northwardly from center of track of Illinois Central Railroad; 28 feet below second road crossing above Cache; 41 feet below switchstand; and 670 feet above milepost "Cairo 13 miles."

(4) ATHERTON.

Mississippi River Commission, 1880-81. (Chart No. 15.)
Latitude $37^{\circ} 07^{\prime} 23^{\prime \prime} .82$; meters $+734,-1,116$.
Longitude $89^{\circ} 22^{\prime} 43^{\prime \prime} .05$; meters $+1,063,-418$.
Elevation: 336.75 .
To © Powers Island, azimuth $91^{\circ} 37^{\prime} 36^{\prime \prime} .98$, distance $2,880.98$ meters.
To' \odot P. B. M. 64 , azimuth $150^{\circ} 56^{\prime}$, distance 586 meters.
Stone post, in Illinois and about three-quarters of a mile east of Atherton Landing; on land owned by estate of F. D. Atherton; near the middle of section 18, Goose Island Township, Alexander County; and just on edge of cypress swamp and cultivated field.
$\oplus 12 \mathrm{~F}$.
Board on Examination and Survey of Mississippi River, 1908. (Chart No. 15.)
Latitude $37^{\circ} 06^{\prime} 53^{\prime \prime} .81$; meters $+1,659,-191$.
Longitude $89^{\circ} 17^{\prime} 10^{\prime} .55$; meters $+260,-1,222$.
Elevation: 333.38 .
To $\oplus 11 \mathrm{~F}$, azimuth $136^{\circ} 57^{\prime}$, distance 1,511 meters.
Two-inch iron pipe, about $1 \frac{1}{2}$ miles westwardly from Cache, Ill.; 17 feet northwardly from center of track of Illinois Central Railroad; 2,000 feet below railroad trestle across swamp; about 1,000 feet above milepost "Cairo 12 miles;" and onequarter of a mile southwest from the Alexander County Poor Farm.
\triangle WEATHER VANE.
United States engineer office, St. Louis, Mo., 1896. (Chart No. 15, station not plotted.)
Latitude $37^{\circ} 06^{\prime} 10^{\prime \prime} .72$; meters $+330,-1,519$.
Longitude $89^{\circ} 22^{\prime} 25^{\prime \prime} .85$; meters $+638,-844$.
Brass ball on weather vane, or lightning rod, on Greely's house, above Commercial Point, Ill., and back of Goose Island Towhead.
H. Doc. $50,61-1-32$

(${ }^{(1)} 13 \mathrm{~F}$.

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 15.)
Latitude $37^{\circ} 06^{\prime} 07^{\prime \prime} .80$; meters $+240,-1,609$.
longilude $89^{\circ} 16^{\prime} 17^{\prime \prime} .17$; meters $+424,-1,058$.
Elevation: 3 :34.36.
To(1) 12 I , azimuth $137^{\circ} 07^{\prime}$, distance 1,030 meters.
Two-inch iron pipe, about one-hati mile west of Cache, 111 ; 100 feet southwardly from cinter of track of Illinois Central Railroad; 75 feet below milepost "Cairo 11 miles;" and at road crossing to charcoal kilns.

$$
\text { (1) } 14 \mathrm{j}
$$

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 15.)
Latitude $37^{\circ} 00^{\prime} 06^{\prime \prime} .00$; meters $+185,-1,665$.
Longitude $89^{\circ} 16^{\prime} 08^{\prime \prime} .42$; meters $+208,-1,274$.
Elevation: 333.40.
To@13 F, azimuth $104^{\circ} 27^{\prime}$, distance 223 meters.
Two-inch iron pipe, about 1,600 feet west of Cache, Ill., railroad station; 30 feet south from conter of track of Illinois Central Railroad; near charcoal kiln; and between siding to the kilns and the main tracks.

© WHITE CHIMNFY.

United States engineer office, St. Louis, Mo., 1902. (Chart No. 15.)
Latitude $37^{\circ} 05^{\prime} 59^{\prime \prime} .81$; meters $+1,844,-6$.
Longitude $89^{\circ} 17^{\prime} 06^{\prime \prime} .96$; meters $+172,-1,310$.
Center of chimney of Ike Johnson's house, about one-half mile cast of Telle and Horrell store; on south side of public road; and $1 \frac{1}{8}$ miles west of Cache, Ill.

$\triangle G^{\prime} R^{\prime} N^{\prime}$ LAKE 02.

United States engineer office, St. Louis, Mo., 1902. (Chart No. 15.)
Latitude $37^{\circ} 05^{\prime} 48^{\prime \prime} .59$; meters $+1,498,-352$.
Longitude $89^{\circ} 17^{\prime} 48^{\prime \prime} .42$; meters $+1,190,-286$.
To AGreenleaf ' 02 , aximuth $50^{\circ} 17^{\prime} 26^{\prime \prime}$, distance $1,267.6$ meters.
To \triangle Fence ' 98 , azimuth $272^{\circ} 18^{\prime} 19^{\prime \prime}$, distance $1,839.2$ meters.
Iron pipe, 10 inches below surface of ground, in Illinois and on land of George and Andrew Hornburger; 775 feet above old Grand Lake landing; and 15.9 feet south of small frame shanty. liazed trees: 19 -inch elm stump, $130^{\circ}-13.3$ feet; 6 -inch water oak, $56^{\circ}-17.8$ feet; 24 -inch elm, $60^{\circ}-29.4$ feet.

\triangle FENCE ${ }^{\prime} 98$.

United States engineer office, St. Louis, Mo., 1898; redetermined, 1902. (Chart No. 15.)

Latitude $37^{\circ} 05^{\prime} 46^{\prime \prime} .18$, meters $+1,424,-426$.
Longitude $89^{\circ} 16^{\prime} 34^{\prime \prime} .01$; meters +840 , -642 .
Elevation: 328.60.
To \triangle Pecan ' 98 , azimuth $304^{\circ} 03^{\prime} 16^{\prime \prime}$, distance $1,602.8$ meters.
To \triangle Grand Lake '02, azimuth $92^{\circ} 19^{\prime} 04^{\prime \prime}$, distance $1,839.2$ meters.
'To \triangle Greenleaf '02, azimuth $75^{\circ} 21^{\prime} 07^{\prime \prime}$, distance $2,907.5$ meters.
To○P. B. M. 65, azimuth $292^{\circ} 14^{\prime} 08^{\prime \prime}$, distance $1,405.2$ moters.
To \triangle White Chimney, azimuth $117^{\circ} 18^{\prime} 07^{\prime \prime}$, distance 915.8 meters.
Iron pipe, 6 inches above surface of ground, near left bank and about three-quarters mile westwardly from Cache, Ill.; on west side of road, at turn and a short distance below the head of the Beechridge revetment; 75 feet west of the southwest corner of a cabin; 20 feet back from edge of revetment; and 8 feet east of rail fence.

$$
\left[\frac{7}{4}\right.
$$

Misissippi River Commission, 1888. (Chart No. 15.)
Latitude $37^{\circ} 05^{\prime} 33^{\prime \prime} .84$; meters $+1,043,-80$.
Longitude $80^{\circ} 24^{\prime} 22^{\prime \prime} .89$; meters $+565,-917$.
Elevation: Stone, 334.7 ; pipe, 339.8 .
Flat stone and iron pipe, on Powers Island (now on right bank of river) and about 1,300 meters above foot of island; on ridge in field of William Anderson; about 75 meters in front of fence at rear edge of field; and about 800 meters from slough back of Anita Towhead.

A (IRFFNTHAF'02.
United States engineer office, St, Louis, Mo., 1902. (Chart No. 15.)
latitude $37^{\circ} 05^{\prime} 22^{\prime \prime} 32$; meters $+688,-1,162$.
Longitude $89^{\circ} 18^{\prime} 27^{\prime \prime} .91$; meters $+689,-793$.
Elevation: 330.42.
Tos Grand Lake '02, azimuth $230^{\circ} 17^{\prime} 03^{\prime \prime}$, distance $1,267.6$ meters.
To \triangle Fence ' 98 , azimuth $255^{\circ} 19^{\prime} 59^{\prime \prime}$, distance 29907.5 meters.
Iron pipe 6 inches above suriace of ground, in Illinois and near head of the Cirecnleaf Bend rovetment; on land of Jeff Tillman and south of how honse; on slight ridge. inside of wire fence on east side of and at angle in public road; 216.5 iect, south oi 13 -inch maple tree near same ience, and 50 feet from top of bank.

$$
\text { [} \frac{6}{2}
$$

Mississippi River Commission, 1888. (Chart No. 15.)
Latitude $37^{\circ} 03^{\prime} 04^{\prime \prime} .96$; meters $+153,-1,697$.
Longitude $89^{\circ} 21^{\prime} 26^{\prime \prime} .55$; meters $+666,-827$.
Elevation: 331.58.
Stone post, in Illinois; on old high bank, back of Price Towhead; nearly opposite Elkins Landing, Mo.; in cottonwood timber, on land owned by John Milford; 800 meters back of main river bank; 70 meters back from east bank oif chute and 1.40 meters out irom road and clearing.

$$
\text { [0] } \frac{6}{4}
$$

Mississippi River Commission, 1888. (Chart No. 15.)
Latitude $37^{\circ} 01^{\prime} 55^{\prime \prime} .30$; meters $+1,705,-145$.
Longitude $89^{\circ} 22^{\prime} 55^{\prime \prime} .78$; meters $+1,379,-104$.
Elevation: Stone, 328.95 ; pipe, 334.06.
Flatstone and iron pipe, 1,200 meters back (west wardly) from Flkins Landing, Mo.: and about 900 meters southwardly from Price Landing, Mo.: in northwest corner of field of Joseph Moore; 20 meters south of fence corner; 3 meters cast of fence on east side of road; and 125 meters toward the river from a church.

(6) MISSOURI SISTER.

Mississippi River Commission, 1880-81. (Chart No. 16.)
Latitude $37^{\circ} 04^{\prime} 41^{\prime \prime} .99$; meters $+1,294$, - 555.
Longitude $89^{\circ} 17^{\prime} 00^{\prime \prime} .56$; meters $+14,-1,468$.
To@Rouse, azimuth $312^{\circ} 10^{\prime} 53^{\prime \prime}$.fio, distance $3,090.50$ meters.
Stone post, on north side of Missouri Sister Island, on right bank of river; nearly opposite (irand Lake Landing, III.; and in timber, 300 meters from river bank.

$$
\left[\begin{array}{l}
2 \\
4 \\
4
\end{array}\right.
$$

Mississippi River Commission, 1888. (Chart No. 16.)
Latitude $37^{\circ} 04^{\prime} 16^{\prime \prime} .81$; metors $+518,-1,332$.
Longitude $89^{\circ} 16^{\prime} 51^{\prime \prime} .89$; meters $+1,282,-200$.
Elevation: Stone, 328:23; pipe, 333.32.
Flat stone and iron pipe, on Missouri Sister Island, on right bank of river; about 1,500 meters east wardly from Brewer Point; in timber, 150 meters back from two small fields; and 3 or 4 meters cast of southern prolongation of fence at west end of east field.

(9) ROUSE.

Mississippi River Commission, 1880-81. (Chart No. 16.)
Latitude $37^{\circ} 03^{\prime} 34^{\prime \prime} .67$; meters $+1,069,-781$.
Longitude $89^{\circ} 15^{\prime} 27^{\prime \prime} .87$; meters $+689,-794$.
Elevation: 325.76.
To \because Missouri Sister, azimuth $132^{\circ} 11^{\prime} 49^{\prime \prime} .48$, distance $3,090.50$ meters.
To \Leftrightarrow Dickey, azimuth $226^{\circ} 52^{\prime} 50^{\prime \prime} .93$, distance $1,511.30$ meters.
To 1 Darkey, azimuth $251^{\circ} 57^{\prime} 26^{\prime \prime}$, distance $1,350.3$ meters.
Stone post, on right bank of river; about 900 feet helow the mouth ol old chute behind Missouri Sister Island; and 1,400 meters above Hurricane Field; about 500 feet
from river bank; in heavy timber on land owned by Mrs. Rouse; and 400 feet below small clearing that comes up to road along nhte. References to blazed trees: 3 -foot ash, $27^{\circ} 40^{\prime}-12.5$ fect; 3 -foot elm, $41^{\circ} 35^{\prime}-39$ feet; 14 -inch sycamore, $308^{\circ} 50^{\prime}-29$ feet.

$$
\left[0 \cdot \frac{1}{3}\right.
$$

Mississippi River Commission, 1888; reestablished, United States engineer office, St. Louis, Mo., 1904. (Chart No. 16.)
Latilude $37^{\circ} 03^{\prime} 06^{\prime \prime} 97$; meters $+215,-1,635$.
Longitude $89^{\circ} 15^{\prime} 04^{\prime \prime} .55$; meters $+112,-1,370$.
Elevation: 328.74.
Stone post, in upper end oi Hurricano Field, on right bank; 425 feel above upper end of old revement; 1,60 eet below upper end of new section of bank protection; 250 feet helow point of timber and 110 feel from top of bank. Stone wass set back from caving bank and above coordinates determined by plane-table survey of United States engineer office, St. Louis, Mo., 1904.

$$
\left[\frac{1}{4}\right.
$$

Mississippi River Commission, 1888. (Chart No. 16.)
Latitude $37^{\circ} 02^{\prime} 58^{\prime \prime} .55$; meters $+1,805,-45$.
Longitude $89^{\circ} 15^{\prime} 18^{\prime \prime} .55$; meters $+458,-1,025$.
Glevation: Stone, 327.20; pipe, 332.29 .
Flat stone and iron pipe, on right bank; about 300 meters west of Hurricane Field and in woods, 430 meters from river; 270 meters west of fence, at west edge of cult:vated field; 360 meters south and 270 meters west from northwest corner of said field and 230 meters northeast from a prominent slough.

A DUSKY.

United States engincer office, St. Louis, Mo., 1899. (Chart No. 16.)
Latitude $37^{\circ} 02^{\prime} 56^{\prime \prime} .45 ;$ meters $+1,740,-110$.
Longitude $89^{\circ} 16^{\prime} 29^{\prime \prime} .65$; meters $+733,-750$.
Elevation: 332.5.
To \triangle Pickaninny, azimuth $319^{\circ} 38^{\prime} 03^{\prime \prime}$, distance $1,180.6$ meters.
Iron pipe, in Missouri; 290 meters from river bank; on top of levee, below Neweums, and 1 mile below Thompson Landing, Mo.; on line with pecan trees in middle of field; and about one-quarter of a mile back of the Thompson Cemetery.

$$
\text { [] } \frac{3}{4}
$$

Mississippi River Commission, 1888. (Chart No. 16.)
Latitude $37^{\circ} 02^{\prime} 44^{\prime \prime} .65$; meters $+1,376,-473$.
Longitude $89^{\circ} 15^{\prime} 53^{\prime \prime} .72$; meters $+1,328,-155$.
Elevation: Stone, 323.78; pipe, 328.87.
Flat stone and iron pipe in Mlssouri; 870 meters irom river bank; on ton of ridge at edge of willows around Ash Pond; near foot of inner slope of levee; at east edge of cultivated field, about three-quarters of a mile below Thompson Landing, Mo.; and about 500 meters north from road leading to river.

A PICKANINNY.

United States engineer office, St. Louis, Mo., 1899. (Chart No. 16.)
Latitude $37^{\circ} 02^{\prime} 27^{\prime \prime} .27$; meters $+841,-1,009$. .
Longitude $89^{\circ} 15^{\prime} 58^{\prime \prime} .71$; meters $+1,451,-32$.
Elevation: 326.85.
To \triangle Dusky, azimuth $139^{\circ} 38^{\prime} 22^{\prime \prime}$, distance $1,180.6$ meters.
Iron pipe, in Missouri; about $\frac{1}{2}$ mile below Thompson Landing; 600 meters from river bank; on left side of road leading back from river-at Newcums and about 1,250 feet back from house in northeast angle of roads; 23 feet from a walnut tree; 18 feet from northwest corner of old house; and 60 feet from a pecan tree back of house.

$$
\text { ® } \frac{3}{1}
$$

Mississippi River Commission, 1888. (Chart No. 16.)
Latitude $37^{\circ} 01^{\prime} 55^{\prime \prime} .54$; meters $+1,712,-138$.
Longitude $89^{\circ} 17^{\prime} 43^{\prime \prime} .96$; meters $+1,087,-396$.

Elevation: Stone, 326.01; pipe, 331.10.
Flat stone and iron pipe, in Illinois; 800 meters below a point opposite Thompson Landing, Mo.; 225 meters back from high river bank; in woods and underbrush on western side of prominent slough.

\triangle TRIPOD.

United States engineor office, St. Louis, Mo., 1898. (Chart No. 16.)
Latitude $37^{\circ} 01^{\prime} 45^{\prime \prime} .97$; meters $+1,417,-433$.
Longitude $89^{\circ} 19^{\prime} 58^{\prime \prime}: 38$; moters $+1,443,-40$.
To \triangle Cuba, azimuth $341^{\circ} 25^{\prime} 59^{\prime \prime}$, distance $1,118,3$ metors.
Top of pile driven to the 22 -foot stage, St. Louis gauge; in Illinois, outside old high bank line and 200 feet from road; 1,700 feet above hurdle dam to head of Hacker Towhead. The station pile is surrounded by observing tripod of piles driven to a lower stage.

$$
\text { ๑ } \frac{5}{1}
$$

Mississippi River Commission, 1888. (Chart No. 16.)
Latitudo $37^{\circ} 01^{\prime} 34^{\prime \prime} .66$; meters $+1,068,-781$.
Longitude $89^{\circ} 18^{\prime} 28^{\prime \prime} .75$; meters $+711,-772$.
Elevation: Stone, 324.28 ; pipe, 329.36 .
Flat stone and iron pipe, in lllinois; 900 meters back from old high bank in Hacker Bend; at ience, edge of woods, and east side of field; 45 meters south of northeast corner of field; 6 meters from small \log house, and just back of small orchard.

$\triangle C U B A$.

United States engineer office, St.-Louis, Mo., 1898. (Chart No. 16.)
Latitude $37^{\circ} 01^{\prime} 11^{\prime \prime} .58$; meters $+357,-1,493$.
Longitude $89^{\circ} 1.9^{\prime} 43^{\prime \prime} .97$; meters $+1,087,-396$.
Elevation: 329.72.
To \triangle Tripod, azimuth $161^{\circ} 26^{\prime} 08^{\prime \prime}$, distance $1,118.3$ meters.
To \triangle Cuba No. 2, azimuth $293^{\circ} 17^{\prime}$, distance 48.1 meters.
Iron pipe, on Hacker'Towhead, on left bank of river; at top of revetment, on original head of towhead and securing outer end of hurdle dam; back of United States gauge; nearly flush with surface of ground and surrounded by mound of stone.

\triangle CUBA No. 2.

United States engineer office, St. Louis, Mo., 1898. (Chart No. 10.)
Latitude $37^{\circ} 01^{\prime} 10^{\prime \prime} .96$; meters $+338,-1,512$.
Longitude $89^{\circ} 19^{\prime} 42^{\prime \prime} 18$; meters $+1,043,-440$.
Iron pipe, surrounded by mound of stone, on Hacker Towhead, on left bank of river; 157.85 feet below \triangle Cuba; on high bank and about 250 feet below the original revetted head of the island.
\triangle MASCOTTE No. 2.
United States engineer office, St. Louis, Mo., 1898. (Chart No. 16.)
Latitude $37^{\circ} 01^{\prime} 01^{\prime \prime} .70$; meters $+52,-1,797$.
Longitude $89^{\circ} 20^{\prime} 24^{\prime \prime} 20$; meters $+598,-885$.
Iron pipe, on Buffalo Island, on right bank of river; 25 meters back from high bank and 1,500 feet below a point on line with hurdle No. 5 in 1llinois. Blazed trees: 29 -inch boxelder, 10.65 meters; 8 -inch olm, 572 meters, and 1.1 meters toward river from a sycamore stump.

$$
\triangle \text { MAINE No. } 3 .
$$

United States engineer office, St. Louis, Mo., 1903. (Chart No. 16.)
Latitude $37^{\circ} 00^{\prime} 36^{\prime \prime} 1.17$; meters $+1,115,-735$.
Longitude $89^{\circ} 19^{\prime} 55^{\prime \prime} .42$; meters $+1,370,-113$.
Wood post (built up) 6 inches square, on Buffalo Island, on right bank of river; 140 feet back from high bank, near top bank of slough and 12 inches above surface of ground.

$$
\text { 『 } \frac{5}{3}
$$

Mississippi River Commission, 1888. (Chart No. 16.)
Latitude $37^{\circ} 00^{\prime} 30^{\prime \prime} .96$; meters $+954,-895$.
Longitude $89^{\circ} 19^{\prime} 56^{\prime \prime} .55$; meters $+1,398,-86$.

Elevation: 327.71.
To $05 / 4$, azimuth $48^{\circ} 01^{\prime}$, distance 936 meters.
Stone post, on Buifalo Island, on right bank of river; on west bank of slough; about 170 meters back from high bank; and about 21.1 miles below head of island.

$$
\text { [] } \frac{4}{2}
$$

Mississippi River Commission, 1888. (Chart No. 16.)
Latitude $37^{\circ} 00^{\prime} 17^{\prime \prime} .31$; meters $+534,-1,316$.
Longitude $89^{\circ} 17^{\prime} 15^{\prime \prime} .68$; meters $+388,-1,096$.
Elevatic.1: 326.10.
Stone post, in Illinois, and 1 mile below Brooks Point; at fence on north edge of lower clearing on Dogtooth Island; 320 meters back from river bank, and 170 meters from fence-corner near the river.

$$
\text { ■ } \frac{5}{4}
$$

Mississippi River Commission, 1888. (Chart No. 16.)
Latitude $37^{\circ} 00^{\prime} 10^{\prime \prime} .65$; meters $+328,-1,522$.
Longitude $89^{\circ} 20^{\prime} 24^{\prime \prime} .68$; meters $+610,-874$.
Elevation: Stone, 329.33 ; pipe, 334.44.
To $95 / 3$, azimuth $228^{\circ} 01^{\prime}$, distance 936 meters.
Flat atone and iron pipe, in Missouri; back of and 4,000 meters below head of Buffalo Island; 1,100 meters from main river bank; at road fence on western bank of chute; on land owned by F. M. Brown; 50 meters southeast of lane running back to woods and 50 meters northwest of orchard.

$$
\square \frac{4}{4}
$$

Mississippi River Commission, 1888. (Chart No. 16.)
Latitude $36^{\circ} 59^{\prime} 11^{\prime \prime} .92$; meters $+368,-1,482$.
Longitude $89^{\circ} 15^{\prime} 56^{\prime \prime} .29$; meters $+1,392,-92$.
Elevation: Stone, 322.47; pipe, 327.58 .
Flat stone and iron pipe, in Missouri; 600 meters from river bank in Dogtooth Bend; at fence, on southern bank of Big Bayou; and 105 meters west of intersection of fences between fields on an old island.
$\oplus 20 \mathrm{~F}$.
Board on Examination and Survey of Mississippi River, 1908. (Chart No. 17.)
Latitude $37^{\circ} 06^{\prime} 22^{\prime \prime} .83$; meters $+704,-1,146$.
Longitude $89^{\circ} 12^{\prime} 27^{\prime \prime} .87$; meters $+688,-794$.
Elevation: 330.8 .
To $\oplus 19 \mathrm{~F}$, azimuth $82^{\circ} 50^{\prime}$, distance 1,554 meters.
Two-inch iron pipe, about three-quarters of a mile southwest of Mounds, Ill.; at end of first curve, west of main line and 51.5 feet north of center of track of the Illinois Central Railroad (Carbondale and Cairo division); about 250 feet below road crossing, which is 470 feet above culvert G. G. No. 145/64; also about 30 feet below the upper end of a 2 -acre strip of cultivated land and 3 feet from edge of borrow pit,

$\oplus 22 \mathrm{~F}$.

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 17.)
Latitude $37^{\circ} 06^{\prime} 17^{\prime \prime} .39$; meters $+536,-1,314$.
Longitude $89^{\circ} 11^{\prime} 45^{\prime \prime} .67$; meters $+1,128,-354$.
Eleyation: 329.2.
To $\oplus 21 \mathrm{~F}$, azimuth $89^{\circ} 49^{\prime}$, distance 550 meters.
Two-inch iron pipe, 23.2 feet north of center of track of the Illinois Central Railroad (Mound City division); about three-quarters of a mile southeast of Mounds, Ill.; 20 feet south of road to Mound City; about 10 fect above a private road crossing, and nearly opposite east end of house, south of tracks and occupied by Mr. Walbridge.

$$
\oplus 21 \mathrm{~F}
$$

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 17.)
Latitude $37^{\circ} 06^{\prime} 17^{\prime \prime} .33$; meters $+534,-1,316$.
Longitude $89^{\circ} 12^{\prime} 07^{\prime \prime} .96$; meters $+197,-1,285$.

Elevation: 330.5.
To $\oplus 20 \mathrm{~F}$, azimuth $109^{\circ} 01^{\prime}$, distance 520 meters.
To gable of house, azimuth $202^{\circ} 58^{\circ}$.
To semaphore, azimuth $3^{\circ} 18^{\prime}$.
Two-inch iron pipe, about three-quarters of a mile south of Mounds, Ill.; in the lower end of railroad yards and east of rightoi-way fence of Illinois Central Railroad (main line); 10 feet west of an old fence line; about 150 feet above edge of timber and 400 feet west of south line of orchard.

$$
\oplus 19 \mathrm{~F} .
$$

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 17.)
Latitude $37^{\circ} 06^{\prime} 16^{\prime \prime} .54$; meters $+510,-1.340$.
Longitude $89^{\circ} 13^{\prime} 30^{\prime \prime} .37$; meters $+750,-732$.
Elevation: 333.3.
To $\oplus 18 \mathrm{~F}$, azimuth $83^{\circ} 03^{\prime}$, distance 2,179 meters.
Two-inch' iron pipe, about $1 \frac{1}{2}$ miles southwest of Mounds, III.; 22.4 feet south of center of track of Illinois Central Railroad; 28 feet inside of south right-of-way fence; 538 feet above road crossing and about 10 feet west from burnt stump, on edge of ditch, at first cut above Mounds.

$$
\text { (1) } 18 \mathrm{~F} .
$$

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 17.)
Latitude $37^{\circ} 06^{\prime} 07^{\prime \prime} .96 ;$ meters $+245,-1,604$.
Longitude $89^{\circ} 14^{\prime} 57^{\prime \prime} .99$; meters $+1,432$, -50 .
Elevation: 333.5.
To $\oplus 14 \mathrm{~F}$, azimuth $88^{\circ} 01^{\prime}$, distance 1,740 meters.
'Two-inch' iron pipe, in $1 l l$ inois; about 14 miles back from river at Beechridge and 27 miles westwardly from Mounds; 22 feet south of center of track of Illinois Central Railroad; 1,000 feet east from bridge over Cache River; and on upper edge of cultivated strip.

$$
\text { (1) } 23 \mathrm{~F}
$$

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 17.)
Latitude $37^{\circ} 05^{\prime} 43^{\prime \prime} .81$; meters $+1,351,-499$.
Longitude $89^{c} 10^{\prime} 49^{\prime \prime} .94$; meters $+1,233,-249$.
Elevation: 327.3.

- To $\oplus 22 \mathrm{~F}$, azimuth $126^{\circ} 57^{\prime}$, distance 1,722 meters.

Two-inch iron pipe, about half-way between Mounds and Mound City, Ill., and 1 mile from Mound City; 24 feet north of center of träck of Illinois Central Railroad; 1,950 feet east of levee; 1,400 feet above bridge No. 1/59; about midway between right-of-way fence and track; and 4 feet east of borrow pit.

$$
\text { © Р. В. м. } 05 .
$$

Mississippi River Commission, 1881; redetermined, United States engineer office, St. Louis, Mo., 1902. (Chart No. 17, station not plotted.)
Latitude $37^{\circ} 05^{\prime} 28^{\prime \prime} .93$; meters $+892,-958$.
Longitude $89^{\circ} 15^{\prime} 41^{\prime \prime} .34$; meters $+1,021,-461$.
Elevation: 326.31.
To \triangle Fence ' 98 , azimuth $112^{\circ} 14^{\prime} 40^{\prime \prime}$, distance $1,405.2$ meters.
To \triangle Pecan ' 98 , azimuth $355^{\circ} 45^{\prime} 16^{\prime \prime}$ ', distance 366.8 meters.
Copper bolt in stone post, near Beechridge, Ill; ; in cultivated field of C. P. Martin; about 350 feet south of road running west from Beechridge and 1,300 feet west of Mobile and Ohio Railroad; nearly in line with two large oak trees on the north, the one in the field, the other in the south fence along road, and 185 feet and 362 feet distant, respectively; 95 feet west of abandoned road; and 180 feet east of Martun's barn. Blazed trees; 10 -inch pecan, east, 43 feet; 18 -inch gum, south, 72 feet.

$$
\oplus 24 \mathrm{~F}
$$

Board on Examination and Surv ϵ y of Mississippi River, 1908. (Chart No. 17.)
Latitude $37^{\circ} 05^{\prime} 23^{\prime \prime} .55$; meters $+726,-1,124$.
Longitude $89^{\circ} 10^{\prime} 24^{\prime \prime} .67$; meters $+609,-873$.
Elevation: 327.
To $\oplus 23 \mathrm{~F}$, azimuth $135^{\circ} 02^{\prime}$, distance 883 meters.

A stake, 25 feet south of center of track and 14 feet north of right-of-way fence of Illinois Central Railroad; about one-half mile northwest of intersection of railroad andlevee at Mound City, IIl.; and near the point of intersection of first curve from Mound City.

\triangle PECAN ${ }^{\prime} 08$.

United States engineer office, St. Louis, Mo., 1898; redetermined, 1902. (Chart No. 17, station not plotted.)

Latitude $37^{\circ} 05^{\prime} 17^{\prime \prime} .06$; meters $+526,-1,324$ (1902).
Longitude $89^{\circ} 15^{\prime} 40^{\prime \prime} .24$; meters $+994,-488$ (1902).
'To© ${ }^{\prime}$ '. B. M. 65 , azimuth $175^{\circ} 45^{\prime} 17^{\prime \prime}$, distance 366.8 meters (1902).
'To 1 Fence ' 98 , azimuth $124^{\circ} 03^{\prime} 48^{\prime \prime}$, distance $1,602.8$ meters (1902).
To A Fence ' 98 , azimuth $124^{\circ} 03^{\prime} 50^{\prime \prime}$, distance $1,602.9$ meters (1898).
Iron pipe, 6 inches below surface of ground, about one-hali mile south of Beechridge, III.; in cultivated field of C. P. Martin; 3.7 feet west of 22 -inch blazed pecan tree, which is the second one, from the north, of four pecan trees nearly in line, on west side of abandoned road and 550 feet from river bank.

$$
\oplus 25 \mathrm{~F} .
$$

Board on Lxamination and Survey of Mississippi River, 1908. (Chart No. 17.)
Latitude $37^{\circ} 05^{\prime} 12^{\prime \prime} .69 ;$ meters $+391,-1,459$.
Longitude $89^{\circ} 10^{\prime} 00^{\prime \prime} .73$; meters $+18,-1,464$.
Elevation: 333.6.
To 924 k , azimuth $119^{\circ} 31^{\prime}$, distance 679 meters.
A stake, in center of back or western levee at Mound City, Ill.; about 12 feet north of center of track of Itlinois Central Railroad crossing levee; and opposite shanties on the east side of levee.

$$
\oplus 26 \mathrm{~F}
$$

Board on Examination and Survey of Missiasippi River, 1908. (Chart No. 17.)
Latitude $37^{\circ} 05^{\prime} 01^{\prime \prime} .81$; meters $+56,-1,794$.
Longitude $89^{\circ} 09^{\prime} 38^{\prime \prime} .81$; meters $+959,-523$.
Elevation: 330.7.
To (9) 25 F , azimuth $121^{\circ} 48^{\prime}$, distance 637 meters.
Two-inch iron pipe, on wharf at Mound City, Ill.; on an old abandoned log track; 4 feet upstream from south line and 130 feet out from southeast corner of the Mound City Furniture Factory, and 130 feet above storage shed of same factory.
(4) DICKEY.

Mississippi River Commission, 1880-81. (Chart No. 17.)
Latıtude $37^{\circ} 04^{\prime} 08^{\prime \prime} .17$; meters $+252,-1,598$.
Longitude $89^{\circ} 14^{\prime} 43^{\prime \prime} .21$; meters $+1,068,-414$.
Elevation: 328.8.
To(Nimbus, azimuth $306^{\circ} 16^{\prime} 05^{\prime \prime} .6^{\prime}$, distance $3,080.67$ meters.
To © 'Rouse, azimuth $46^{\circ} 53^{\prime} 17^{\prime \prime} .85$, distance $1,511.30$ meters.
To \triangle Darkey, azimuth $343^{\circ} 37^{\prime} 33^{\prime \prime}$, distance 640.8 meters.
Stone post, on old high bank in lllinois, back from and a short distance above head of Dickey Island; 1,000 feet from left bank of river, in cultivated field and east of fence on east side of old Cairo road, and a short distance below a small wagon bridge.

$$
\square \frac{1}{1}
$$

Mississippi River Commission, 1888. (Chart No. 17.)
Latitude $37^{\circ} 03^{\prime} 59^{\prime \prime} .14$, meters $+1,823,-27$.
Longitude $89^{\circ} 13^{\prime} 55^{\prime \prime} .58$; meters $+1,373,-110$.
Elevation: Stone, 319.47, pipe, 324.56.
Flat stone and iron pipe, in south edge of woods on the "Six Mile Place," back of Dickey Island, 111 : and about 920 meters from left bank of river: 340 meters back (northeast.) from the Mobile and Ohio Railroad, 235 meters east and 85 meters north of northwest corner of cultivated field; 510 meters east from first curve in railroad below Beechridge. Large tree near by is blazed. Two cabins stand in small field 60 meters southwest of railroad, and 70 meters north of where stone line crosses tracks.

\triangle DARKEY.

United States engineer office, St. Louis, Mo., 1896. (Chart No. 17.)
Latitude $37^{\circ} 03^{\prime} 48^{\prime \prime} .23$; meters $+1,487,-363$.
Longitude $89^{\circ} 14^{\prime} 35^{\prime \prime} .90$; meters $+887,-596$.
To © Rouse, azimuth $71^{\circ} 57^{\prime} 58^{\prime \prime}$, distance $1,350.3$ meters.
To \odot Dickey, azimuth $163^{\circ} 37^{\prime} 37^{\prime \prime}$, distance 640.8 meters.
Iron pipe, on Dickey lsland, on left bank of river about 5 miles above Cairo, Ill., and 1f miles below Ables Pomt; a short distance above locality originally known as Dickey Field. Blazed trees are located as follows: South, 22 feet; west, 13 feet; north, 23.5 feet; east, 17 feet.

(6) NIMBUS.

Mississippi River Commission, 1880-81. (Chart No. 17.)
Latitude $37^{\circ} 03^{\prime} 09^{\prime \prime} .04$; meters $+279,-1,571$.
Longitude $89^{\circ} 13^{\prime} 02^{\prime \prime} .69$; meters $+67,-1,416$.
Elevation: 323.7.
To (6) Dickey, azimuth $126^{\circ} 17^{\prime} 06^{\prime \prime} .25$, distance $3,080.67$ meters.
Stone post, in Illinois; back of Dickey Island; about 23 miles above Cairo Bridge; about one-half mile from main river bank; about 225 meters east of Mobile and Ohio Railroad; about 330 meters south of east-and-west road and 300 meters west of north-and-south road. A small house occupied by Thomas Brown stands about 200 feet northwest of station.

(B. M. CAIRO NO. 2.

United States Lake Survey, 1877. (Chart No. 17.)
Latitude $37^{\circ} 01^{\prime} 22^{\prime \prime} .33$; meters $+688,-1,161$.
Longitude $89^{\circ} 09^{\prime} 31^{\prime \prime} .31$; meters $+774,-709$.
Elevation: 323.1.
Sandstone post, 4 inches by 8 inches, on high knoll, in Kentucky; 50 meters south of fence on edge of timber and cultivated field; opposite (at right angles with tangent) and 250 meters from point of curve of Kentucky approach to Cairo Bridge. (Latitude and longitude determined by stadia, Board on Examination and Survey of Mississippi River, 1908.)

$$
\triangle \text { STANDPIPE '99. }
$$

United States engineer office, St. Louis, Mo., 1899. (Chart No. 17.)
Latitude $37^{\circ} 01^{\prime} 15^{\prime \prime} .09$; meters $+465,-1,385$.
Iongitude $89^{\circ} 10^{\prime} 50^{\prime \prime}$; 20 ; meters $+1,241,-242$.
Standpipe of Cairo, Ill., waterworks, near Cairo Bridge.

\triangle REDMAN ELEVATOR.

Board on Examination and Survey of Mississippi River, 1908. (Chart No. 17, station not plotted.).
Latitude $37^{\circ} 01^{\prime} 05^{\prime \prime} .18$; meters $+160,-1,690$.
Longitude $89^{\circ} 11^{\prime} 24^{\prime \prime} .01$; meters $+594,-889$.
Flagstaff on Redman-Magee elevator in northwestern part of Cairo, III.

\triangle ELEVATOR SMOKESTACK.

United States engineer office, St. Louis, Mo., 1899. (Chart No. 17.)
Latitude $37^{\circ} 00^{\prime} 51^{\prime \prime} .61$; meters $+1,591,-259$.
Longitude $89^{\circ} 10^{\prime} 34^{\prime \prime} .31$; meters +848 , -635 .
Smokestack on elevator in northeast part of Cairo, Ill., on the Ohio Rivэi.

$$
\triangle \text { ELIZA }
$$

United States engineer office, St. Louis, Mo., 1896. (Chart No. 17.)
Latitude $37^{\circ} 00^{\prime} 31^{\prime \prime} .43$; meters $+969,-881$.
Longitude $89^{\circ} 11^{\prime} 40^{\prime \prime} .01$; meters $+989,-495$.
Elevation: 334.63.
To \triangle Bourgois, azimuth $344^{\circ} 20^{\prime} 52^{\prime \prime}$, distance 688.0 meters (1899).
To Δ Standpipe ' 99 , azimuth $222^{\circ} 26^{\prime} 22^{\prime \prime}$, distance $1,824.6$ meters (1899).

To \triangle Flevator Smokestack, azimuth $249^{\circ} 01^{\prime} 20^{\prime \prime}$ distance $1,739.4$ meters (1899).
To A Catholic Church Spire, azimuth $289^{\circ} 37^{\prime} 57^{\prime \prime}$, distance $1,572.3$ meters (1896).
Tos Cathotic Church Spire, azimuth $2899^{\circ} 37^{\prime} 09^{\prime \prime}$, distance 1,573.1 meters (1899).
Toas Redman Elevator, azimuth $200^{\circ} 500^{\prime}$, distanco 1,113 meters (1908).
Iron pipe, 8 inches above surface of ground, ontside of track of Nobile and Ohio Railroad embankment at Eliza D'oint, III.; 50 feet downstrean from second or low switch:sand; in line with upstream side of cross levee above sawmill and with center of track above switches. Station called "Levee" in 1896.
() U.S. I', I3. M. 3.

United States Lake Survey, 1877. (Chart No. 17.)
Latitude $37^{\circ} 00^{\prime} 17^{\prime \prime} .84$; meters $+550,-1,300$.
l.ongitude $89^{\circ} 10^{\prime} 08^{\prime \prime} .01$; meters $+108,-1,286$.

Elevation: 334.07.
Hole in copper bolt, in southeast end of Illinois Central Railroad frelght depot, at junction of Fourteenth street and Ohio River at Cairo, Ill; 0.49 meter southwest of east comer. The letters "U.S. B. M." are cut in stone near bolt. (Elevation by precise levels, Mississippi River Commission, 1881; latitude and longitude scaled from United States Lake Survey Chart No. 1.)

$$
\text { © U. s. P. B. M. } 2 .
$$

United States Lake Survey, 1877. (Chart No. 17.)
Latitude $37^{\circ} 00^{\prime} 15^{\prime \prime} .90$; meters $+490,-1,360$.
Longitude $89^{\circ} 10^{\prime} 29^{\prime \prime} .68$; meters $+734,-750$.
Elevation: 326.13.
Hole in copper bolt, leaded horizontally in east side of the building containing offices of the trustees of Cairo city public property, on Washington avenue, between Eighteenth and Nineteenth streets, Cairo, III. The bolt is 4.44 meters from southeast corner, and 1.12 meters below lower surface of water table. Marked by letters "U.S. 13. M." cut in stone. (Elevation by precise levels, Mississippi River Commission, 1881; latitude and longitude scaled from United States Lake Survey Chart No. 1.)
\triangle CATHOLIC CHURCH SPIRE.
United States engineer office, St. Louis, Mo., 1896. (Chart No. 17.)
Latitude $37^{\circ} 00^{\prime} 14^{\prime \prime} 29$; meters $+441,-1,409$.
Longitude $89^{\circ} 10^{\prime} 40^{\prime \prime} .11$; meters $+992,-492$.
Spire of Catholic Church in Cairo, Ill.
\odot U.S. P.B. M. 1.
United States Lake Survey, 1877. (Chart No. 17.)
Latitude $37^{\circ} 00^{\prime} 11^{\prime \prime} .06$; meters $+341,-1,509$.
Longitude $89^{\circ} 10^{\prime} 19^{\prime \prime} .37$; meters $+479,-1,005$.
Elevation: 324.80.
Hole in center of copper bolt, leaded horizontally in northwest side of customhouse, Cairo, 111. It is 7.18 meters from northwest corner and 0.37 meter below the junction of the sandstone and limestone, and 0.93 meter above surface of cement walk. The letters "U.S. B. M." are cut in the stone near the bolt. The customhouse is in the square bounded by Fourteenth, Fifteenth, Poplar, and Washington avenue. Station is also known as U. S. B. M. 1. According to level net of 1907, United States Coast and Geodetic Survey, the best elevation available is 96.9227 meters or 317.99 fect above mean sea or gulf level. (Elevation by preciso tevels, Mississippi River Commission. 1881; latitude and longitude scaled from United States Lake Survey Chart No. 1.)

* CAIRO ASTRONOMICAL StATION.

United States Coast and Geodetic Survey, 1877. (Chart No. 17; station not plotted.)
Latitude $37^{\circ} 00^{\prime} 10^{\prime \prime} .87$; meters $+335,-1,515$. .
Longitude $89^{\circ} 10^{\prime} 15^{\prime \prime} .32$, meters $+379,-1,105$.
Station is located within the easternmost corner of the custom-house square, Cairo, III. Meridian telescope was mounted on a double-column brick pior, 6.568 meters south of and 9.254 meters east of the southeast corner of the custom-house.
Geographical position given is that of the United States Coast and Geodetic Survey. It does not agree with the Mississippi River Commission triangulation.

\triangle BOURGOIS.

United States engineer office, St. Louis, Mo., 1899. (Chart No. 17.)
Latitude $37^{\circ} 00^{\prime} 09^{\prime \prime} .92$; meters $+306,-1,544$.
Longitude $89^{\circ} 11^{\prime} 32^{\prime \prime} .50 ;$ meters $+804,-680$.
To 4 Catholic Chureh Spire, azimuth $264^{\circ} 04^{\prime} 54^{\prime \prime}$, distance $1,303.0$ meters.
'To \triangle Elevator Smokestack, aximuth $228^{\circ} 13^{\prime} 20^{\prime \prime}$, distance $1,929.0$ meters.
'To \triangle Standpipe ' 99 , azimuth $207^{\circ} 29^{\prime} 46^{\prime \prime}$, distance $2,264.8$ meters
To T Eliza, azimuth $164^{\circ} 20^{\prime} 56^{\prime \prime}$, distance 688.0 meters.
Iron pipe, 6 inches below surface of ground, outside of track on Mobile and Shio Railroad embankment noar Eliza Point, Ill.; near point of tangent of second curve below \triangle Eliza; 6.2 feet from outside rail; 44.5 feet diagonally across track from signpost "Levee Junction," being 30 feet downstream from a point oppocite this post; 124 feet below south line of long shed near windmill on Bourgois' place.

\triangle MALLIDAY FLEVATOR.

Board on Examination and Survey of Mississippi River, 1908. (Chart No'. 17; station not plotted.)

Latitude $36^{\circ} 59^{\prime} 50^{\prime} .66$; meters $+1,562,-288$.
Longitude $89^{\circ} 09^{\prime} 35^{\prime \prime} .93$; meters +889 , -595.
Flagstaff on Halliday Elevator, at lower end of Cairo, Ill.

\triangle CORN MILL.

United States engineer office, St. Louis, Mo., 1896. (Chart No. 17; station not plotted.)

Latitude $36^{\circ} 59^{\prime} 49^{\prime \prime} .97$; meters $+1,540,-309$.
Longitude $89^{\circ} 10^{\prime} 34^{\prime \prime} .51$; meters +853 , -631 .
Iron smokestack of corn mill in southern part of Cairo, 111.
(4) CAIRO (DEFIANCE).

United States I ake Survey, 1876-77. (Chart No. 17.)
Latitude $36^{\circ} 59^{\prime} 47^{\prime \prime} .99$; meters $+1,479,-370$.
Longitude $89^{\circ} 09^{\prime} 31^{\prime \prime} .20$; meters $+772,-712$.
This station was a triangulation station of the Mississippi River Survey made by the United States Lake Survey in 1876-77, and was the station on which the geodetic positions of the Mississippi River Commission triangulation are based.

It was situated on the site of Fort Defiance in the extreme southeastern part of (airo, Ill., and although it has been destroyed for many years it is described and plotted on account of its historical importance.
(13. M. OIIIO MOUTH.

Mississippi River Commission, 1905. (Chart No. 17.)
Latitude $36^{\circ} 59^{\prime} 05^{\prime \prime} .56$; meters $+171,-1,678$.
Longitude $89^{\circ} 06^{\prime} 36^{\prime \prime} .80$; meters $+910,-574$.
Elevation: Tile (bolt) 315.17 ; pipe, 319.17 .
Tile and pipe, on Kentucky shore opposite junction of Ohio and Mississippi rivers; between wagon road and railroad; about 17 meters from top of leit bank; about 25 meters from Mobile and Ohio Railroad and 9 rail lengths below block signal. Blazed trees: 14 -inch cottonwood, $216^{\circ}-2.8$ meters; 18 -inch cottonwood, $292^{\circ}-9.2$ meters; 18-inch sycamore, $27^{\circ}-5.2$ meters.

(*) PRICE.

United States Lake Survey, 1876-77. (Chart No. 17; station not plotted.)
Latitude $36^{\circ} 58^{\prime} 12^{\prime \prime} .06$; meters $+372,-1,478$.
Longitude $89^{\circ} 07^{\prime} 03^{\prime \prime} .30$; meters $+82,-1,402$.
Elevation: Top of stone, 317.92 ; pipe, 321.96 .
Stone post, in timber, about one-half mile below Bird Point, Mo.; about 300 meters back of high right bank and about one-third mile above a point opposite Wickliffe, Ky. Stone is covered with about 3 feet of earth and has an iron pipe (marked 1891) placed over it. Blazed trees: 8 -inch sycamore, $321^{\circ}-4.2$ meters; 7 -inch sycamore, $23^{\circ}-5.1$ meters; 6 -inch sycamore, $242^{\circ}-3$ meters; 10 -inch sycamore, $131^{\circ}-6.4$ meters.

[]. B. M. FILMORE C.

Mississippi River Commission, 1905. (Chart No. 17; station not plotted.)
Latitude $36^{\circ} 58^{\prime} 07^{\prime \prime} .80$; meters $+240,-1,609$.
Longitude $89^{\circ} 07^{\prime} 35^{\prime \prime} .44$; meters $+877,-607$.
Elevation: Tile (bolt) 317.98; pipe, 321.98.
Tile and pipe, about one-half mile below Bird Point, Mo.; on west bank of old slough containing pond; one-half meter east of the east side of cultivated field; about 20 meters west of edge of pond; 100 meters south of north end of pond; and one-half mile west of $(\underset{)}{ }$ Price.
(13. M. WICKLIFFE.

Mississippi River Commission, 1905. (Not in limits of Board on Examination and Survey of Mississippi River charts.)

Latitude $36^{\circ} 58^{\prime} 04^{\prime \prime} .17$; meters $+129,-1,721$.
Longitude $89^{\circ} 05^{\prime} 33^{\prime \prime} .56$; meters $+830,-654$.
Elevation: Tile (bolt) 370.92 ; pipe, 374.96.
Tile and pipe, in upper end of Wickliffe, Ky.; on hill, 30 meters back of east side of cut of Illinois Central Railroad; one block toward river, from corner of Second and Cumberland streets; in northwest corner of yard of J. C. Du Poyster; and about 30 meters south of gully.
history and description of the permanent gauges of the mississippi river between st. louis, mo., and cairo, ill.

CHAIN OF ROCKS, MO.
St. Louis water department gauge.
Elevation, zero of gauge: 321.18 .
Miles above Eads Bridge, midbank, 9.7; low water, 10.4 .
The gauge was established by the St. Louis water department in April, 1892. Gauge readihgs are furnished to the United States engineer office, St. Louis, Mo., where a complete record is on file.

Readings for the periods April to November, 1892, and from April, 1893, to July 31, 1908, are given in Appendix No. 15 of this report.

The gauge is vertical, reads from 107 to 78 feet, and is fastened to the downstream side of the intake tower at Chain of Rocks, about 1,600 feet from the Missouri shore.

Reference bench marks.-No. 1 (\odot P. B. M. 12), elevation above zero of gauge, 143.58 feet, is top of copper bolt in stone post, in corner of grove; 66 feet west of Columbia Bottom road; $1 \frac{1}{4}$ miles upstream from Chain of Rocks; on land of B. M. Chambers; and 2,300 feet upstream from bridge on Columbia Bottom road over Watkins Creek.

> BISSELL POINT, MO.

St. Louis water department gauge.
Elevation, zero of gauge: 320.36 .
Miles above Eads Bridge, midbank, 3.3; low water, 3.3.
The gauge was established by the St. Louis water department in 1872. Gauge readings are furnished to the United States engineer office, St. Louis, Mo., where a record complete from June, 1880, is on file. Readings for the period'June, 1880, to December, 1884, and from April, 1887, to July 31, 1908, are given in Appendix No. 15 of this report.

The gauge consists of four vertical wooden sections fastened to the iron inlet tower at the Bissell Point pumping station.

Gauge sections.-Two sections, reading from 110 to 84 feet, are on the west face of the tower; the other two, reading from 85 to 65 feet, are on the south face.

Reference bench marks.-No. 1 (\odot P. B. M. 14), elevation above zero of gauge, 113.10 feet, is small hole in center of copper bolt, leaded horizontally in third course of stone on north side of western engine room of St. Louis waterworks, Bissell Point, and 4.8 feet west of west coping to main entrance to building. The letters "U. S. P. B. M." are cut near the bolt.

No. 3, elevation above zero of gauge, 110.40 feet, is the northeast corner of a rectangular stone which was formerly the sill of door in center of north side of chimney of the Bissell Point low-service pumping station. The chimney was torn down to the foundation in 1907, leaving the stone in place.

St. LOUIS, MO.
United States engineers' gauge. In charge of Mississippi River Commission.
Elevation, zero of gauge: 387.10 .
Miles below Eads Bridge, midbank, 0.4; low water, 0.4.
Records for the years 1860 to 1873, inclusive, obtained from the city engineer of St. Louis, are on file in the United States engineer office, St. Louis, Mo. These records were obtained independently by the Mississippi River Commission and published by them in "Stages of the Mississippi River."

From 1860 to 1871 readings were obtained by leveling from the St. Louis city directrix to the water surface. When leveling could not be done the stage was estimated. From October, 1871, to December, 1873, readings were taken on a gauge on the St. Louis elevator between Biddle and Ashley streets, and when the "new iron gauge" was established in December, 1873, on the paved wharf at the foot of Market street, about 4,500 feet downstream, synchronous readings were taken on both gauges covering a period of several months and all the readings on the "Elevator gauge" were reduced to correspond to the readings on the Market street gauge by the following table of corrections:

Between 4 and	0.80 foot.
Between 11 and 14 feet, subtract.	0. 90 foot.
Between 14 and 17 feet, subtract.	1. 00 foot.
Between 17 and 19 feet, subtract.	1.05 feet.
Above 19 feet, subtrac	1. 10 feet.

(See Annual Report, Chief of Engineers, U. S. Army, 1874, pt. 1, p. 488.)
Records from 1873 to date are published in "Stages of the Mlississippi River."
The differences between Mississippi River Commission and United States Weather Bureau records from 1880 to 1895, inclusive, are due mainly to the fact that their readings were taken at different hours. The errors found in the gauge since 1890 by inspections have been corrected in the Mississippi River Commission record.

The zero of the gauge, when established by the United States Engineer Department in 1871, was the low water of $1863,33.81$ feet below the city directrix; the line of precise levels by the Mississippi River Commission in 1880 found the elevation of the $30-$ foot mark to be 3.74 feet below the directrix, and the zero of the gauge was changed to 33.74 below the directrix to correspond with the elevation of the 30 -foot mark.

Gauge sections.-The gauge consists of three sections, graduated from 41.5 feet to 5 feet, on the wharf, near Market street.

The highest section, 41.5 to 34 feet, is painted on west face of southwest steel pillar of the elevated railroad at the foot of Market street.

The next, a vertical section, 36 to 30 feet, is a steel bar on south stone wall of the "Harbor office."
The main section, inclined; 31.4 to 5 feet, of concrete and steel, is flush with the surface of the wharf paving.

Below the 5 -foot mark readings are taken on temporary stakes.
Reference bench marks.-©P. B. M. 15, elevation above zero of gauge, 36.44 feet, is a small hole in copper bolt leaded into east side of west pier of fourth stone arch from river of the Eads Bridge at St. Louis. It is 20 feet south of north end of pier and 0.46 foot above top course of granite. The letters "U. S." are cut in the granite below the bench mark.
B. M. A. (Ewens, 1894), elevation above zero of gauge, 34.04 feet, is top of upstream rivet on horizontal leg of angle iron on foot plate of elevated-railroad column at the south sidewalk, foot of Market street, and on west (land) side of column.
B. M. Ringbolt, elevation above zero of gauge, 18.49 feet, is small square cut on top of heavy iron staple or ringbolt on paved whari; about 30 feet south of south line of Pine street and 180 feet east of building on Wharf street.

> ENGINEER DEPOT, ST. LOUIS, MO.

United States engineer gauge.

Elevation, zero of gauge: 386.75.
Miles below Eads Bridge, midbank, 3.2; low water, 3.2 .
The gauge was established in 1894 at the United States engineer depot, foot of Arsenal street, St. Louis, and the records are continuous and complete.

Guuge sections.-The gauge consisted originally of five vertical sections fastened on or near the landing gangway with graduations extending from 37 to 1 feet. At inspection on March 1, 1909, only two sections were in existence, one reading from 37 to 31.5
feet, on foundation pile of warehouse near upper end of gangway; the other, reading from 26 to 1 feet, on the first clump of mooring piles upsiream from the gangway. These gaugesections are of wood, 2 by 6 inches, 14 feet long, and are set and replaced whenever necessary at convenient places along the gangway.

Reference bench marks.-No. 2, elevation above zero of gauge, 43.31 feet, is top of northeast corner of coping to sally port of river wall at United States engineer depot. The letters " B. M." are cut in the stone near the point.

JEFFERSON' BARRACKS, MO.
United States engineer gauge.
Elevation, zero of gauge: 384.81.
Miles below Eads Bridge, midbank, 10.8; low water, 10.8.
The gauge was established in 1891, and discontinued February 1, 1908. It consists of seven sections with graduations from 38.6 to 2 feet. It is located on a rock point about 3,000 feet south of the St. Louis, Iron Mountain and Southern Railway new depot.

Gauge sections.-No. 1, 38.6 to 33.1 feet, is an inclined angle-iron section with the lower end bolted to the rock ledge, and the upper end bolted to angle-iron post set in concrete.

No. 2, 33.1 to 28 feet, is a strap-iron section on the face of the culvert under the St . Louis, Iron Mountain and Southern Railway tracks, 330 feet upstream from section No. 1.

Nos. 3 and 4, 28 to 15 feet, and 15 to 10 feet, respectively, are strap-iron sections on the rock ledge, in line with section No. 1.

Nos. 5, 6, and 7, 10 to 7.6 feet, 7.6 to 4.9 feet, and 4.9 to 2 feet, respectively, are strap-iron sections, on the rock ledge, 38 to 73 feet upstream from section No. 1.

Reference bench marks.-No. 1, elevation above zero of gauge, 26.44 feet, is the top of a three-quarter-inch iron bolt in center of a triangle in the rock edge, 12 feet upstream from the 11 -foot mark of gauge. The letters "B. M." are cut in the rock near the mark.

No. 2, elevation above zero of gauge, 15.01 feet, is the top of a three-quarter-inch iron bolt in center of a triangle in the rock ledge, 5 feet downstream from the 15 -foot mark of the gauge. The letters "B. M." are cut in the rock near tho mark.

No. 3, elevation above zero of gauge, 11.16 feet, is a three-quarter-inch iron bolt in the rock ledge 37 feet downstream from the 11-foot mark of gauge.

WATERS POINT, MO.

United States engineer gauge.
Elevation, zero of gauge: 377.54.
Miles below Eads Bridge, midbank, 21.5; low water, 22.4.
The gauge was established in 1891, and readings for the period September, 1891, to July, 1908, are given in Appendix No. 15 of this report. The gauge is located on Waters Point, just below Kimmswick, Mo. It consists of four strap-iron sections, graduated from 39.5 to 0.0 feet.

Gauge sections.-No. 1, 39.5 to 12.9 feet, is 50 feet downstream from \triangle Simpson 25, on a large elm tree, and the lower end is bolted to the rock ledge.

No. 2, 12.8 to 6.4 feet, is on the rock ledge 80 feet upstream from section No. 1.
No. 3, 6.3 to 2 feet, is on a large bowlder 95 feet upstream from section No. 1.
No. 4, 3.2 to 0.0 feet, is on a large bowlder 367 feet upstream from section No. 1.
Reference bench marks.-No. 2, elevation above zero of gauge, 14.58 feet, is an iron
bolt in center of a triangle in rock 40 feet downstream from the 12.9 -foot mark of gauge.

No. 3, elevation above zero of gauge, 6.40 feet, is an iron bolt in the top of the bowlder on which section No. 3 is placed.

No. 4, elevation above zero of gauge, 24.51 feet, is an iron bolt in rock 0.5 foot downstream from the 24.5 -foot mark of gauge.

No. 5, elevation above zero of gauge, 10.69 feet, is an iron bolt in rock 0.5 foot downstream from the 10.7 -foot mark of an old section of the gauge.
\triangle Flag 10 (M. R. C.), elevation above zero of gauge, 34.32 feet, is a stone post 24 feet south of an 18 -inch shellbark hickory tree, 44 feet east of 16 -inch black hickory and 41 feet south of edge of rock bank and 23.8 feet west of 18 -inch hickory.
Δ Simpson 25, elevation above zero of gauge, 36.80 feet, is top of a piece of railroad rail set on end near the fence at section No. $\overline{1}$.

ST. NICHOLAS ROCK, MO.

United States engineer gauge.
Elevation, zero of gauge: 220.84.
Miles below Eads Bridge, midbank, 33.0; low water, 34.3.
The gauge was established November, 1904, replacing the Cornice Rock gauge established in $18911_{10}^{\frac{6}{6}}$ miles upstream. Readings began in January, 1905, and were discontinued February 1, 1908. The gauge consists of five sections, strap and angle iron, fastened to the bowlders known as "St. Nicholas rocks," with graduations from 187.7 to 148.1 feet.

Gauge sections.-No. 1, 187.7 to 175.6 feet, is an almost vertical strap-iron section on a large bowlder.

No. 2, 176 to 172.6 feet, is an inclined strap-iron section on another bowlder 6 feet downstream from section No. 1.

No. 3, 172.5 to 164 feet, is a strap-iron section in line with section No. 1 on perpendicular river face of bowlder.

No. 4, 164.4 to 159 feet, is an almost vertical strap-iron section on a small bowlder, 57 feet downstream from section No. 1 .

No. 5, 163.3 to 148.1 feet, is a slightly inclined angle-iron section on an isolated bowlder 240 feet downstream from section No. 1.

Reference bench marks.-No. 1, elevation above zero of gauge, 188 feet, is a roundhead iron bolt in rock near the top of section No. 1.

No. 2, elevation above zero of gauge, 172.64 feet, is a round-head iron bolt in rock at the upper end of section No. 3 .

No. 3, elevation above zero of gauge, 165.04 feet, is a round-head iron bolt in rock at the upper end of section No. 4.

No. 4, elevation above zéro of gauge, 163.26 feet, is a round-head iron bolt in rock at the upper end of section No. 5 .

■43/3, Stone post 300 feet above northwest corner of Kennett's Castle, at Selma, Mo.; 19 feet west of triangle formed with boat spikes in tie and in center of railroad track; 10.5 feet north of the fifth telegraph pole above Selma station; two blazed cottonwood trees east of track, 69 feet northeast and 81 feet southeast. Elevation above zero of gauge, 189.65 feet.

BRICKEYS MILL, MO.

United States engineer gauge.
Elevation, zero of gauge: 364.84.
Miles below Eads Bridge, midbank, 43.8; low water, 45.6.
The gauge was established in 1891, and readings were discontinued during the period from December, 1900, to A pril, 1904, and since January, 1908.

Readings for the period September, 1891, to December, 1900, and from April, 1904, to Februal'y, 1908, are given in Appendix No. 15 of this repori.

The gauge consists of seven sections, with graduations from 35.5 to 1.1 feet, and is located on and near the old mill.

Before the establishment of the present gauge, a gauge in this locality, then known as Cliff, Mo., was in use from November 8, 1875, to June 30, 1873, the records of which are on file in the United States engineer office. Another gauge was in use by the Mississippi River Commission from June, 1884, to June, 1885. (See "Stages of Mississippi River, 1891.'")

Gauge sections.-No. 1, 35.5 to 26.5 feet, is a strap-iron section on the northeast corner of the mill.
No. 2,27 to 18.3 feet, is a wood and strap-iron section 24 feet downstream from section No. 1.

No. 3, 21 to 14.3 feet, is an inclined wood and strap-iron section in line with section No. 1.

No. $4,14.5$ to 9.9 feet, is a strap-iron section, 96 fect downstream from section No. 1 .
No. $5,10.3$ to 9.3 feet, is a strap-iron section, 317 feet downstream from section No. 1 .
No. 6, 9.2 to 5.6 feet, is a strap-iron section 326 feet downstream from section No. 1 .
No. $7,2.8$ to 1.1 feet, is a strap-iron section 92 feet upstream from section No. 1 .
Reference bench marks.-No. 1, \square B. M. 18= $=41$ Holman. Raised square with letters
"U.S. B. M." above and the number " 18 " below, cut on horizontal surface of natural rock; 60 feet above the upstream corner of the mill. Elevation above zero of gauge, 19.71 feet.

No. 2, elevation above zero of gauge, 13.96 feet, is the top of an iron bolt in the rock near the gauge.

No. 3, elevation above zero of gauge, 5.06 feet, is the top of an iron bolt in the rock near the gauge.
No. 4, ele vation above zero of gauge, 27.29 feet, is a square-head bolt in the masonry at the northeast corner of the mill.

No. 5, elevation above zero of gauge, 14.38 feet, is a roundhead iron bolt in the rock 12 feet south of the 14.5 -foot mark of the gauge.

LITTLE ROCK, MO.
United States engineer gauge.
Elevation, zero of gauge: 220.84 .
Miles below Eads Bridge: Midbank, 53.9; low water, 56.5.
The gauge was established in 1891, and the records are complete since March, 1894.
Readings from that date to July, 1908, are given in Appendix No. 15 of this report.
The gauge consists of four sections, with graduations from 166.9 to 138 feet, located at the lower end of the quarries at Little Rock Landing, Mo., and is 2 miles above Ste. Genevieve, Mo.
Gauge sections.-No. 1, 166.9 to 157 feet, is a strap-iron section on the rock ledge 150 feet upstream from north corner of Wilder's warehouse.
No. 2, 157.6 to 156.2 feet, is a strap-iron section on the rock ledge 345 feet downstream from section No. 1.
No. 3, 156.2 to 152 feet, is a strap-iron section on the rock ledge 354 feet downstream from section No. 1.
No. 4, 152 to 138 feet, is a wood and strap-iron section on the rock ledge 111 feet upstream from section No. 1 .
Reference bench marks.-No. 1, elevation above zero of gauge, 176.37 feet, is the center mark on brass bolt on south side of foundation, just east of door in landing warehouse.
No. 2, elevation above zero of gauge, 178.66 feet, is a knob of rock with the letters "B. M." cut above it, 5 feet north and 10 feet west of north corner of boiler house of mill at landing.
No. 3 (Holmar 52), elevation above zero of gauge, 178.66 feet, is on the southeast corner of sill of door on south side of the Little Rock mill. It is marked by cut in door jamb and an arrow on face of sill under bench mark.
No. 4, elevation above zero of gauge, 160.53 feet, is the top of gauge bolt, in rock near the 160.5 -foot mark of gauge.
No. 5 , elevation above zero of gauge, 152.44 feet, is a bolt in the rock ledge 10.5 feet south of the 152.1 -foot mark of gauge.
No. 6, clevation above zero of gauge, 152.17 feet, is a bolt in the rock ledge 1 foot from the 151.9 -foot mark of gauge.
No. 7 , elevation above zero of gauge, 155.98 feet, is the top of a 13 -inch broken ring. bolt 9 feet south of the 156 -foot mark of gauge.

EAST KASKASKIA, ILL.

United States engineer gauge.
Elevation, zero of gauge: 350.84 .
Miles below Eads Bridge, midbank, 63.1; low water, 66.1.
The gauge was established in 1893, and readings were discontinued February, 1908. It consists of six sections with graduations from 33 feet to 1 foot. It is located about one-half mile above the railroad station at Fort Gage, Ill.
Gauge sections.-No. 1, 33 to 19 feet, is a vertical wooden section on the St. Louis, Iron Mountain and Southern Railway (Illinois Division) trestle below Fort Gage. This is a temporary section.
No. 2, 19.6 to 16.2 feet, is a strap-iron section on the rock ledge, 600 feet downstream from the old "Menard" warehouse.
No. $3,16.7$ to 11.6 feet, is a strap-iron section on the rock ledge 209 feet downstream from the old warehouse.
No. 4, 12.2 to 6.5 feet, is a strap-iron section on the rock ledge, 481 feet downstream from the old warehouse.
No. $5,6.9$ to 4.7 feet, is a strap-iron section on the rock ledge 79 feet downstream from section No. 2.

No. 6, 4.7 feet to 1 foot, is in two parts, of strap iron, on the rock ledge 423 and 415 feet downstream from old warehouse.
Reference bench marks.-No. 2, elevation above zero of gauge, 11.33 feet, is a three-quarter-inch iron bolt flush with the rock, 87.5 feet west of the northwest corner of the -old warehouse. It is marked by a triangle and the letters "B. M."

No. 6, elevation above zero of gauge, 33.67 feet, is the head of a spike in the root of a locust tree south of the old warehouse.
No. 7 elevation above zero of gauge, 37.61 feet, is the head of a spike in white oak tree 30 feet southeast of the old warehouse.
No. 8, elevation above zero of gauge, 19.13 feet, is a roundhead iron bolt in the rock, 8.5 feet upstream from the 19 -font mark of the gauge.

No. 9, elevation above zero of gauge, 7.52 feet, is a roundhead iron bolt in the rock at the upper end of section No. 5.

CHESTER, HLL.

- United States engineer gauge.

Ele vation, zero of gatge: 348.13.
Miles below Eads Bridge, midbank, 69.6; low water, 72.9.
Established by the United States. Weather Bureau in 1891 and maintained by the United States enginecr office, St. Louis, Mo., since 1898.
Readings since 13)1, furnished by the United States Weather Bureau, Cairo, Ill. to the Mississippi River Commission, are published in "Stages of the Mississippi River." Since April, 1899, the United States engineer office has obtained readings directly from the gauge observer.
The gauge consists of four sections, with graduations from 36 to -1 feet.
Gauge sections.-Nos. 1 and 2, 33 to 25 feet, and 24.9 to 22.5 feet, respectively, vertical, of wood, are secured to the north wall of the upper warehouse at the steamer landing.
No. $3,24.4$ to 3.1 feet, inclined, is of angle iron and located 42 feet upstream from the warehouso.
No. 4, 2.6 to -1 feet, inclined, is of wood and strap iron, located 10 feet upstream from the warehouse.

Reference bench marks.-B. M. Devine, elevation above zero of gauge, 37.95 feet, is a horizontal chisel mark in the head of a copper bolt leaded horizontally in the west verical face of the stone water table above the foundation of a brick building owned by John Devine, at the southeast corner of Water and Wall streets, Chester, IIl. The bench mark is 0.4 foot south from the corner of the building and about 2 feet above the pavement.

No. 4, elevation above zero of gauge, 23.16 feet, is top of a round-head bolt in the masonry of the northwest corner of the warehouse on which gauge sections Nos. 1 and 2 are fastened.

No. 5 (1904), elevation above zero of gauge, 20.86 feet, is top of a ring bolt in wharf slope haliway between gauge sections Nos. 2 and 3.
No. 6 (1906), elevation above zero of gauge, 22.39 feet, is top of round-head bolt set in top of highest concrete pier of section No. 3.

RED ROCK, MO.
United States engineer gauge.
Elevation, zero of gauge: 335.84 .
Miles below Eads Bridge, midbank, 84.9; low water, 89.2
The gauge was established in 1896 and discontinued February 1, 1908. It consists of six sections, with graduations from 39 to 2.5 feet, located on and near the rock called "Devil's Backbone." Readings from November, 1896, to January, 1897, and from November, 1897, to January 31, 1908, are in Appendix No. 15, this report.

Gauge sections.-No. 1, 39 to 23 feet, is a vertical wooden section, with vertical angle-iron base, 500 feet downstream from the store at Red Rock Landing.

No. 2, 24.4 to 16 feet; No. 3, 17 to 13 feet; No. $4,13.2$ to 9.3 feet; No. $5,9.7$ to 5.6 feet; and No. 6, 5.5 to 2.5 feet, are strap-iron sections on the "Devil's Backbone."
Reference bench marks.-No. 1, elevation above zero of gauge, 14.25 feet, is a threc-quarter-inch iron bolt flush with the rock, 26 feet southwest of 9.7 -ioot mark of gauge.

No. 2 , elevation above zero of gauge, 14.33 feet, is a three-quarter-inch iron bolt, one-half inch above the rock ledge and 7 feet north of the 15 -foot mark of gauge.

No. 3, elevation above zero of gauge, 22.40 feet, is a three-quarter-inch iron boll, one-half inch above the rock ledge and 3 feet south of the 22.4 -foot mark of gauge.
No. 4, elevation above zero of gauge, 41.40 feet, is a notch cut in the center and on top of the head wall on the south side of double pipe railroad culvert halfway between gauge and landing.
No. 6, elevation above zero of gauge, 20.50 feet, is an iron bolt on highest point of "Devil's Backbone" between sections Nos. 2 and 3.
H. Doc. 50, 61-1-33*

GRAND TOWER, HL.
United States engineer gauge.
Elevation, zero of gauge: 329.04.
Miles below Eads Bridge, midbank, 98.9; low water, 103.3.
The gauge was established by the United States Weather Bureau February, 1885, and the records to December 31, 1886, are published by that bureau. Records from January 1, 1889, to January 31, 1891, inclusive, and since January 1, 1905 (the latter furnished by the United States engineer office), are published in "Stages of the Mississippi River" by the Mississippi River Commission. Readings for the periods January, 1896, to December, 1904, and from January to July 31, 1908, are given in Appendix No. 15 of this report. Readings for the period from December, 1904, to January, 1908, are published by the Mississippi River Commission in "Stages of the Mississippi River,"

The readings for the period from February 1, 1891, to June 30, 1896, tabulated from telegraphic reports in the St. Louis Globe-Democrat (daily) and for the period July 1, 1896, to January 22, 1897, from the records of the coal company at Grand Tower, are on file in the United States engineer office, St. Louis, Mo.

The gauge was reestablished by the United States engineer office, St. Louis, January 23, 1897, and has since been maintained by that office.

The zero of the gauge was 331.52 until about March 10, 1893, when it was changed by he observer to 329.04 , the present value.
The gauge, graduated from 40 to 0 feet, is vertical, of wood sections 2 by 5 inches, and on a pile in the coal dump.

Reference bench marks.-No. 1, elevation above zero of gage, 43.10 feet, is stone post in northeast corner of yard of office of Big Muddy Coal and Iron Company, Grand Tower.

No. 3, elevation above zero of gauge, 27.27 feet, is top of square-head bolt in bowlder 345 feet upstream from north end of coal dump, 97 feet west of 28 -inch walnut tree, and 98 feet southwest of a 30 -inch post oak, on hillside.

No. 4, elevation above zero of gauge, 31.41 feet, is top of square-head bolt in bowlder 175 feet upstream from reference bench mark No. 3, and 70 feet southwest from a 26 -inch white oak, on hillside.

No. 5, elevation above zero of gauge, 43.99 feet, is top of boat spike in root of maple stump in northwest corner of yard of office of Big Muddy Coal and Iron Company.

MOCCASIN SPRINGS, MO.
United States engineer gauge.
Elevation, zero of gauge: 320.84 .
Miles below Eads Bridge, midbank, 112.7; low water, 116.8 .
The gauge was established in 1896 and discontinued on February 1, 1908. Readings from November, 1896, to January 31, 1908, and for the month of June, 1908, are given in Appendix No. 15 of this report.
The gauge consists of 10 eections, with graduations from 38 to 4.2 feet. It is located near the Moccasin Springs post-office.
Gauge sections.-No. 1, 38 to 26.8 feet, is a vertical wooden section on a tree 120 feet downstream from the landing warehouse.

No. 2,29 to 22.1 feet, is a strap-iron eection fastened to the rock ledge and to a large elm tree 500 feet downstream from section No. 1.
No. $3,22.3$ to 20.5 feet, is a strap-iron section on rock ledge 375 feet downstream from section No. 1 .
No. $4,20.6$ to 18.5 feet, is a strap-iron section bolted to rock 10 feet toward river from section No. 2.
No. $5,18.5$ to 12.4 feet, is a strap-iron section on rock ledge 505 feet downstream from section No. 1.

No. 6, 14.9 to 10.8 feet, is not used.
No. 7, 12.6 to 9.2 feet, is a vertical angle-iron section on rock ledge on second projecting point, about 250 feet downstream from section No. 2 .
No. $8,10.6$ to 8.5 feet, is a strap-iron section on rock ledge 522 feet/upstream from section No. 1 .

No. $9,8.4$ to 5.8 feet, is a strap-iron section on rock ledge 460 feet upstream from section No. 1 .
No. $10,7.5$ to 4.2 feet, is a strap-iron section on rock ledge 550 feet downstream from section No. 1.

Ruference bench marks.-No. 2 (U. S. B. M. 37), elevation above zero of gauge, 22,66 feet, is a square knob with the letters "U. S. B. M. 37 " cut in rock ledge and 1 foot
from face, under the main bank, and a little south of the south line of first house above landing.

No. 3, elevation above zero of gauge 9.25 feet, is a bolt in the rock ledge 8 feet downstream from section No. 8.
No. 4, elevation above zero of gauge, 7.88 feet, is a bolt in the rock ledge 470 feet downstream from section No. 1.
No. 5 , elevation above zero of gauge, 24.87 fect, is a bolt in the rock ledge 4 feet upstream from section No. 2.

cape girardeau, mo.

Mississippi River Commission gauge.
Elevation, zero of gauge: 311.84.
Miles below Eads Bridge, midbank, 126.5; low water, 130.8.
The gauge consists of an inclined section near the lower end of Themis street, and two vertical sections at the lower end of the city wharf, at the foot of Independence street.

The vertical sections are marked $A, 26$ to 36 feet, and $\mathrm{F}, 5$ to 9 feet.
The inclined gauge was built in December, 1904. It runs from top of paved levee to 10 feet beyond foot of pavement, on a line with and a little south of the south side of Themis sireet extended, the total length being 115 feet.
The gauge consists of a wooden stringer 8 by 10 inches, resting on bents made of 8 by 8 inch, and 5 by 8 inches, 3 feet high, placed 8 feet apart. The lower end of wooden stringer is bolted into the natural rock.

On top of the stringer is ${ }^{*}{ }^{*}$ an iron strip ${ }^{* * *}$ graduations * **31.5 feet *** permanent graduations ${ }^{*} * *$ to the 9.9 -ioot mark ${ }^{* * *}$ strap-iron ${ }^{*} * *$ fastencd to one of the lower timbers of the gauge and graduated from 7.7 -foot mark ≤ 09.8-foot mark.-"Stages of the Mississippi River."
Reference bench marks.- \odot P. B. M. 54, elevation above zero of gauge, 41.67 feet, is center of horizontal copper bolt in the outer vertical face of stone step, which extends under buttress at the northeast comer, second entrance from the north, to the Riverview Hotel, on Water street, Cape Girardeau.
No. 1 (Harman, 1898), elevation above zero of gauge, 35.58 feet, is top of flat portion of bent boat spike driven horizontally into river face at southwest corner of E. W. Flentge's store building, north side of Independence street. It is 0.6 foot north of corner and is in the first joint of stone masonry above ground, and third joint below brickwork, and is about on level with paving of gutter at corner of building. Building is marked "Franklin House" on river.front.
B. M. G. 1904, elevation above zero of gauge, 36.36 feet, is top of iron bolt leaded vertically in top face at east end of stone step which is on the east end of north side of Nicholas Scharif's wholesale grocery store, southwest corner of Themis and North Water streets.
arays foint, mo.
United States engineer gauge.
Elevation, zero of gauge, 308.15.
Miles below Eads Bridge, midbank, 132.4; low water, 136.8.
The Mississippi River Commission established the present gauge in 1883 and maintained it uncil August, 1896, when it was discontinued.
On November 2, 1896, the United States engineer office began using this gauge and abandoned the engineer's gauge 0.73 mile upstream, which was established in 1878, and the readings on this latter gauge from February, 1880, to August, 1883, were changed to agree with the zero of the commission's gauge, and are published in "Stages of the Mississippi River."
The readings on the present gauge, from November 2, 1896, to date, have not been published, but are on file in the United States engineer office, Si. Louis. Readings from January, 1896, to July 31, 1908, are given in Appendix No. 15 of this report.
The present gauge consists of three sections, with graduations from 35.7 to 1.8 feet, located on the rock ledge at Grays Point, Mo.

Gauge sections.--No. 1, 35.7 to 19 feet, is a strap-iron section on rock ledge at the lowest part of the rock point.
No. 2, 23 to 5.5 feet, is a strap-iron section on the rock ledge 120 feet upstream from section No. 1.
No. 3, 5.5 to 1.8 feet, is a strap-iron section on the rock ledge 543 feet upstream from section No. 1.

Reference bench marks.--No. 1 (13. M. Ewens, 1883), elevation above zero of gauge, 26.05 feet, is the top of an iron bolt leaded vertically into the rock ledge 8.5 feet
upstream from the 26 -foot mark of gauge. The lettere "U. S. B. M. E." are cut in the rock 0.5 foot from the bench mark. (For elevation of this reference bench mark, see凹B. M. E. $=\triangle$ Grays, in Permanent Survey-Mnrks, this appendix.)
No. 2, elevation above zero of gatuge, 15.16 feet, is an elevated square knob on the rock ledge 21 feet downstream from the 15 -foot mark of gauge. The letters and number "U.S. B. M. 74" are cut in the rock near the bench mark.
No. 3, elevation above zero of gauge, 8.23 feet, is the top of a ihree-quarter-inch iron bolt 4.5 feet inshore from top of section No. 3.
commerce, mo.
United States engincer gauge.
Elevation, zero of gauge, 308.84 .
Miles below Eads Bridge, midbank, 139.4; low water, 143.7.
The gauge was established in September, 1896, and readings to July, 1908, are given in Appendix No. 15 of this report. ?he gauge consists of five sections, with graduations from 30 to 2 feet, located on the old mill and the bowlders immediately upstream from the landing.
Gauge sections.-No. 1, 30 to 21.3 feet, is a vertical wooden section on the upstream side of the mill and 30 feet from the river front of the building.
No. 2, 24 to 10.6 feet, is a vertical wooden section on a large pile at the northeast corner of the mill.
No. 3, 15.4 to 10 feet; No. 4, 10.5 to 7.2 feet, and No. 5, 7.1 to 2 feet, are on bowl. ders 255 feet upstream from the mill. Nos. 3 and 4 are strap-iron sections, and No. 5 is a vertical wooden section.

Reference bench marks.-No. 1, \odot P. B. M. 61, elevation above zero of gauge, 60.68 feet, is the center of a horizontal copper bolt set in front cr cast face of foundation of Mr. Anderson's large brick dwelling at the upper end of Commerce. It is 6 feet north of center of front entrance and 1.2 feet above ground.
No. 2, elevation above zero of gauge, 18.51 feet, is an elevated square knob cut on a large bowlder 260 feet upstream from the mill at the landing. The letters and number "U. S. 13. M. 74 " are cut in the rock 1 foot west of the bench mark.

HACKER TOWHEAD, ILL.
United States engineer gauge.
Elevation, zero of gauge, 220.84 .
Miles below Eads Bridge, midbank, 151.5; low water, 156.5.
The gauge was established in March, 1504, and was discontinued February 1, 1908. It is located on the head of IIacker Towhead (Blackbird Island), and consists of three sections with graduations from 114 to 80 feet.

Gauge sections.-No. 1, 114 to 107.3 fect, is a vertical wooden section on a tree on the revetted bank and 50 feet upstream from section No. 2.
No. $2,107.6$ to 87.8 feet. The upper portion, 107.6 to 86.4 feet, is an inclined wooden section with its top fastened to a stump; the lower portion, 96.4 to 87.8 feet, consists of an angle-iron section.

No. 3, 90 to 80 feet, is a vertical wooden section on a pile 200 feet upstream from section No. 2.
Ricfcrence bench marks.-No. 1, elevation above zero of gauge 108.98 feet, is top of a spike in the root of a 3 -foot elm tree 200 feet north of a house in a 10 -acre lot owned by Harry Me'olgan.
No. 3, elevation above zero of gauge 109.98 feet, is top of a spike in the root of a 6 -inch sycamore 110 feet east of gauge section No. 1.
No. 4, elevation above zero of gatge 108.10 feet, is top of a round-head iron bolt in the concrete base of the iron post at the 88 -foot mark of gauge.
No. 5 (\triangle Cuba), elevation above zero of gauge 108.88 feet, is top of iron pipe, surrounded by loose stone, nearly flush with the surface of revetment at the outer end of hurdle No. 8, Hacker Towhead.
[15/1. Elevation of stone above zero of gauge, 103.44 feet; of pipe, 108.52 feet, is flat stone and iron pipe, in Illinois; about one-half mile back from old high bank in Hacker Bend; at fence, edge of woods, and east side of field; 150 feet south of northeast corner of field; 20 feet from small log house; and just back of small orchard.

BEECHRIDCE, ILI.
United States engineer gauge.
Elavation, zero of gauge, 289.73.
Miles below Eads Bridge, midbank, 162.5; low water, 169.5.

The gauge, established in 1900, originally consisted of only high and low water sections. It now consists of four sections, with graduations from 42 to 6.8 feet, placed on the revetted bank about 600 feet south of the road running east tw Beechridge. Readings from October to December, 1.901; January, September, and November, 1902; March and June, 1903, and November, 1903, to July 31, 1908, are given in Appendix No. 15 of this report.

Gauge sections.-No. 1, 42 to 38.5 feet, is a vertical wooden section on a small catalpa tree at the top of the bank.
No. 2, 39 to 24.5 feet, is an inclined angle-iron section bolted to angle-iron posts embedded in concrete 30 feet upstream from section No. 1.
No. 3, 24.5 to 13 feet, is an inclined angle-iron section 187 feet downstream from section No. 1.
No. 4, 13.9 to 6.8 feet, is an inclined angle-iron section about 100 feet upstream from section No. 1.

Reference bench marks.-No. 1 (\odot P. B. M. 65), elevation above zero of gauge 36.58 feet, is the top of copper bolt in stone pest on land of C. P. Martin. Stone is south of road running west from Beechridge, and nearly in line with two large oak trees on north, one in the field, the other in south fence along road, and distant, respectively 185 and 362 feet. Stone is 95 feet west of the abandoned Cairo road and 180.5 fect east of Martin's barn.
No. 2, elevation above zero of gatge 35.74 feet, is a givike in the base of an elm tree in fence corner in south line of land belonging to the be Gelder estate.
No. 3, elevation above zero of gatge 3.3 .43 feet, is a spike in the root of river side of small catalpa tree to which section No. 1 is secured.

```
HIRIS POINT, MO.
```

United States engineer gauge.
Elevation, zero' of gauge: 279.19
Miles below Eads Bridge, mid bank, 173.2; low water, 181.4.
The gauge was established in 1901 and discontinued January, 1908. It consisted of four sections, with graduations from 52 to 0 feet, placed on guard piling of incline of the St. Louis Southwestern Railway.

Reference bench marks.-No. 2, elevation above zero of gauge, 43.20 iect, is a spike in river side of large elm tree in front of watchman's house on the south side of the track leading to lower incline.
(CAIRO, ILL. (OHIO RIVER).
United States engineer's gauge, in charge of Mississippi River Commission.
Elevation, zeio of gauge: 277.71.
Gauge is 2 miles alove the mouth, in the Ohio River.
Mouth of Ohio River; miles below Lads Bridge, mid bank, 174.8; low water, 182.5.
The gauge, at the foot of Fourth strect, is in three sections, and is graduated from 55 to 1 feet.

Gauge sections.-The section from 55 to 50 feet is a steel strap 5 by $\frac{1}{2}$ inches, bolted to the upstream face of buttress at upstream side of roadway opening in concrete retaining wall, high levee, and upstream from the inclined section of the gauge.
The inclined section, 50 to 9 feet, consists of a 12 -inch steel I beam embedded in concrete.
The inclined section from 9 to 1 feet consists of 10 by 12 inch oak timbers, laid nearly flush with the face of the levee; to the upper face of the timbers is spiked an iron strap 42 by ${ }^{3}$ inches.

Reference bench marks.-No. 1 (Hely), elevation above zero of gauge, 52.42 feet, is a cross cut in the corrugated iron sill of the Halliday House on the river side, near the northeast corner, under window. It is 1.7 feet south of the corner and near head of large bent nail.
\odot P. B. M. 1, elevation above zero of gauge, 47.09 fect, is a small hole in center of copper bolt set horizontally in northwest side of custom-house. It is 23.5 fect from the northeast corner and 1.2 feet below the junction of the sandstone and limestone. The letters "U. S. B. M." are cut in the stone.
\odot P. B. M. 2, elevation above zero of gauge, 48.42 feet, is hole in copper bolt set horizontally in cast side of building containing oflices of the trustees of Cairo city rublic property on Washington avenue, between Eighteenth and Nineteenth streets.

The bolt is 14.0 feet from southeast corner and 3.7 feet below lower surface of water table. The letters "U. S. B. M." are cut in the stone.
B. M. D., elevation above zero of gauge, 55.87 feet, is top of letter " D " in brass plate sunk in granitoid coping near upper end of inclined gauge. Plate bears the inseription: "Built by D. Sinclair, Kankakee, 1898."

Record of the hiohest known water marks of the misstsmpl river between GRAFTON, ILL., AND COLDMBUS, KY.

$$
\text { Flood or April, } 1785 \text { ("1'Année des Grandes Gaux"). }
$$

"The high water of 1785 from a chisel mark and date on the rock at Carondelet appears to have been $3.85+$ our present directrix $=($ high water of 1826)".-Quoted from old gauge record by Jacob heopold in harbor and wharf commissioners' office, St. Louis, Mo.
"High water 1785, April, about 42 feet."-Dr. George Engelmann, Transactions, Academy of Science, Volume II, pages 420-423.
"Flood of 1785.-A great flood at St. Louis in April, said to have been equal to that of 1844."-Humphreys and Abbot Report, 186i, page 168.
"The Mississippi rose twenty feet above the highest known watermarks. This deponent went in a boat, for the purpose of procuring plank, from St. Louis through the woods growing in the American Bottom, to Kaskaskia. This was in April, 1785. Auguste Chouteau, A pril 18, 1825.-Hunt's Minutes, Volume I, page 107.
'The following year after the commencement of the new village (Ste.Genevieve) was 'l'annte des grandes caux.' The old viliage was overflowed so as to be on the top of the houses. A boat by Mr. Chouteau arrived at this time, and they made the boat fast to the top of one of the chimneys, and dined on the roff of the house of old Andre. In the big field the water was in many places ten to fifteen feet deep. Julien Labriere, October 22, 1825.-Hunt's Minutes, Volume M1, pate 225."-History of St. Louis City and County, by J. Thomas Scharf, 1883, Volume I, page 210.
"The old town (Ste. Genevieve) was abandoned in 1785 on account of the great lood of the Father of Waters during that year, and known among its inhabitants as 'l'annee des grandes eaux.' * * * The overflow of the Mississippi in the year 1785 has never been equaled since." -Rozier's History, Eanly Settlement of the Mississippi Valley.
"It is certain that at Kaskaskia the water attained a greater height in 1844 than was reached in 1785. This is not predicated upon the mere recollection of individuals, but was ascertained from existing marks of the height of the flood of that year after the subsidence of the water in 1844. It was then proved that in this latter mentioned year the water rose two feet and five inches above the high-water mark of 1785."-History of St. Louis City and County, by J. 'Thomas Scharf, 1883, Volume II, page 106 .

Elevation of high-water mark of 1844 at Old Kaskaskia (Board on Examination and Survey of Mississippi River Survey, 1908) is 393.10, and subtracting 2 feet 5 inches gives 390.68 as the elevation of the high-water mark of 1785 at that point.
Elevation of St. Louis city directrix $+3.85=424.69$. Assuming that the point "rock at Carondelet" was at Steins street, St. Louis, 63 miles below the St. Louis (Market street) gauge, using the slope of 1844 from St. Louis to Waters Point (0.57 foot per mile) and transferring this stage to the present St. Louis gauge, the high water of 1785 would have read 41.4 feet, which is practically the same gauge height as for the flood oi 1844.

Considering this location for the "rock at Carondelet" and the elevatios as recorded by Jacob Leopold (for many years the St. Louis gauge reader), the equivalent gauge reading of 41.4 feet is believed to be very nearly correct.
While this does not agree with the 1844 record for Kaskaskia (Scharf's History), great weight should be given to Humphreys and Abbot report and to the stage' (about 42 feet) recorded by Doctor Engelmann; and it is probable that the record of 41.4 -feet for the flood of 1785 at St. Louis is fully as reliable as the Kaskaskia record; also it is possible that owing to changes in the river bed the flood of. 1844 was abnormally high at Kaskaskia, as compared with that of 1785.

Flood of June, 1844.
grafton, illi.
Miles above Eads Bridge, 38.
Elevation: 443.1.
Fouricen inches above top of lower end of stone wall on west side of street running from Main street to Black Crook House; elevation, 443.12; authority, John MeClin-tock.-Report, "Waterway, Lockport to St. Louis," 1905.

According to R. C. Goodrich the water in 1858 came up nearly even with the bottom of step of church on Main street, and even with the sidewalk. Elevation of step, 443.13 (United States engincer office, St. Louis, Mo., levels of 1879 adjusted to precise levels). This high water is probably that of 1844.

> ELSAF, LLI. (JERBEY IAANDING).

Miles above Eads Bridge, 34.1.
Elevation: 442.3.
Mark on door on west side of brick building at upper end of trestle at Jersey Landing, J.ll.; elevation, 442.34. On this same door is the mark of 1858.-Mississippi River Commiesión, survey 1891.

ALTON, ILI.
Miles above Eads Bridge, 23.4.
Elevation: 439.8.
According to the survey of 1879 (United States engineer office, St. Louis, Mo.) the original mark was a black stripe painted by G. D. Sidway, oyer water stain on a post in his saddlery shop located on the north side of Second street four doors from State street. Marks of 1851 and 1808 were also on the same post. Before this saddlery shop was rebuilt, City Depineer George Dixon transferred the 1844 mark to a round iron column set in the northeast corner of Alton rolling mill, corner of Second and State streets, cutting in that column a horizontal groove and the date 1844. On same column is a high-water mark of 1903,33$\}$ inches lower.

That the 1844 mark was accurately transferred is shown by levels taken in 1908 to an old bench mark (Emerson's house) which had been connected with the original mark. Determination of original mark by United States engineer office (adjusted levels) in 1872, 439.78; in 1879, 440.06; of transferred mark, by Mississippi River Commission transalluvial levels in 1894, 439.78; by Board on Examination and Survey of Mississippi River single line of levels in 1908 from 6 62/2, 439.77; and by elosed line rom \triangle Alton, 439.50 .

> MADISON, HIL.

Miles above Eads Bridge, 12.8.
Elevation: 435.
Mark is notch cut in 39 -inch burr oak tree, $1 \frac{1}{2}$ miles from the river and on the east bank of Chouteau Slough.

Marks for the floods of 1851 and 1858 are also cut in the same tree.
Mr. Pettingill's house (since destroyed by fire) stood immediately back from the tree, and it is stated that the water at its food crest was 14 inches deep in the hall of the house. According to the United States engineer oflice survey of 1879 the etevation of floor plus 1.17 feet was 434.9, or 0.38 foot lower than the noteh in the tree.

The elevation of notch on the tree, as determined by Board on Examination and Survey of Mississippi River levels, 1908, is 435).

> ST. LOUIS, MO. EADS IBRID(IE.

Miles from Eads Bridge, 0.
Elevation: 429.2.
Mark scored, with marks of $1851,1858,1881,1882,1883$, and others, on wood post east of door to the Eagle Boat Store Company, No. 517 North Whari. Elevation, 429.22.-Mississippi River Commission, survey, 1889.

```
ST. LOUIS, MO. MARKEI STREET GAUGE.
```

Miles below Eads Bridge, 0.4.
Elevation: 428.4.
A mark 7 feet 7 inches above the St. Louis city directrix (elevation of directrix, 420.84) which was the curbstone of the wharf between Market and Walnut streets. Elevation, 428.42.

CAHOKIA, ILI.
Miles below Eads Bridge, 3.7.
Elevation: 426.9.
Water stain on black walnut door of old frame Catholic church. The door is the one leading to the room in the rear, and the stain is on the main room side of the door. Just above the stain was found penciled " 1844 ;" elevation, 426.90 . Stain for the flood crest of 1903 is 4 feet 3 inches lower. (United States engineer oflice, 1905, Penniman.)

A point, indicated by Mrs. Theresa Le Berch, on the east wall of her house; to the best of her memory this point was 5 feet above the window sill. Elevation, 426.92. (Board on Examination and Survey of Mississippi River, 1908, Wolbrecht.)

WATERS POINT, MO.

Miles below Eads Bridge, 22.4.
Elevation: 416.4.
Mrs. Letitia Waters, widow of Capt. G. W. Waters, U. S. Army, said the flood crest of 1844 was just over the crotch of a 15 -inch walnut tree which was on the bank of the river in line with north wall of her house. The elevation of the crotch of the tree (416.4 feet) was checked by levels to several water stains on trees in Montesano Park. These stains were very distinct and the mean elevation of four such marks was 416.72 feet. The park is about 0.8 mile above Waters Point. (United States engineer office, 1879, adjusted levels.)

OPPOSITE SULPHUR SPRINGS, MO.
Miles below Eads Bridge, 24.1.
Elevation: 115.3.
A point about 5 inches above the sill of a window in the north side of house owned by Victor Castelli, of Valmeyer, III. House is occupied by Mr. and Mrs. Vogel, and the latter is authority for the mark, having received her information from members of the family who lived in the house during the flood of 1844. (Board on Examination and Survey of Mississippi River, 1908, Wolbrecht.)

RIVERSIDE, MO.

Miles below Eads Bridge, 27.9.
Elevation: 412.3 .
Governor Dunklin's son remembered that the flood reached within an inch of the base of the chimney of their old bouse. Elevation of base of chimney, 412.63 (adjusted levels). (From records of the United States engineer office survey of 1879.)
Mr. C. B. Wallace indicated the approximate location of a mark on the stone chimney of a house almost directly opposite in Illinois, which was occupied at the time of that flood by his grandmother. Owing to whitewash and plaster being over the mark, an exact determination was not made. Elevation of approximate mark, 411.93. (Board on Examination and Survey of Mississippi River, 1903, Wolbrecht.)
The mark at Riverside, Mo., was in a ravine, and since the water striking against the prominent point of the lower bluff tended to pile up and make the crest elevation of the flood greater there than across the river, back of the timber, a mean of the two elevations has been used, which gives a fairly reliable determination of the flood crest at this point.

PLATIN ROCK, MO.
Miles below Eads Bridge, 31.3.
Elevation: 411.3 .
James E. Jewett, who lived at Platin Rock, in southern one of row of houses north of stone house, said the flood crest of 1858 , to the best of his memory, was even with the lowest part of rim of rectangular stone basin at bottom of down spout at southeast corner of row. Elevation of rim, 407.62. Leveler Sadler, of 1872 survey, United States ongineer office, stated that at Hugs, a short distance downstream from Platin Rock, the flood crest of 1844 was 3.66 feet higher than the flood crest of 1858 , from which the elevation of 411.28 is derived. (United States engineer office, surveys of 1872 and 1879 , adjusted levels.)

RUSE TOWER, MO.
Miles below Eads Bridge, 39.4.
Elevation: 403.4.
"IIigh Water Mark of 1844." (United States engineer office, 1572, Smith, adjusted levels.)

Miles below Eads Bridge, 45.6.
Elevation: 403.
According to United States engineer office survey of 1878, the flood crest of 1858 was up to the lower part of the planks of first floor of Brickey's mill and warchouse. Elevation of bottom of floor, 399.31, determined in 1008 by duplicate line of levels, Board on Examination and Survey of Mississippi River. From notehook, United States engineer office survey of 1872, the flood of 1844 at Brickeys was 3.66 feet higher than the flood of 1858 , giving elevation 402.97 for flood of 1844.

John C. Brickey, who lived at Brickey's mill in 1844, said the mark of 1844 was 1 inch above the sill of the cellar window to the right of the front steps (approaching the house). Elevation, 403.34. (United States engineer office survey, 1879; single line, adjusted levels.) This house was moved since 1879.

ABOVF LITTTLE ROCK IANDING, MO.

Miles below Eads Bridge, 56.2.

Elevation: 397.3.
The original mark, destroyed by quarrying in November, 1894, was an iregular triangular groove, about 1 inch wide, 1 inch deep, and 2 feet long, not horizontal, the upstream end being about 2 inches the higher, cut in the vertical face of the blufi onequarter mile upstream from the landing. Above the mark was also cut "I., W. M. 1844 Maydwell." Elevation, 397.3 (United States engineer office, 1879 , adjusted levels.) In October, 1894, the elevation of the center of the original mark was transierred by a closed line of levels to the south face of the south foundation wall of warehouse at the landing. At this elevation a copper bolt was leaded into the wall and the new inscription cut: "H. W. M. 1844 transierred from bluff 1,40) feet north, elevation 176.36 " (United States engineer office datum) or 397.20; closed line of levels to@ P. B. M. 41.

ONE MILE BELOW LITTLE ROCK LANDING, MO.
Miles below Eads Bridge, 57.4.
1
Elevation: 396.9.
According to Mr. Bantz, the crest of the flood was even with the top of the lowest one of the front steps of his house. Elevation, 396.93. (United States engineer office, 1879, adjusted levels.)

STE. GENEVIEVE, MO.
Miles below Eads Tridge, 58.8.
Elevation: 396.3.
A mark, with date " 1844 ," cut in the brick chimney at the north end of the old Seibert house in south angle at the west end of South Fork street. Flevation, 336.25. The water of 1844 was on the lower bar of the top sesh of the only iront window on first floor of two-story frame house opposite east end (if South Fork strcet. Elevation of bar, 396.38. (United States engineer office, 1880, adjusted levels.)

```
REIIY LAKE, ILL.
```

Miles below Eads Bridge, 65.1.
Elevation: 393.9.
The original mark was made with lampblack on plastered wall in old flour min, in first ravine above Reily Lake, III. To perpetuate the mark, a government surveyor madescratches in the plastering where the lampblack mark was. Peter Sternemanin, the miller in 1844, pointed out a mark to the leveler in 1908. Elevation, 393.89. (Board on Examination and Survey of Mississippi River, 1908, Wolbrecht.)

OLD EASKASKLA, ILL.
Miles below Eads Bridge, 65.6.
Elevation: 393.1.
The mark is a notch cut in the corner of northeast porch post and about 6.5 feet above the porch floor of the old Hotchkiss house, now the northernmost house on Kaskaykia Island. Elevation, 393.10. (Board on Examination and Survey of Mississippi River, 1908, Wolbrecht.)

Alex Danis, who wrote the following letter, is authority for the mark.
Fort Gage, Ill., Februaty 2, 1908.
Der Sir: i Have located a Place in old Kas Kas Kia Ills a house facing the north with the Poarch it has seeder Post With a Cut in it 6 or 7 feet from the floor The house that they Call the old Boman House and allso a Nuther Place Ner Reily Lake Ner the old Mill in a Rock Bldg South East Corner with a Regnel Mark of 1844 Water mark the Bilding stands south of the Creek Runs North East and South West.

North East of a Waggon Bridge Rite by the side of a spring they Call the Reily spring.
i have reseved my infermation from som old Sittions ove KasKas Kia Ills.
Yours 'Truley, From Alex Danis.

As the river bank near this house was caving, the elevation of the mark was transferred to the northwest corner of a house about 50 meters back, and over this new mark was carved "II W '44."

$$
\text { ST. MARYS, } \mathbf{~ K O} \text {. }
$$

Miles below Eads Bridge, 69.5.
Elevation: 391.5.
Mr. Jules Rozier, sr., was told by the former occupant of the house that the flood crest of 1844 was even with bottom of large padlock hanging from staple into west post of cellar doorway on south side of the old Rozier house, now so-called, and about one-quarter mile below the railroad station. Elevation of staple, 391.80. (Board on Examination and Survey of Mississippi River, 1908, Wolbrecht.)

```
CHESTER, ILI.
```

Miles below Lads Bridge, 72.9.
Elevation: 388.
A mark on the wainscoting of Gnaegy's saloon near the gauge at Chester, Ill. It is probably a transferred mark, as Mr. Gnaegy stated, in 1908, that the saloon was not built till the early fifties. Elevation, 387.99. (United States engineer office, 1903, Skelly.)

Elevation of top of window sill of old mill at Chester, said to be the crest of flood of 1844, is 386.41. (Board on Examination and Survey of Mississippi River, 1908, Harman.) At Coles Mill, 0.9 mile below this point, there is a mark of 1844 said to be reliable, elevation, 387.28 . At St. Marys, Mo, the floods of 1844 and of 1858 are about 4 feet different in elevation, and at Wilkinson, Mo., 18 miles below Chester, the difference is 5.62 feet. (United States engineer office, 1872.) The elevation of 1858 flood crest at Chester is 383.8. Using elevation 386.41 for 1844, the difference between flood crests is only 2.61 feet; but by using elevation of mark in Gnaegy's saloon (388) the difference is 4.2 feet. The latter mark has been tentatively accepted.

```
COLES MILL, ILL.
```

Miles below Eads Bridge, 73.8.
Elevation: 387.3.
A chisel mark in masonry, east corner of Cole Milling Company's warehouse, 0.9 mile below gauge at Chester, Ill. The date " 1844 " is cut in the masonry over the mark. Elevation, 387.28. (Board on Examination and Survey of Mississippi River, 1907, Harman.)

The United States engineer office in 1903 determined elevation of a point, said to be height of water of 1844, 1 inch below floor of river warehouse, and transferred this elevation to sill of door facing railroad on southeast corner of river warehouse. Elevation, 383.82. (Probably flood mark of 1858.) Flood crest of 1844 eaid to have been 4 feet above top of doorsill of the front door of mill proper. Elevation of doorsill, 382.61 , by single line of levels from B. M. Devine. (United States engineer office, 1903, Skelly.)

HAILEYB, MO.
Miles below Eads Bridge, 87.7.
Elevation: 380.6.
A horizontal mark, with inscription "High Water 1844" chiseled in face of rock bluff about $1 \frac{1}{2}$ miles below Menfro, Mo., and 0.9 mile above Grand Eddy, and near the "Prisco" railroad. The mark was verified by Jesse F. Delassus, county highway engineer of Perry County, Mo., a grandson of C. E. Delassus, who made the
mark. Elevation, 380.63, closed line to \odot P. B. M. 42, United States engineer office, 1901, Holman. (Elevation 380.4, Board on Examination and Survey of Mississippi River, 1908, Wolbrecht.)

WILKINson, mo.
Miles below Eads Bridge, 90.9.
Elevation: 379.2.
Mark is center of elongated diamond 0.83 foot long and 0.00 foot high, on face of monument which formerly stood in the walk leading to front door of the Wilkinson house, about 1.9 miles abovo Seventysix, Mo. The monument was moved when the "Frisco" railroad was built, but was reset by a-board on examination and survey of Mississippi River leyel party (Harman) in 1908 immediately northwest of brick chimney on upstream side of the house, with the center of the diamond at elevation 387.75 , or 8.5 feet higher than the original elevation (closed line of levels from \odot P. B. M. 42). The monument has inscription "High Water" over the diamond, and "Mark, June 29, 1844 " beneath, with a horizontal mark 0.6 foot below the diamond.

The United States engineer office (Smith) in 1872 determined elevation of diamond 379.24 from B. M. 32, adjusted to precise levels.

A leveler from the same office in 1897 determined the elevation of the horizontal mark (0.6 foot lower than the diamond) as 378.65 , closed line from \odot P. 13. M. 42.

Mr. Hatch, of Seventysix, Mo., informed Assistant Engineer Holman that Captain Wilkinson recorded the height of flood crest by several temporary marks, and, after the monument was set, transferred to it , by sighting from the various marks, their average elevation to the position occupied by the diamond.

WITTENBERO, MO.

Miles below Fads Bridge, 101.8.
Elevation: 373.1.
An approximate elevation obtained by adding 5.62 feet to the local elevation for the flood of 1858; 5.62 feet is the difference, according to the survey of 1872 , between the flood of 1844 and that of 1858 at Wilkinson, Mo. In 1908, a board on examination and survey of Mississippi River level party (Harman) was informed that the flood of 1844 was level with the floor of an old.house back of the mill and railroad in Wittenberg, Mo. Elevation, 374.43, not accepted.

ABOVE GRAND TOWER, IHL.
Miles below Fads Bridge, 102.8.
Elevation: 370.9.
The mark was on a red oak tree about one-half mile above Grand Tower, Ill., on left bank of river, and its elevation was determined by water-level river crossing near this point. (United States engineer office, survey 1872, adjusted levels.)

ALDRIDGE, ILL.
Miles below Eads Bridge, 109.5.
Elevation: 367.4.
Mark is a knife cut, 2 inches long and about one-quarter inch deep, cut into log, and prolonged by pencil mark across the new east casing of door on south side of log house belonging to Willis Cauble. The house, occupied in March, 1908, by W. I.. Lyerly (authority for the mark) is situated 320 meters east of Illinois Central Railroad and about 740 meters southeastwardly from Aldridge. The original mark was cut in the old east casing of the door and when the casing was replaced by a new one the mark was transferred to the abutting log. Elevation, 367.35 (Board on Examination and Survey of Mississippi River, 1908, Harman).

POE I/ANDING, MO.
Miles below Eads Bridge, 123.3.
Elevation: 357.9 .
"Level of freshet 1844 at Mrs. Poe's house Mo. side" about 3 miles below Bainbridge, Mo. (Bowman; post-office) and 0.42 mile below the present Poe Landing. (United States engineer office, survey 1872, adjusted levels.) The bank where the house stood has caved into the river since the survey of 1872.

CAPE GLRARDEAU, MO.
Miles below Fads Bridge, 130.8.
Elevation: 354.4.
The directrix of the city is a level plane passing 50 feet below the height of the Mississippi River on the dih of July, 1844.

The hioh-water mark of 184, July 4, is on river side of James Carroll's brick building on the northeast corner of Independence and Acquamsi (now Water) streets. Elevation, 354.37.-Mississippi River Commission Preciso Levels, 1881, Ferguson.

GRAYS POINT, MO.
Miles below Fads 13ridge, 136.8.
Elevation: 352.L.
H. W. M. of July 4, 1844, Grays Point, Mo. Elevation, 352.11. (Mississippi River Commission Precise Levels, 1881.)

United States engineer office survey of 1878 described the mark as nail driven in chinquapin tree, near Captain Gray's garden; the elevation of this nail was transferred by that survey to a line cut on river face of rock about 15 feet northeast of old river gauge.

BELOW COMMERCE, MO.
Miles below Eads Bridge, 144.3.
Elevation: 339.6.
United States engineer office level notes of 1872 read: "Freshet of 1844, station $6559+95$." This is about 0.6 mile below Commerce, Mo. (adjusted levels).
helow price landino, mo.
Miles below Fads Bridge, 153.8.
Elevation: 335.6.
United States engineer oflice level noles of 1872 read: " IIigh water of 1844, station $7074+50 . "$ Location is about 0.4 mile below Price Landing, Mo. (Adjusted levels.)

THOMPSON LANDINO, MO.
Miles below Eads Bridge, 163.7.
Elevation: 331.5.
An approximate elevation derived from an assumed uniform slope line for the flood crest of 1844 between Price Landiag, Mo., and Columbus, Ky. The elevation of flood of 1883 at this locality was also abont 331.5 ; elevation derived from gauge records and a comparison of flood slopes of 1897 and of 1883.
CAIRO, ILL.

Miles below Eads Bridge, 180.5.
Elevation: 324.6.
An approximate elevation of flood crest of 1844, derived from a uniform slope line from Price Landing, Mo., to Columbus, Ky.
Highest known water at Cairo is that of February, 1883; elevation, 329.9 feet.

```
COLUMBUS, KY.
```

Miles below Eads Bridge, 202.1.
Elevation: 315.7.
According to Humphreys and Abbot Report, page 171, the flood of 1844 at Columbus was 0.9 foot below flood of 1858 ; elevation, 316.62. (See records of Mississippi River Commission, Discharge Observations, 1838 to 1894.)

Highest known water at Columbus is that of liebruary, 1883; olevation, 31.9.3 feet.

RFPORT OF THE BOARD OF ENGINEERS FOR RIVERS AND HARBOHA.

$$
\text { Wasmington, D: C., June 9, } 1909 .
$$

Sir: 1. Having reviewed the accompanying report and its several appendixes on the subject of a 14 -foot channel from St. Louis to the mouth of the Mississippi River, the Board of Engineers for Rivers and Harbors has the honor to submit, its repo-t thereon.
2. As authorized by the river and harbor act approved March 2, 1907, the Secretary of War appointed a board of five members, which board as provided by said act is composed of theee members of the Mississippi River C'ommission, one of whom shall be the president of such commission, and of two engineer officers of the United States Army. As the president is by law an engineer officer, the resulting composition of the hoard is three engineer officers of the United States Army and two civilian members of the Mississippi River Commission.
3. The board was required, by the provisions of the act, to examine the Mississippi River below St. Louis and report to Congress upon the practicability and desirability of constructing and maintaining a navigable channel 14 feet deep and of suitable width from St. Louis to the mouth of the river, either by the improvement of said river or by a canal or canals for part of said route; to cover the probable cost of such improvement, the probable cost of maintenance, and the present and prospective commerce of said waterway, both local and general, upstream as well as downstream; to report whether other plans of improvement can be devised by which the probable demands of traffic, present and prospective, can be adequately met, and to also report upon six questions and subjects set forth in detail in the act. . The board was also directed to consider in connection with the examination provided for, "the survey of a proposed waterway from Chicago to St. Louis, heretofore reported." See H. Doc. No. 263, Fifty-ninth Congress, first session.
4. Its report, having been submitted by the board to the Chicf of Engincers, has been referred for examination and review to the Board of Engineers for Rivers and Harbors, organized under the river and harbor act approved June 13, 1902, in further compliance with the act of March 2, 1907.
5. Seven methods of obtaining and maintaining the 14 -foot channel have been considered; in no case does the estimate of cost include interest or sinking-fund charges. For cost of 14-foot waterway from Chicago to the mouth of the Mississippi River all estimates of cost given below should be increased by $\$ 30,097,462$, and of annual maintenance by $\$ 310,000$, as estimated in connection with the survey from Chicago to St. Louis just referred to.
First. Dredging.-Bottom width of channel, 500 feet. Time required forassembling plant, not less than ten years, though with existing plant, and as new plant begins io be put in operation, a 14 -foot channel could be expected in possibly five years, interrupted only for limied periods during extreme low stages.
Cost of dredges. $\$ 15,000,000$
Annual cost of operation and maintenance of plant..................... 4, 100,000
Second. Regularization.-A channel 500 teet wide extending from SL. 1 ouis to Cairo only. Time required ior completion, fifteen years, but with dredging to aid the partly completed regulation works a navigable chamel may be available in about seven years from the start of active work.
Cost, including maintenance during construction......................... . $\$ 53,216,480$
Annual cost of maintenance after completion.
500,000

Third. C'analization with movable dams.-Between St. Louis and Cairo only. Ten locks, each 600 by 80 feet in the clear; lifts varying from 5.2 to 15 feet, and averaging 9.87 feet.

Fourth. Canalization and fixed dams.-Between St. Louis and Cairo only. But one locality was found where satisfactory foundations for masonry dim: exist except at depths so great as to preclude economic construction. An effective dam at this local ty would cause to be flooded 30 towns and villages, over 240,000 acres oi farming land, and over 220 miles of railroad. No project nor estimate for such a dam has been submitted.

Fifth. Lateral canals.-From the terminus of the proposed Alton-St. Louis canal to Cairo only. Projects not worked out in detail, costs having been considered excessire.
Cost if constructed on the Illinois side \$102, 000, 0r0
Annual cost of maintenance
$600,0 C 0$
Cost if constructed on Illinois side, except a short section on Missouri side

76, 600, 100
Cost of combined canal and river route . 36, 000, 000
Annual cost of maintenance
450,000
Sixth. Reservoirs.-To hold the water at St. Louis at a stage corresponding to a controlling depth of 14 feet thence to Cairo, would require about ten times as much annual storare as has yet been found possible by construction of reservoirs in the Mississippi River Basin from the Illinois River upward.
Seventh. Combination of methods.-To complete the existing project for 8 feet depth between St. Louis and Cairo, secure the additional 6 feet by dredging; and below Cairo, to dredge as estimated above, but to also provide for permanence of bank lines and channels. The 14 -foot channel, not permanent in location, and dependent upon continued dredging, might, subject to occasional interruptions at extreme low stages, be expected in possibly five years. With adequate appropriations the estimate of time of completion of improvement by combined dredging and fixation of banks and channels is stated as approximately eighteen years.
cost.

Completing 8-foot project between St. Louis and Cairo.	\$21,000,000
Dredging plant for use above Cairo	3, 6000,000
Contraction work below Cairo.	5, 000,000
Bank-protection work below Cairo	90, 000, 000
Dredging plant for use below Cairo.	9,000, 000
	128, 600, 000
Total annual cost of maintenance, after chann been made permanent in location, will reac	6,500,000

6. All the methods considered for securing a 14 -foot channel from St. Louis to the mouth of the Mississippi River, except that of reservoirs, are thought to be practicable; either singly, as that of dredging; combined, as those of complete regularization, canalization, or lateral canals above Cairo, with partial regularization and dredging below; or the combination of regularization and dredging, both above and below, which for brevity will be termed the combined method. All propositions requiring the abandonment of the already good open-river navigation, or the substitution of a lateral canal, for any part of the river below Cairo, are rejected as opposed to all reason. But all practicable methods, save by dredging alone, and the combined method are rejected for the reason, among others, that should increased depth be determined upon in the future, the canal structures and the cross sills of complete regularization work would have to be modified under great difficulties and at great cost.
7. The Board concludes that the most practicable method of obtaining and maintaining the 14 -foot channcl above Cairo is by completing the project now in force for securing an 8 -foot channel
by regularization and relying upon dredging to secure and maintain any further increase; below Cairo, by dredging, bank protection, and, at certain localities, contraction works.
8. The combined method of obtaining a 14 -foot channel at an initial cost of $\$ 128,600,000$ is considered more practicable by the Board than the method of dredging alone, with an initial cost of but $\$ 15,000,000$, for reasons substantially as follows: The one provides a complete improvement; the other but partial. The combined method looks to a channel permanently located in the river bed; the method by dredging, to one changing its position in that bed from season to season. The combined method contemplates not only permanence of depth of channels, but also permanence of location of channels, levees, wharves, and landing places; the method by dredging, only permanence of depth of channels. The combined method will provide for both through and local traffic; the method by dredging, with certainty for through traffic only. The combined method incidently furthers the welfare of the conimunity bordering the river and affords protection to life and property; the method by dredging is indifferent to all these, including the destruction of local terminal facilities.
9. Commerce, past, present, and prospective, has been considered. As to this, reference may be made not only to the Board's report but to pages 154-159 of the preliminary report of the Inland Waterways Commission, published as S. Doc. No. 325, Sixtieth Congress, first session.
10. During the calendar year 1908 about $1,300,000$ tons of coal came out of the Ohio River; of this about 180,000 tons went up the Mississippi River to St. Louis. Other than this, the amount of water freight during the year at all river points between St. Louis and New Orleans was about 400,000 tons downstream and 300,000 tons upstream. This river commerce has been rapidly diminishing in recent years. The entire commerce of the Mississippi River system, including all tributaries except the Ohio, was reported as follows:

Year	1889.	190
	12, 492, 535	4, 304, 288

So far as reported, the river commerce of 1908 shows a slight decrease compared with that of 1906, except as to a few of the minor tributaries.

The total river tonnage at St. Louis was:

Year.	1886.	1896.	1906.	1908.
Tonnage	1,332, 885	1,244, 175	416, 855	365, 920

The total receipts and shipments by rail at St. Louis were:

Year.	1896.	1906.
Tonnage.	16, 163, 844	44, 964, 623

Of the 1906 river tonnage, 160,120 tons were coal from the Ohio.
11. Of the 1908 river tonnage, as before stated, about 180,000
tons, or one-half the total, were coal from the Ohio, and not over 49,530 tons were with towns on the Mississippi below Cairo.
12. In 1880 there were shipped from St. Louis to New Orleans $15,762,664$ bushels of grain; in each of the years 1901, 1902, and 1903 the shipments of grain were less than $3,000,000$ bushels. The 1880 shipment is the largest annual shipment reported. It was
made in the year in which a minimum depth of 4 feet was reported as not uncommonly found in the channel between St. Lous and Cairo. In 1908 it was oflicially reported that a channel depth of 8 feet had been maintained duriag the entire season when unobstructed by ice, except in November, 1007, when for short periods at several places the depths were 7 feet until dredges could be brought into action upon these shoals, when the required depth was quickly obtained.
13. In 1890, 611,779 barrels of flour were received at St. Louis by river; in 1906, but 29,160 barrels. In 1880, 17,500,000 bushels of grain were received at New Orleans, of which $15,700,000$ were shipped from St. Louis by river; in $1903,28,100,000$ were received at New Orleans, of which $2,700,000$ were shipped from St. Louis by river.
14. The decline in the commerce of the river has not arisen from its lack of navigability. The Board states that the immense commerce of the Rhine could be carried more readily and cheaply on the Mississippi to-day than on the Rhine. It is stated in the report of the Inland Waterways Commission that 600 -ton barges drawing 153 inches light, and 6 feet when loaded to full capacity, are now common on the best waterways of Germany; and that express steamers are operated on the Elbe and Rhine which, when carrying 200 tons of freight and a supply of coal, draw 4 feet 11 inches, and with two barges, carrying 275 tons each, in tow their speed is reduced from 10 to 3 knots; yet the vessels are said to represent perhaps the most perfect type yet developed for waterways of Germany.
15. As to future commerce, after setting forth and discussing in more or less detail the claims made by various communities, the Board states that no actual future development is yet in sight. It invites attention to the fact that, as at present constructed, neither ocean nor lake vessels are as economic a means of transportation on rivers and canals as river barge tows, the cost of an ocean vessel being about $\$ 71$ for each ton of freight carried, of a lake vessel about $\$ 41.50$, and of a river boat and barges for $8 \frac{1}{2}$ feet draft about $\$ 12$; and further, that a modern lake freighter while affording a most economical method of transporting freight on the Great Lakes would be a failure if employed in either ocean or river navigation. The board concludes that a 14 -foot waterway is suitable for neither existing lake nor ocean vessels, and that freight originating on lake or gulf will require transshipment to vessels adapted to its navigation.
16. While, as above indicated, the board reports that a 14 -foot channel from St. Louis to the mouth of the river is practicable, it is of the opinion, for reasons given at length, that the present demands of traffic are adequately net by the existing projects for improving the river, which have for their objects to obtain and to maintain a minimum depth at standard low water of 8 feet from St. Louis to the mouth of the Ohio, and of not less than 9 feet below; and that probable demands of traffic, present and prospective, not only. between St. Louis and the mouth, but even between Chicago and the mouth, can be adequately met by a channel of 9 feet depth.
17. The Board reports as to the specific instructions contained in the act of March 2, 1907, as follows:

First. It is practicable to produce a channel of at least 10 feet depth between St . Louis and Cairo at low water by means of regulation works.

Second. A depth of at least 14 feet will obtain in such regulated chancl, at the average stage of water for the year, 12.6 fect on the St. Louis gauge.
Third. Fourteen feet depth of water will obtain in such regulated channel for at least an average of one hundred and sixty-three days annually.

Fourth. At low-water stages, an increase of depth of not more than 6 inches will be obtained by an added volume of 10,000 cubic feet per second, nor more than 8 inches by 14,000 cubic feet per second between St. Louis and Cairo, while at high-water stages the increase of depth will be less. Below Cairo this increase in depth will be much reduced for low-water stages and inappreciable at high-water stages.

Fifth. It will not be practicable to produce at all seasons of the year a depth of 14 fect in such regulated channel by the aid of locks and dams similar to those projected and in use on the Ohio River improvement, without extensive annual dredging. The cost of this dredging is included in the cost of annual maintenance of this system of improvement between St. Louis and Cairo, the third considered, and is estimated at about $\$ 200,000$ annually.

Sixth. The Board submits no project which creates water power, or which will drain any lands on the portion of the river directed to be surveyed, hence no power is to be conserved, or paid for, nor are there lands drained which should bear any cost of improvement. As to the water power on the proposed waterway from St. Louis to Chicago heretofore surveyed, the value thereof, and lands which may be drained by it, the Board considers that the property owners along the canal and Illinois River are equitably entitled to the water power due to the natural flow alone of the Des Plaines and Illinois rivers; any power which results from an added flow diverted from Lake Michigan belongs to the people of the United States and Canada; 100,000 horsepower can be developed by the diversion of 10,000 cubic feet per second by modifications in the project of the former board in harmony with its report; accepting the valuation indorsed by the Sanitary District of Chicago, the Illinois State Internal Improvement Association, and the governor of Illinois, this horsepower should be assumed as worth $\$ 2,500,000$ per year; the diversion of 10,000 cubic feet per second into the Illinois River, far from draining lands, would cause extensive damage to lands subject to overflow.
18. As to the Government receiving adequate compensation for such power, the Board favors opening the canal of the Sanitary District of Chicago to free navigation, and so maintaining it; the District to enjoy free use of the power until the aggregate value of said power shall equal the cost of canal and power construction: and after this, the United States to receive from the beneficiaries a percentage, to be fixed by Congress, of the net profits from the water power, as a compensation for the resulting injury to navigation on the Great Lakes and connecting waters and loss of water power on the Niagara and St. Lawrence rivers.
19. The Board calls attention to a plan proposed in 1907 by the Internal Improvement Association of Illinois, indorsed by the governor and the people of the State, proposing a development of 173,000 horsepower by diversion of 14,000 cubic feet per second from Lake Michigan. This plan calls for radical changes in the plan of the Board of 1905 , reduces the number of locks from 9 to 5 , and increases many
times the amount of excavation. The opinion is expressed that any attempt by the United States to conserve the power created under these plans, if carried out, would involve the General Government in serious legal difficulties.
20. The Board of Engineers for Rivers and Harbors now concludes this examination and review of the report before it, with the following opinions and recommendations:
21. It is practicable to construct and maintain a navigable channel 14 feet deep and of suitable width from St. Louis to the mouth of the Mississippi River by either of six methods considered; but is not by the remaining method-that of reservoirs. Of the six practicable methods, the most practicable, having in mind through and local traffic, permanence of location of improved channel, protection of landings, life, and property, the general welfare of the community, and possible future devolopment, is the method termed the combined method. Of this, the estimated first cost is $\$ 128,600,000$.

The annual cost of operation and maintenance will increase as work progresses, and may reach at completion $\$ 6,500,000$.

These estimates do not include charges for interest and for sinking fund, nor the estimated cost of the waterway from Chicago to St. Louis, which is $\$ 30,097,462$, with annual cost of maintenance of $\$ 310,000$.
22. It is not desirable to construct a navigable channel 14 feet deep from St. Louis to the mouth of the Mississippi River or from Chicago to the mouth of the Mississippi River. Such a depth is greater than required for successful river navigation and is less than required for economical lake or ocean navigation, and if adopted would require for common use on lake, river, and gulf a type of vessel not now in existence and which if designed would be less economical than modern lake or ocean vessels in use on those waters, or than a towboat and barge navigation on the connecting waterway.
23. Present demands of commerce between St. Louis and the mouth of the Mississippi River are adequately met by existing projects having for their object to obtain and maintain an 8 -foot channel from St. Louis to the mouth of the Ohio and a channel of not less than 9 feet in depth below the mouth of the Ohio. In reporting on the waterway from Lockport, Ill., to St. Louis, Mo., this Board stated "It * * * believes that the commercial interests of the Great Lakes are entitled to an outlet to the Gulf of Mexico of as great a capacity as can be obtained at reasonable cost. This capacity is now limited by the projected depth between St. Louis and Cairo--that is, 8 feet-a depth that will not only suffice for a large amount of through commerce, but will be sufficient to materially benefit and consequently aid in the development of ths Illinois Valley." (H. Doc. No. 437, Fifty-ninth Congress, second :session.). The Board believes that an 8 -foot channel from Chicago to St. Louis, corresponding to the present 8 -foot project from St. Louis to Cairo, is the least that would adequately meet the demands of commerce, and believes such a waterway would be desirable, provided its cost is reasonable. This cost is not now known, but will be obtained and submitted before the next session of Congress.
24. Present and-prospective demands of commerce between Chicago and the Gulf will be adequately served by a through channel 9 feet in
depth, which may be obtained without violent changes of existing methods of improvement. Estimates of such a through channel have not been prepared and can not be submitted at this time. They will, however, be obtained and submitted to the department before the next session of Congress convenes, accompanied by an opinion as to whether this depth is advisable in the interests of commerce, having in mind the cost involved.
25. The report as to the first four of the specific instructions contained in the act of March 2, 1907, is concurred in. As to the fifth, it is believed to be practicable to maintain a depth of 14 feet in the regulated channel, except when interrupted by ice, by the aid of locks and dams similar to those in use on the Ohio River improvement, but this will require wickets 1 foot 8 inches longer than those used on the Ohio River, and are therefore larger than any that have heretofore been built for river canalization. The difficulties encountered in handling the wickets (already great) increase rapidly with the increase in height. Dredging will be required, possibly to the extent of $\$ 200,000$ annually. In view of these facts, this Board is of the opinion that the estimates submitted for this system of improvement may be insufficient.
26. As to the sixth, including the views expressed as to cooperation by the General Government in the plan of the Internal Improvement Association of Illinois, referred to in paragraph 19 above, the report is concurred in, except, as to the ownership by the people of the United States and Canada of the power resulting from water diverted from Lake Michigan, and except also, premising such ownership, as to the epoch at which compensation should be received by the Government of the United States. These two points are considered below.
27. Apart from the plant for its conversion and transmission, water power depends for its value upon the quantity of water and the height made effective by structures through which it falls. The three possible classes of cases are (a) United States owns water only; (b) United States owns structures only; (c) United States owns both water and structures. Should it be determined that the United States, other than as a riparian owner, has no ownership of water, there still remains to be determined whether the United States, when acquiring lands upon which to erect locks and dams as means to improve navigation, does not acquire such complete title to these lands as to make the United States a riparian owner with right to charge for water power created by its dams. But in this case, as the creation of water power is not essential to Government functions, how far may the use of the power created be regulated or controlled by the owners of the waters so far as such regulation or control does not interfere with navigation? Whether the United States, without riparian rights, owns any waters or has simply an easement giving it a right to improve channels and conserve the water flowing therein for purposes of navigation and to use them for power so far as necessary to operate structures necessary to such improvement is a subject for judicial determination. Should it be determined that the United States owns any waters used in the development of water power, any Government charge made for such use should commence with such use and should not be deferred until the cost of plant by which such use is made possible has been collected from consumers of the power. Compensation, if found due, should
be fixed by Congress. It should be uniform in the three possible classes of cases.
28. These questions seem proper for determination before rates for compensation to the United States for water power can be fixed. General rules, principles, or laws to enable decision to be made as to status of each particular case as it arises are most. desirable.

For the Board:
Very respectfully,
D. W. Lockwood, Colonel, Corps of Engineers, Senior Member of the Board.
The Cimef of Enginelers, U. S. Army.

[^0]: An Act Making appropriatlons for the construction, repalr, and preservation of certain publio works on rivers and harbors, and for other purposes.
 Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, That the following sums of money bo, and are hereby, appre-

[^1]: H. Doc. 50, $81-1-2^{*}$

[^2]: a See Report of Chief of Engineers, 1908, p. 1965.

[^3]: a Rainfall and run-off taken from Greenleaf's "Hydrology of the Mississippi."

[^4]: H. Doc. 50, 61-1— 3^{*}

[^5]: Notes.-The low-water slope St. Louis to Calro in the above table is affected by ice; free of such influence, it is slightly greater.
 The low-water slope below Red River is masked by the Gulf tide and is therefore omitted.
 The average low-water depth along the thalweg of the stream is as follows:
 8t. Louis to Calro . 18.

 Memphis to Vicksbiurg. 37
 Vicksburg to Red River.. 48.
 Red River to New Orleans 84

[^6]: a The plat of original report, showing area of caving in square yards, has been replaced by a new plat showing volume of caving in cubic yards.

[^7]: $\boldsymbol{a} \$ 12,703,579.92$ from 1872 to date, from statement of district engineer's ofice; $\$ 75,000$ appropriated prior to 1872 from H. R.
 'Includes general survey, Head of Passes to the headwaters.

[^8]: a Low water of 1872.
 6 Derived from slopes.
 c Precise levels in 1908 indicate an elevation of 309.25 for zero of Grays Polnt gauge.
 d Doubtful on sccount of fec; lowest rellably recorded 1.0.
 e Doubtful; lowest rellably recorded 2.0.
 f Doubtful on account of ice; lowest reliably recorded 2.3.
 g Doubtful; lowest rellably recorded 1.3.
 Elevations refer to the Memphls daturn plane.
 Readingsgiven for "Extremo low water" are the lowest recorded since the extablishment of the gauge.
 Mean of lowest daily stages, St. Louls, is 0.45 foot alkove standard low water of the United Stazes Engineer Office, St. Louls.
 Calro gauge is in Ohio River, and 2 miles above the mouth (mile 182.5).
 Flood plane 1844, Macker Towhead to Calro, is derived Iromslope, Price Ianding, Mo., to Columbus, Ky.

[^9]: H. Doc. 50, 61-1—7*

[^10]: Left bank channel; after September 1 the channel was between towhead and right bank.
 c Abandoned by river between 1907 and 1908
 b Left bank channel; aiter Septamber 1 the channel was along right bank (Island 34). d Authenticity questionable.

[^11]: - Doubtful, wecount of ice Reading changed one-hail foot or more chambed lews than one-half foot.

[^12]: b No gauge.

[^13]: - Interpolated-no reading.
 - Doubtul on account of ice.

[^14]: a Intorpolatel-no readlag.

 - Doubtful on account of loo.

[^15]: aChanged less than one-half foot. b Reading changed one-half foot or more. c Doubtful on account of lee.

[^16]:

[^17]: a leading on lemporary gange.

[^18]: a leadling ehanged less than ono-half foot.
 b Donbthil. Readings on the following dates aro deduced from reallags on (irays Point, Engincer gange Juna 2l-27, Incluslvo; July 12-Aug. 1, inclusive; Aug. 8-Nov, 1, inclusivo.

[^19]: a Changed loss than one-hnli foot.

[^20]: 4 Reading changed one-hall foot or more.

[^21]: a Reading changed one-half font or moro.
 o No rendlngs, account of lee.
 c Change less than one-half foot.

[^22]: a Reading changed one-half foot or more.
 \checkmark Ice gorge on gange.
 c Changed less than one.half foot.
 aOne foot has heen added to readings from September if to September od, indusive, and from September 26 to 36 , inchusive.
 c Interpolated-no rading.

[^23]: - Observations and reduotion from November 8, 1001, to Jung 30, 1003, made under direotion of Mel. Thos. L. Casoy, Corps of Engingers. Results furnished ta manuserfit by Major Cocey, Fobruary 16, i00

[^24]: a Olsorvatlons and reduction of $180 \%-1809$ vero mado under directlon of Capt. Fidward Burr, Corps of Engineers. IReport Chinf of lingineers, 1001, 1. 2207.
 Obsorvatlons nud reduction of 1003 - 4 mado indar direction of Mnj. Thos. I. (asoy, Corps of Engineers. Results, 1903, furnished in manusoript Fobriary 16, 1005. 'I'abulation, 1004, in roport chiof of lingineors, 1004, p. 2137.

[^25]:

[^26]: - Only about ono-hale tho seedon soumded; banco interpolatod from tho 5 th and 7 th.

[^27]: - Finaking observatlons. Sime areas used ay for revular obieryatlon of that day.

 Notes for low water 1806 and high water 183 River bank fall; over bank at some places on Belmont
 dopth with Haskell meter, form "B," whed No. 2. "hsirvallons ant redurtion mado under dirvetlon of Capt. H. F. Waterman, Corps of Foplners, sceretary Mistisippl River Commisibn. Roport chlef of Emgherars 1897, p. 3053.
 olavalor.

[^28]: a Deilved from orose mootion of Aprill 0.

[^29]: a Observations by M. I2. C. first dist riet ofller. Those of Oet. 20 and wart of Dee. 8 reducoil In secrotary'sofice. I'art of tabilation In Roport Chof of linglneors 1834, D. 2791 , and part in leport (hied of bingheers 1850 , p. 26.10.

 - linilerton Clinto.
 c Milillo chminol.
 d 'romnessex (hinto.
 e Osceola Clinto.
 fobsorvitions by M. 12, C, first distriot oflicer. 'Pabulatlon, Roport Chlof of Engilneers 1835, p. 2760.
 o Chinninol onlskida of Bithlorton.
 h Milidlo lsur chmmal.
 - Yankeo Bar chanmei.

 JM. 12. (:, Orshallstitet ollteor. Tabulation, Roport Chiof of Engineors 1800, p. 3218.

 * Malin rlvar.

 1 Blamot chute.
 m lslund No. 30 Chuto.
 H. Doc. $50,01 \cdots 1 \cdots-17$ *

[^30]:

[^31]: - Observations and reduetton under secretary Misslsslppl Rlvor Commisslon, Report Chle of Engineers 1887 paye 2820 . The high-water seeton was a short distance below the olevator. The lert bank end of the rection of 1884-5 was colneldent with that of 1882; but the rlpht bank end was about 200 feet above that of 1882. The low-water sextion was about three fouthis of a mille above tho hitg-water sectlon. Observallous Oot. 8 to 11 regarded as doubtiul.

[^32]: a Observations and reduotlons made under direction of Capt. W. B. Ladue, Corps of Enghteers, U. S. Army, secrelary Mississlppl RIver Commission. Zero of Unted Sinles eugineer standard gatue is 101.08 feet above the Cairo datum plane. The datum Ine for computing datum areas was at 47.03 feet on the
 Price meter No. 38 except on Apill 10, when Price meter No. 25 was used and on the 17 th when No. 25 was used on part of the section.
 bobservatons and reductions niade under direction of Cupt. G. R. Lukesh, Corps of Engincers, U. S. Army, secretary, Mississippl River Commisslon. - Helema, Cnited states engineer gauge; zero is 161,98 feet above the Calro datum plane. The datum line for computing datum oreas was taken at 50,4 feet on the gauge. The readings are given for time of discharge observations; the rise or fall is computed from the 8a. m. readings. Prico meter No. 38 was used. The discharge section was the same as that used in lio4, 8 bout onehalf inllo below llelema. Ark. Overhank discharge was on the left bank. It was measured on
 February 2. All pverbank discharges derived from thils measuroment.

[^33]: a Observatlons and reductlons mado under direction of Capt．G．R，Itikesh，Corps of Engincers，U． 8. Army，secretary Misslssippl Rivor Commission．Zoro of Unlted States onglneor standard gaugo is 101.08 feot above the Calro datum plane．＇Iho readings are glven for the the of discharge observations．The change in twonty－four hours is computed from the 8 a，m．readings．The diseharge seotlon is abont one－ half millo below felema and is tho samo as that used in provious years．Ovarbank discharge measured on the left bank on Mar． 25 and 29．All other ovorbank discharges durlved from these measurements．
 －Interpolated．

[^34]: a Flanking method．These are means of two flankings across river in opposite directions．Same section as in 1803．Price meter used．Observations made under direction of third district officer，Mississippi River Commission．Report Chief of Encineers，1896，p． 3555.
 b The discharge section was at same place as in former years，about one－half inlle below Arkansas City． Double floats were used，the lower one being at mid－depth．The meter observations were made with the Haskel current meter，held at 0.6 depth for five minutes．Observations and reduction made under direc－ tion of Capt．H．E．Waterman，Corps of Engineers，Secretary Mississippi River Commission．Rieport Chlef of Engineers，1897，p． 3654.
 c Deduced from observed overflow of March 29 and 30.
 \＆Bolls are quite bad from station 11 to 16 ．They evidently indicate traveling sand．The remarkable changes in depth from the preceding day were checked by resounding．
 －Left bank．
 f Right bant．
 －Upper section same as that of 1898 except that right bank end was 630 feet farther downstream．
 Arkansas City Mississippi River Commission gauge，whose zero is 116.44 feet above the Cairo datum plane．

[^35]: a Observatlons and reductions made under direction of Capt. G. R. Lakesh, Corps of Engineers, U. S. Army, segretary Mississippi River Commission. Arkansas City M. R. C. gauge; zero is 116.44 feet above theCairo datum plane. Arkansas City is 6 miles below diseharge section. Local gange used was set January 14 to read the same as Arkansas. City M. R. (\%. gange. The datum line for computing datum areas was taken at 52.10 feet on the local gauge. Price meter No. 29 and Haskell meter No. $1 /$ were used simultancously until January 28, and the results given are the means for the two meters. Aiter January 28 Price meters Nos. 25 and 29 were used singly.

[^36]: a Observed

 - Piano wire soundings; those of June 10 doubtful.
 c Results of ordinary method, velocity stations 300 feet apart.
 dThe section of 1893 was about 250^{\prime} below the section used in proviulis years; the direction was also
 changed about 44° to make it more nearly perpendicular to the flow. Tabulation, Report Cbiel of Engi-
 neers 1894_{∞} p. 2833 . Report on work, Report Chief of Engineers, p. 2822.
 - Moving or flanking across strean.

[^37]: a Moving or flanking across stream．
 Observed．
 e Section of 1804 was located opposite Skipwith Towhead and above the location of former years at Wil． son Polnt．The change was made to ayoid the eddy at the old seetion．Thirteen velocity stallons and 51 soundings each day．Velocities used as observed at 0.6 depth．Observations aud reduction by uird district officer，M．12．C：

[^38]: - Unreliable.
 - Section ly miles below old Warrenton Landing, at 607.8 miles on lnch-mile map and as nearly as practicable in position of old Warrenton range. Vicksburg gatge readings are means of $8 \mathrm{a} . \mathrm{m}$. and 4 p . m. by regular observer, Elevation of zero 66.04 feet above Calro datum. Price meter used. Observations by third district officer, Mississippl River Commission. Report Chief of Engincers 1s96, p. 3557.
 c Flanking method. These are means of two flankings across river in opposite directions.
 The discharge section was at same place as in former years, which is about 11 miles below old Warrenton Landing, and 807.8 miles on the inch-mile map. The discharge on right bank was measured on Apr. 6 and 14. The first measurement was not extended as far as the overflow, and was corrected by 3,912 cubicfeet deduced from the second measurement. This corrected overbank discharge has been adopted for A pr. 1 to 5 and the overbank between Apr. 6 and 14 was Interpolated from those dates; that for Apr. 15 was derived from the observed overbank discharge of the 14 th. VIckshurg gauge readings taken at 8 a. m.; zero is 66.01 feet above the Calro datum. Observations and reductlon made under directlon of Capt. H. E. Waterman,
 Corps of Engineers, ecretary Mississippl River Commission. Report Chief of Engineers 1807, p. 385.

[^39]: a St. Joseph gange.
 ${ }^{6}$ The velocity olservations were taken about 100 feet above the section sounded. Water surface was 87.326 feet above the Cairo dathm plane.
 c Discharge through old ehannel.
 d In compiting the velocities the average departuie of the floats, 46.5 feet was assumed for each path.

[^40]: - Section same as in 1884-85. Report on observations and tabulation, Report Chief of Engineers, 1891,

[^41]: a Section of 1890 same as in 1884-85. Tabulation in Report Chief of Engineers, 1891, p. 3539.

[^42]: a Discharge section approximately 700 feet below warehouse at Red River Landing and at same place as section of $1884,1885,1888,1889$, and 1890 . Gauge readings at beginning and end of observations. Price meter used. Observations made under direction of fourth district officer, M. R. C. Report Chief of Engineers 1896 , page 3557.

 - The disoharge section was located just below Red River Landing, La., at the same place as In former years. Gauge readings at $8 \mathrm{a} . \mathrm{m}$. and 4 p . m. Double floats were used, the lower float being at mid-depth. The Haskell current meter was used at six-tenths depth at each station for five minutes. Observations and reduction made under direction of Capt. H. E. Waterman, Corps of Engineers, secretary Mississippi River Commission. Report Chief of Engincers 1897, page 3856.
 c Assumed to be observed as on the following day.
 d This discharge, which was on the right bank. was through open timber, with very little underbrush. There was no discharge on left bank, but the cohintry was covered with standing water.
 - United States engineer gauge at Red River Landing, whose zero is 23.85 feet above the Cairo datum.

[^43]: a 7ero of U. S. Engineer standard gauge is 3.57 feet above mean Gulf level. The datum line for computing datum areas is at 44.66 feet on this gauge. The discharge section is the same as that used in 1904 and is just below Red River landing. Veloclties were measiured with Price meter No. 43 on A pril 25 and 26 and with Price meter No. 38 on April 28 and 30.

 - Interpolated.

[^44]: Proportional domestio ratios for Chicago are 2.8 conts less than local.
 Proportional export rates for Chicago are 4 centa less than local.
 Proportional domestic rates for East St. Louis are 1,5 cents lem than local.
 Proportional export rates for East St. Louls are 3 cents less than locaL.

[^45]: a Proportional rate.
 Canceled November 1, 1908.
 c Advanced 3 cents, etfectlive September $1,1908$.
 Canceled March 16, 1808, Class rates apply, Memphis, 12 cents; New Orleans and Vicksburg, 20 cepts.
 Excep as othorwise provided above St. Louls and Fast St. Louls rates are the same.

[^46]: H. Doc. 60, 61-1—25 *

[^47]: ■ $\frac{89}{1}$
 Missiesippi River Commission, 1889. (Chart No. 5.)
 Latitude $38^{\circ} 05^{\prime} 45^{\prime \prime} .89$; meters $+1,415,-435$.
 Longitude $90^{\circ} 12^{\prime} 04^{\prime \prime} .84$; meters $+118,-1,344$.
 Elevation: Stone, 394.91; pipe, 400.01 .
 Flat stone and iron pipe, on levee following old high bank in Illinois; opposite (*) Brickleys, Mo.; 230 meters back from top of river bank; near south line of land of Edward Ahern; and 550 meters below (southeast of) a sharp turn in the levee. (Found in 1908; cap gone and pipe bent over.)

[^48]: Mississippi River Commission, 1880. (Chart No. 10, position not determined.)
 Elevation: 369.41.
 Center of copper bolt, leaded horizontally in stone foundation wall of flour mill at Wittenberg, Mo.; on side of mill facing the river; between the ground floor door and down-river corner.

